Geochronological and Geochemical Characterization of Triassic Felsic Volcanics in the Youjiang Basin, Southwest China: Implications for Tectonic Evolution of Eastern Tethyan Geodynamics
Abstract
:1. Introduction
2. Geological Setting and Sample Description
2.1. Regional Geology
2.2. Sample Description
3. Analytical Methods
3.1. Zircon U–Pb Isotope Analysis
3.2. In Situ Zircon Hf Isotope Analyses
3.3. Whole-Rock Major and Trace Element Analyses
4. Results
4.1. Zircon U-Pb Dating
4.2. Zircon Hf Isotopes
4.3. Major and Trace Element Compositions
5. Discussion
5.1. The Age of the Triassic Felsic Volcanics from Youjiang Basin
5.2. The Petrogenesis of Triassic Felsic Volcanics in the Youjiang Basin
5.3. Tectonic Setting and Geodynamic Implications
6. Conclusions
- The Triassic felsic volcanics from the Beisi, Baifeng, and Banba Formations erupted during the Early–Middle Triassic period (ca. 241~251 Ma).
- The Early–Middle Triassic felsic volcanic rocks in the Youjiang Basin were predominantly formed from the partial melting of crustal rocks. These rocks likely originated from partial melting processes occurring within high-pressure environments, such as the garnet stability field within the deep mantle.
- These felsic volcanic rocks likely originated during the transition from Tethys oceanic crust subduction to syn-collisional settings. Notably, the syn-collisional interactions between the South China and Indochina blocks exerted a significantly greater tectonic impact on the Youjiang Basin compared to oceanic subduction.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.Y.; Wan, B.; Zhao, L.; Xiao, W.J.; Zhu, R.X. Tethyan geodynamics. Acta Petrol. Sin. 2020, 36, 1627–1674. [Google Scholar]
- Liu, T.; Liu, C.; Wu, F.; Ji, W.; Zhang, C.; Zhang, W.; Zhang, Z. Timing and mechanism of opening the Neo-Tethys Ocean: Constraints from mélanges in the Yarlung Zangbo suture zone. Sci. China Earth Sci. 2023, 66, 2807–2826. [Google Scholar] [CrossRef]
- Wang, Y.J.; Qian, X.; Cawood, P.A.; Liu, H.C.; Feng, Q.L.; Zhao, G.C.; Zhang, Y.H.; He, H.Y.; Zhang, P.Z. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments. Earth-Sci. Rev. 2018, 186, 195–230. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Zhang, G.W.; Zhang, Y.H. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res. 2013, 23, 1273–1305. [Google Scholar] [CrossRef]
- Xu, X.S.; O’Reilly, S.Y.; Griffin, W.L.; Wang, X.L.; Pearson, N.J.; He, Z.Y. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Res. 2007, 158, 51–78. [Google Scholar] [CrossRef]
- Qian, X.; Wang, Y.J.; Zhang, Y.Z.; Zhang, Y.H.; Senebouttalath, V.; Zhang, A.M.; He, H.Y. Petrogenesis of Permian-Triassic felsic igneous rocks along the Truong Son zone in northern Laos and their Paleotethyan assembly. Lithos 2019, 328, 101–114. [Google Scholar] [CrossRef]
- Gan, C.S.; Wang, Y.J.; Barry, T.L.; Zhang, Y.Z.; Qian, X. Late Jurassic High-Mg andesites in the Youjiang Basin and their significance for the southward continuation of the Jiangnan Orogen, South China. Gondwana Res. 2020, 77, 260–273. [Google Scholar] [CrossRef]
- Wang, Q.F.; Yang, L.; Xu, X.J.; Santosh, M.; Wang, Y.N.; Wang, T.Y.; Chen, F.G.; Wang, R.X.; Gao, L.; Liu, X.F.; et al. Multi-stage tectonics and metallogeny associated with Phanerozoic evolution of the South China Block: A holistic perspective from the Youjiang Basin. Earth-Sci. Rev. 2020, 211, 103405. [Google Scholar] [CrossRef]
- Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 2013, 66, 1–33. [Google Scholar] [CrossRef]
- Gan, C.S.; Wang, Y.J.; Zhang, Y.Z.; Qian, X.; Zhang, A.M. The assembly of the South China and Indochina blocks: Constraints from the Triassic felsic volcanics in the Youjiang Basin. G. Soc. Am. B. 2021, 133, 2097–2112. [Google Scholar] [CrossRef]
- Qin, X.F.; Wang, Z.Q.; Zhang, Y.L.; Pan, L.Z.; Hu, G.A.; Zhou, F.S. Geochronology and geochemistry of Early Mesozoic acid volcanic rocks from Southwest Guangxi: Constraints on tectonic evolution of the southwestern segment of Qinzhou-Hangzhou joint belt. Acta Petrol. Sin. 2011, 27, 794–808, (In Chinese with English abstract). [Google Scholar]
- Gan, C.S.; Wang, Y.J.; Zhang, Y.Z.; Liu, H.C.; Zhang, L.M. The identification and implications of the Late Jurassic shoshonitic high-Mg andesite from the Youjiang basin. Acta Petrol. Sin. 2016, 32, 3281–3294, (In Chinese with English abstract). [Google Scholar]
- Hieu, P.T.; Chen, F.K.; Thuy, N.T.B.; Cu’O’Ng, N.Q.; Li, S.Q. Geochemistry and zircon U-Pb ages and Hf isotopic composition of Permian alkali granitoids of the Phan Si Pan zone in northwestern Vietnam. J. Geodyn. 2013, 69, 106–121. [Google Scholar] [CrossRef]
- Shu, L.S.; Chen, X.Y.; Lou, F.S. Pre-Jurassic tectonics of the South China. Acta Geol. Sin. 2020, 94, 333–360, (In Chinese with English abstract). [Google Scholar]
- Yu, W.C.; Algeo, T.J.; Du, Y.S.; Zhang, Q.L.; Liang, Y.P. Mixed volcanogenic-lithogenic sources for Permian bauxite deposits in southwestern Youjiang Basin, South China, and their metallogenic significance. Sediment. Geol. 2016, 341, 276–288. [Google Scholar] [CrossRef]
- Zeng, Y.F.; Liu, W.J.; Chen, H.D.; Zheng, R.C.; Zhang, J.Q. Evolution of sedimentation and tectonics of the Youjiang composite basin, South China. Acta Geol. Sin. 1995, 69, 113–124, (In Chinese with English abstract). [Google Scholar]
- Zhang, R.Y.; Lo, C.H.; Chung, S.L.; Grove, M.; Omori, S.; Iizuka, Y.; Liou, J.G.; Tri, T.V. Origin and tectonic implication of ophiolite and eclogite in the Song Ma Suture Zone between the South China and Indochina Blocks. J. Metamorph. Geol. 2013, 31, 49–62. [Google Scholar] [CrossRef]
- Du, Y.S.; Huang, H.; Yang, J.H.; Huang, H.W.; Tao, P.; Huang, Z.Q.; Hu, L.S.; Xie, C.X. The basin translation from Late Paleozoic to Triassic of the Youjiang Basin and its tectonic signification. Geo Rev. 2013, 59, 1–10, (In Chinese with English abstract). [Google Scholar]
- Shi, X.Y.; Hou, Y.; Shuai, K.Y. Late Paleozoic deep-water stratigraphic succession in central Youjiang basin: Constraints on basin evolution. Earth Sci. Front. 2006, 13, 153–170, (In Chinese with English abstract). [Google Scholar]
- Hu, R.Z.; Fu, S.L.; Huang, Y.; Zhou, M.F.; Fu, S.H.; Zhao, C.H.; Wang, Y.J.; Bi, X.W.; Xiao, J.F. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. J. Asian Earth Sci. 2017, 137, 3–34. [Google Scholar] [CrossRef]
- Huang, W.M.; Liu, X.J.; Liu, L.; Li, Z.L.; Liu, X.; Wu, H. Early Triassic roll-back of subducted Paleo-Tethys oceanic lithosphere: Insights from A2-type silicic igneous rocks in the Pingxiang area, southwest China. Geosphere 2023, 16, 1372–1398. [Google Scholar] [CrossRef]
- Song, B.; Zhang, Y.H.; Wan, Y.S.; Jian, P. The mount making for and the procedure of SHRIMP dating. Geol. Rev. 2002, 48, 26–30, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, W.; Liu, Y.; Gao, S.; Li, M.; Zong, K.; Chen, H.; Hu, S. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef]
- Zong, K.Q.; Klemd, R.; Yuan, Y.; He, Z.Y.; Guo, J.L.; Shi, X.L.; Liu, Y.S.; Hu, Z.C.; Zhang, Z.M. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 2017, 290, 32–48. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003. [Google Scholar]
- Hu, L.S.; Du, Y.S.; Yang, J.H.; Huang, H.; Huang, H.W.; Huang, Z.Q. Geochemistry and tectonic significance of Middle Triassic volcanic rocks in Nalong, Guangxi Area. Geol. Rev. 2012, 58, 481–494, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Hu, Z.C.; Liu, Y.S.; Gao, S.; Liu, W.; Yang, L.; Zhang, W.; Tong, X.; Lin, L.; Zong, K.Q.; Li, M.; et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. Atom. Spectrom. 2012, 27, 1391–1399. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Z.; Spectroscopy, A. Estimation of Isotopic Reference Values for Pure Materials and Geological Reference Materials. Atom. Spectrosc. 2020, 41, 93–102. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220, (In Chinese with English abstract). [Google Scholar]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Hastie, A.R.; Kerr, A.C.; Pearce, J.A.; Mitchell, S.F. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. J. Petrol. 2007, 48, 2341–2357. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Chen, X.; Schertl, H.P.; Hart, E.; Majka, J.; Cambeses, A.; Hernández-Uribe, D.; Zheng, Y. Mobilization and fractionation of Ti-Nb-Ta during exhumation of deeply subducted continental crust. Geochim. Cosmochim. Acta 2022, 319, 271–295. [Google Scholar] [CrossRef]
- Guffanti, M.; Clynne, M.A.; Muffler, L.P.J. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust. J. Geophys. Res. Solid Earth 1996, 101, 3003–3013. [Google Scholar] [CrossRef]
- Soesoo, A. Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: An example from Lachlan Fold Belt, Australia. J. Geol. Soc. 2000, 157, 135–149. [Google Scholar] [CrossRef]
- Bacon, C.R.; Druitt, T.H. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol. 1988, 98, 224–256. [Google Scholar] [CrossRef]
- Chen, X.; Schertl, H.P.; Chopin, C.; Lin, C.; Lin, H.; Li, H.; Nowlan, E.U. From divergent to convergent plate boundary: A ca. 200 Ma Wilson cycle recorded by ultrahigh-pressure eclogites in the Dora-Maira Massif, Western Alps. G. Soc. Am. B. 2024, 136, 17. [Google Scholar] [CrossRef]
- Zhang, H.R.; Yang, T.N.; Hou, Z.Q.; Wang, Y. Magmatic expression of tectonic transition from oceanic subduction to continental collision: Insights from the Middle Triassic rhyolites of the North Qiangtang Block. Gondwana Res. 2020, 87, 67–82. [Google Scholar] [CrossRef]
- Skjerlie, K.P.; Johnston, A.D. Vapor-absent melting at 10-Kbar of a biotite-bearing and amphibole-bearing tonalitic gneiss-Implications for the generation of A type granites. Geology 1992, 20, 263–266. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Jung, S.; Pfänder, J.A. Source composition and melting temperatures of orogenic granitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. Eur. J. Mineral. 2007, 19, 859–870. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Zhao, Z.F. Triassic granites in South China: A geochemical perspective on their characteristics, petrogenesis, and tectonic significance. Earth-Sci. Rev. 2017, 173, 266–294. [Google Scholar] [CrossRef]
- Jiao, S.J.; Li, X.H.; Huang, H.Q.; Deng, X.G. Metasedimentary melting in the formation of charnockite: Petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in southern China. Lithos 2015, 239, 217–233. [Google Scholar] [CrossRef]
- Mckenzie, D.; Onions, R.K. Partial melt distributions from inversion of rare-earth element concentrations. J. Petrol. 1991, 32, 1021–1091. [Google Scholar] [CrossRef]
- Adam, J.; Green, T.H.; Sie, S.H. Proton microprobe determined partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and silicate melts with variable F content. Chem. Geol. 1993, 109, 29–49. [Google Scholar] [CrossRef]
- Drummond, M.S.; Defant, M.J.; Kepezhinskas, P.K. Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. Earth Environ. Sci. Trans. R. Soc. Edinb. 1996, 87, 205–215. [Google Scholar]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8~32 kbar: Implications for continental growth and crust-mantle recycling. J. Petro. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Chen, S.S.; Shi, R.D.; Zou, H.B.; Huang, Q.S.; Liu, D.L.; Gong, X.H.; Yi, G.D.; Wu, K. Late Triassic island-arc–back-arc basin development along the Bangong-Nujiang suture zone (central Tibet): Geological, geochemical and chronological evidence from volcanic rocks. Lithos 2015, 230, 30–45. [Google Scholar] [CrossRef]
- Samuel, M.D.; Moussa, H.E.; Azer, M.K. A-type volcanics in central eastern Sinai, Egypt. J. Afr. Earth Sci. 2007, 47, 203–226. [Google Scholar] [CrossRef]
- Watkins, J.; Clemens, J.; Treloar, P. Archaean TTGs as sources of younger granitic magmas: Melting of sodic metatonalites at 0.6-1.2 GPa. Contrib. Mineral. Petrol. 2007, 154, 91–110. [Google Scholar] [CrossRef]
- Topuz, G.; Altherr, R.; Siebel, W.; Schwarz, W.H.; Zack, T.; Hasözbek, A.; Barth, M.; Satır, M.; Şen, C. Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gümüşhane pluton (NE Turkey). Lithos 2010, 116, 92–110. [Google Scholar] [CrossRef]
- Meen, J.K. Formation of shoshonites from calcalkaline basalt magmas: Geochemical and experimental constraints from the type locality. Contrib. Mineral. Petrol. 1987, 97, 333–351. [Google Scholar] [CrossRef]
- Chen, S.S.; Shi, R.D.; Yi, G.D.; Zou, H.B. Middle Triassic volcanic rocks in the Northern Qiangtang (Central Tibet): Geochronology, petrogenesis, and tectonic implications. Tectonophysics 2016, 666, 90–102. [Google Scholar] [CrossRef]
- Wu, H.R.; Kuang, G.D.; Wang, Z.C. The Yunkai block since Silurian. J. Palaeogeogr. 2001, 3, 32–40, (In Chinese with English abstract). [Google Scholar]
- Lai, C.K.; Meffre, S.; Crawford, A.J.; Zaw, K.; Xue, C.D.; Halpin, J.A. The western Ailaoshan Volcanic Belts and their SE Asia connection: A new tectonic model for the Eastern Indochina Block. Gondwana Res. 2014, 26, 52–74. [Google Scholar] [CrossRef]
- Liang, J.C.; Deng, J.X.; Chen, M.H.; Jiang, B.C.; Zhu, J.J. The Early Triassic intermediate-acid volcanics and its tectonic environment in southwestern Guangxi. Geotecton. Metallog. 2001, 25, 141–148, (In Chinese with English abstract). [Google Scholar]
- Halpin, J.A.; Tran, H.T.; Lai, C.K.; Meffre, S.; Crawford, A.J.; Zaw, K. U–Pb zircon geochronology and geochemistry from NE Vietnam: A ‘tectonically disputed’ territory between the Indochina and South China blocks. Gondwana Res. 2016, 34, 254–273. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, J.F. The Geodynamic significance of petrochemical features of Triassic strongly peraluminous igneous rocks in the southern part of Guangxi Province. Geol. Geochem. 2003, 31, 35–42, (In Chinese with English abstract). [Google Scholar]
- Schandl, E.S.; Gorton, M.P. Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ. Geol. 2002, 97, 629–642. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Pearce, J.A. Sources and settings of granitic rocks. Episodes 1996, 19, 120–125. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Moyen, J.F.; Laurent, O.; Chelle-Michou, C.; Couzinié, S.; Vanderhaeghe, O.; Zeh, A.; Villaros, A.; Gardien, V. Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos 2017, 277, 154–177. [Google Scholar] [CrossRef]
- Zi, J.W.; Cawood, P.A.; Fan, W.M.; Wang, Y.J.; Tohver, E.; McCuaig, T.C.; Peng, T.P. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos 2012, 144, 145–160. [Google Scholar] [CrossRef]
- Chen, X.; Schertl, H.P.; Khan, J.; Cai, P.; Lian, D.; Wang, J.; Jiang, X. Scandium mineralization during ultramafic-mafic magmatism in the subduction zone. Chem. Geol. 2025, 673, 122556. [Google Scholar] [CrossRef]
- Chen, C.L.; Shi, X.Y. Sedimentary and tectonic evolution of Late Paleozoic deep-water strata. China Geol. 2006, 33, 436–443, (In Chinese with English abstract). [Google Scholar]
- Cai, J.X.; Tan, X.D.; Wu, Y. Magnetic fabric and paleomagnetism of the Middle Triassic siliciclastic rocks from the Nanpanjiang Basin, South China: Implications for sediment provenance and tectonic process. J. Asian Earth Sci. 2014, 80, 134–147. [Google Scholar] [CrossRef]
- Zhong, Y.T.; He, B.; Xu, Y.G. Mineralogy and geochemistry of claystones from the Guadalupian Lopingian boundary at Penglaitan, South China: Insights into the pre-Lopingian geological events. J. Asian Earth Sci. 2013, 62, 438–462. [Google Scholar] [CrossRef]
- Yang, Z.Y.; He, B. Geochronology of detrital zircons from the Middle Triassic sedimentary rocks in the Nanpanjiang Basin: Provenance and its geological significance. Geotecton. Metallog. 2012, 36, 581–596, (In Chinese with English abstract). [Google Scholar]
Spot | Th | U | Th/U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | Concordance | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ppm | Ratio | 1σ | Ratio | 1σ | Ratio | 1σ | Age (Ma) | 1σ | Age (Ma) | 1σ | Age (Ma) | 1σ | |||
PX3-01 | 120 | 360 | 0.33 | 0.05129 | 0.00194 | 0.28372 | 0.0105 | 0.04019 | 0.00042 | 254 | 87 | 254 | 8 | 254 | 3 | 99% |
PX3-02 | 88 | 331 | 0.27 | 0.05027 | 0.00183 | 0.27443 | 0.0097 | 0.03971 | 0.00044 | 206 | 90 | 246 | 8 | 251 | 3 | 98% |
PX3-03 | 100 | 479 | 0.21 | 0.05349 | 0.00159 | 0.29501 | 0.00894 | 0.03982 | 0.00033 | 350 | 69 | 263 | 7 | 252 | 2 | 95% |
PX3-04 | 85 | 329 | 0.26 | 0.05231 | 0.00192 | 0.28765 | 0.01059 | 0.0398 | 0.00043 | 298 | 88 | 257 | 8 | 252 | 3 | 97% |
PX3-05 | 73 | 306 | 0.24 | 0.05404 | 0.0021 | 0.29201 | 0.01139 | 0.03901 | 0.00042 | 372 | 87 | 260 | 9 | 247 | 3 | 94% |
PX3-06 | 106 | 334 | 0.32 | 0.05226 | 0.00208 | 0.2806 | 0.01071 | 0.03899 | 0.00043 | 298 | 86 | 251 | 9 | 247 | 3 | 98% |
PX3-07 | 134 | 340 | 0.39 | 0.05717 | 0.00213 | 0.31826 | 0.01149 | 0.04042 | 0.00037 | 498 | 88 | 281 | 9 | 255 | 2 | 90% |
PX3-08 | 201 | 394 | 0.51 | 0.05372 | 0.00184 | 0.29813 | 0.01043 | 0.04015 | 0.00045 | 367 | 78 | 265 | 8 | 254 | 3 | 95% |
PX3-09 | 143 | 436 | 0.33 | 0.05326 | 0.00181 | 0.29301 | 0.01006 | 0.03979 | 0.00037 | 339 | 76 | 261 | 8 | 252 | 2 | 96% |
PX3-10 | 187 | 492 | 0.38 | 0.0507 | 0.00159 | 0.27596 | 0.00867 | 0.03943 | 0.00041 | 228 | 72 | 247 | 7 | 249 | 3 | 99% |
PX3-11 | 111 | 280 | 0.40 | 0.0569 | 0.00223 | 0.32098 | 0.01362 | 0.04058 | 0.0006 | 487 | 87 | 283 | 11 | 256 | 4 | 90% |
PX3-12 | 100 | 263 | 0.38 | 0.05087 | 0.00244 | 0.27922 | 0.01293 | 0.03991 | 0.00047 | 235 | 111 | 250 | 10 | 252 | 3 | 99% |
PX3-13 | 61 | 340 | 0.18 | 0.05192 | 0.00176 | 0.28586 | 0.00917 | 0.04005 | 0.00045 | 283 | 78 | 255 | 7 | 253 | 3 | 99% |
PX3-14 | 116 | 365 | 0.32 | 0.05551 | 0.00196 | 0.30228 | 0.01026 | 0.03956 | 0.00036 | 432 | 78 | 268 | 8 | 250 | 2 | 93% |
PX3-15 | 194 | 561 | 0.35 | 0.05362 | 0.00153 | 0.28848 | 0.00808 | 0.039 | 0.00033 | 354 | 58 | 257 | 6 | 247 | 2 | 95% |
PX3-16 | 134 | 325 | 0.41 | 0.05406 | 0.00186 | 0.29525 | 0.0099 | 0.03965 | 0.00041 | 372 | 78 | 263 | 8 | 251 | 3 | 95% |
PX3-17 | 132 | 425 | 0.31 | 0.0515 | 0.00168 | 0.28103 | 0.00881 | 0.03975 | 0.00041 | 265 | 79 | 252 | 7 | 251 | 3 | 99% |
PX8-01 | 214 | 304 | 0.70 | 0.05323 | 0.00193 | 0.28696 | 0.01014 | 0.03912 | 0.00041 | 339 | 83 | 256 | 8 | 247 | 3 | 96% |
PX8-02 | 253 | 395 | 0.64 | 0.05249 | 0.00210 | 0.28290 | 0.01153 | 0.03875 | 0.00040 | 306 | 91 | 253 | 9 | 245 | 3 | 96% |
PX8-03 | 143 | 269 | 0.53 | 0.04914 | 0.00217 | 0.26178 | 0.01169 | 0.03841 | 0.00048 | 154 | 99 | 236 | 9 | 243 | 3 | 97% |
PX8-04 | 167 | 271 | 0.62 | 0.05223 | 0.00222 | 0.27712 | 0.01129 | 0.03891 | 0.00047 | 295 | 98 | 248 | 9 | 246 | 3 | 99% |
PX8-05 | 116 | 241 | 0.48 | 0.05213 | 0.00230 | 0.27433 | 0.01229 | 0.03819 | 0.00050 | 300 | 102 | 246 | 10 | 242 | 3 | 98% |
PX8-06 | 147 | 252 | 0.58 | 0.05242 | 0.00252 | 0.28371 | 0.01388 | 0.03951 | 0.00060 | 302 | 109 | 254 | 11 | 250 | 4 | 98% |
PX8-07 | 147 | 256 | 0.57 | 0.05398 | 0.00279 | 0.27966 | 0.01473 | 0.03814 | 0.00064 | 369 | 117 | 250 | 12 | 241 | 4 | 96% |
PX8-08 | 77 | 135 | 0.57 | 0.05057 | 0.00312 | 0.27660 | 0.01591 | 0.03861 | 0.00068 | 220 | 147 | 248 | 13 | 244 | 4 | 98% |
PX8-09 | 127 | 244 | 0.52 | 0.05277 | 0.00233 | 0.27726 | 0.01211 | 0.03836 | 0.00049 | 320 | 100 | 249 | 10 | 243 | 3 | 97% |
PX8-10 | 131 | 185 | 0.71 | 0.06021 | 0.00307 | 0.33408 | 0.01737 | 0.04030 | 0.00065 | 613 | 109 | 293 | 13 | 255 | 4 | 86% |
PX8-11 | 109 | 204 | 0.54 | 0.05388 | 0.00296 | 0.29263 | 0.01497 | 0.04004 | 0.00054 | 365 | 126 | 261 | 12 | 253 | 3 | 97% |
PX8-12 | 190 | 337 | 0.56 | 0.05091 | 0.00201 | 0.27186 | 0.01060 | 0.03878 | 0.00042 | 235 | 91 | 244 | 9 | 245 | 3 | 99% |
PX8-13 | 135 | 276 | 0.49 | 0.05195 | 0.00244 | 0.28021 | 0.01272 | 0.03946 | 0.00053 | 283 | 107 | 251 | 10 | 250 | 3 | 99% |
PX8-14 | 105 | 211 | 0.50 | 0.05057 | 0.00258 | 0.27142 | 0.01367 | 0.03910 | 0.00053 | 220 | 123 | 244 | 11 | 247 | 3 | 98% |
PX8-15 | 129 | 252 | 0.51 | 0.05127 | 0.00258 | 0.27924 | 0.01370 | 0.03993 | 0.00058 | 254 | 117 | 250 | 11 | 252 | 4 | 99% |
Spot | Area | Age (Ma) | 176Yb/177Hf | 1σ | 176Lu/177Hf | 1σ | 176Hf/177Hf | 1σ | 176Hf/177Hfi | εHf(t) | TDM (Ma) | TDMC (Ma) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
24K3-01 | Daqingshan | 254 | 0.067997 | 0.00096 | 0.001689 | 0.000014 | 0.282355 | 0.000035 | 0.282347 | −9.9 | 1290 | 1871 |
24K3-02 | Daqingshan | 252 | 0.089733 | 0.00065 | 0.002210 | 0.000009 | 0.282497 | 0.000011 | 0.282486 | −5.0 | 1104 | 1564 |
24K3-03 | Daqingshan | 252 | 0.063794 | 0.00052 | 0.001702 | 0.000009 | 0.282453 | 0.000011 | 0.282445 | −6.4 | 1150 | 1654 |
24K3-04 | Daqingshan | 247 | 0.091788 | 0.00191 | 0.002301 | 0.000027 | 0.282530 | 0.000251 | 0.282519 | −3.9 | 1058 | 1494 |
24K3-05 | Daqingshan | 247 | 0.067863 | 0.00069 | 0.001656 | 0.000017 | 0.282433 | 0.000011 | 0.282425 | −7.2 | 1178 | 1702 |
24K3-06 | Daqingshan | 254 | 0.058917 | 0.00048 | 0.001436 | 0.000007 | 0.282500 | 0.000011 | 0.282493 | −4.7 | 1076 | 1548 |
24K3-07 | Daqingshan | 252 | 0.101111 | 0.00040 | 0.002488 | 0.000009 | 0.282446 | 0.000011 | 0.282434 | −6.8 | 1186 | 1679 |
24K3-08 | Daqingshan | 253 | 0.076371 | 0.00254 | 0.001765 | 0.000027 | 0.281713 | 0.000289 | 0.281704 | −32.6 | 2202 | 3274 |
24K3-09 | Daqingshan | 249 | 0.093996 | 0.00206 | 0.002237 | 0.000019 | 0.282617 | 0.000442 | 0.282606 | −0.8 | 930 | 1298 |
24K3-10 | Daqingshan | 256 | 0.084563 | 0.00184 | 0.002001 | 0.000032 | 0.282280 | 0.000102 | 0.282270 | −12.5 | 1409 | 2039 |
24K3-11 | Daqingshan | 252 | 0.041658 | 0.00047 | 0.001072 | 0.000005 | 0.282286 | 0.000012 | 0.282281 | −12.2 | 1365 | 2017 |
24K3-12 | Daqingshan | 253 | 0.058422 | 0.00123 | 0.001569 | 0.000038 | 0.282301 | 0.000033 | 0.282293 | −11.8 | 1363 | 1990 |
24K3-13 | Daqingshan | 250 | 0.062404 | 0.00150 | 0.001537 | 0.000013 | 0.282225 | 0.000078 | 0.282218 | −14.5 | 1469 | 2158 |
24K3-14 | Daqingshan | 247 | 0.066388 | 0.00062 | 0.001706 | 0.000017 | 0.282398 | 0.000012 | 0.282390 | −8.5 | 1229 | 1779 |
24K3-15 | Daqingshan | 251 | 0.046686 | 0.00114 | 0.001168 | 0.000022 | 0.282430 | 0.000010 | 0.282425 | −7.2 | 1167 | 1701 |
24K3-16 | Daqingshan | 251 | 0.079743 | 0.00078 | 0.001994 | 0.000033 | 0.282361 | 0.000027 | 0.282351 | −9.8 | 1293 | 1863 |
24K8-03 | Daqingshan | 247 | 0.050474 | 0.00129 | 0.001274 | 0.000036 | 0.282347 | 0.000056 | 0.282341 | −10.2 | 1287 | 1888 |
24K8-04 | Daqingshan | 245 | 0.065116 | 0.00100 | 0.001574 | 0.000015 | 0.282321 | 0.000055 | 0.282314 | −11.2 | 1335 | 1950 |
24K8-05 | Daqingshan | 243 | 0.069696 | 0.00185 | 0.001619 | 0.000026 | 0.282058 | 0.000282 | 0.282051 | −20.6 | 1708 | 2528 |
24K8-06 | Daqingshan | 248 | 0.034798 | 0.00035 | 0.000875 | 0.000006 | 0.282400 | 0.000011 | 0.282396 | −8.2 | 1199 | 1766 |
24K8-07 | Daqingshan | 250 | 0.067003 | 0.00149 | 0.001646 | 0.000026 | 0.282327 | 0.000020 | 0.282320 | −10.9 | 1328 | 1934 |
24K8-08 | Daqingshan | 246 | 0.050004 | 0.00110 | 0.001327 | 0.000035 | 0.282333 | 0.000016 | 0.282327 | −10.7 | 1308 | 1919 |
24K8-09 | Daqingshan | 242 | 0.031232 | 0.00043 | 0.000824 | 0.000015 | 0.282345 | 0.000016 | 0.282341 | −10.3 | 1275 | 1891 |
24K8-10 | Daqingshan | 250 | 0.036678 | 0.00062 | 0.000947 | 0.000016 | 0.282388 | 0.000012 | 0.282384 | −8.6 | 1219 | 1793 |
24K8-11 | Daqingshan | 254 | 0.055697 | 0.00224 | 0.001598 | 0.000067 | 0.282372 | 0.000018 | 0.282364 | −9.2 | 1263 | 1832 |
24K8-12 | Daqingshan | 241 | 0.071499 | 0.00360 | 0.001880 | 0.000088 | 0.281925 | 0.000273 | 0.281916 | −25.4 | 1909 | 2822 |
24K8-13 | Daqingshan | 244 | 0.046072 | 0.00244 | 0.001162 | 0.000036 | 0.282072 | 0.000320 | 0.282067 | −20.0 | 1667 | 2492 |
24K8-14 | Daqingshan | 243 | 0.042328 | 0.02107 | 0.000764 | 0.000291 | 0.281416 | 0.027675 | 0.281412 | −43.2 | 2549 | 3904 |
24K8-15 | Daqingshan | 253 | 0.028018 | 0.00023 | 0.000746 | 0.000003 | 0.282432 | 0.000013 | 0.282428 | −7.0 | 1151 | 1691 |
24K8-16 | Daqingshan | 245 | 0.036432 | 0.00063 | 0.000966 | 0.000014 | 0.282227 | 0.000066 | 0.282222 | −14.4 | 1444 | 2151 |
24K8-17 | Daqingshan | 250 | 0.052368 | 0.00023 | 0.001381 | 0.000015 | 0.282397 | 0.000014 | 0.282390 | −8.4 | 1220 | 1777 |
Sample | DQS-1 | DQS-2 | DQS-3 | DQS-4 | DQS-5 | DQS-6 |
---|---|---|---|---|---|---|
SiO2 | 67.26 | 71.08 | 66.82 | 68.86 | 68.93 | 72.69 |
TiO2 | 0.8 | 0.65 | 0.85 | 0.88 | 0.8 | 0.53 |
Al2O3 | 14.56 | 12.9 | 13.19 | 13.39 | 13.08 | 12.4 |
TFe2O3 | 6.06 | 5.22 | 7.6 | 6.53 | 6.31 | 4.63 |
MnO | 0.06 | 0.06 | 0.08 | 0.07 | 0.1 | 0.06 |
MgO | 1.32 | 0.72 | 1.42 | 0.93 | 0.95 | 0.62 |
CaO | 1.16 | 0.73 | 2.77 | 1.54 | 2.84 | 3.16 |
Na2O | 5.99 | 2.78 | 1.77 | 2.04 | 3.96 | 1.45 |
K2O | 1.37 | 5.06 | 3.26 | 4.38 | 1.92 | 3.28 |
P2O5 | 0.19 | 0.15 | 0.19 | 0.21 | 0.19 | 0.11 |
LOI | 1.49 | 1.12 | 2.45 | 1.72 | 1.13 | 1.36 |
SUM | 100.27 | 100.47 | 100.39 | 100.56 | 100.21 | 100.29 |
V | 37.7 | 29.7 | 46.4 | 50.0 | 52.0 | 27.3 |
Cr | 16.8 | 13.1 | 17.5 | 19.7 | 19.2 | 13.8 |
Co | 7.77 | 9.30 | 9.89 | 9.96 | 9.30 | 5.38 |
Ni | 7.37 | 8.69 | 9.43 | 10.10 | 8.10 | 7.33 |
Ga | 19.6 | 22.0 | 19.9 | 21.5 | 20.1 | 22.3 |
Rb | 73.5 | 219 | 149 | 207 | 106 | 160 |
Sr | 144 | 92.1 | 120 | 136 | 90.3 | 242 |
Y | 57.8 | 68.8 | 63.3 | 64.1 | 56.0 | 73.3 |
Zr | 351 | 371 | 354 | 322 | 318 | 415 |
Nb | 17.3 | 16.5 | 17.5 | 16.6 | 14.0 | 20.1 |
Ba | 449 | 812 | 602 | 750 | 386 | 942 |
Lu | 0.85 | 1.02 | 0.90 | 0.84 | 0.83 | 1.07 |
Hf | 9.72 | 10.4 | 9.80 | 9.08 | 9.03 | 11.8 |
Ta | 1.28 | 1.22 | 1.23 | 1.22 | 1.12 | 1.49 |
Th | 27.6 | 28.1 | 27.6 | 26.0 | 26.2 | 32.1 |
U | 5.59 | 6.01 | 5.63 | 5.23 | 5.33 | 6.74 |
Zr/Hf | 36.1 | 35. 7 | 36.1 | 35.5 | 35.2 | 35.2 |
Ba/Sr | 3.12 | 8.82 | 5.02 | 5.51 | 4.27 | 3.89 |
Rb/Sr | 0.51 | 2.38 | 1.24 | 1.52 | 1.17 | 0.66 |
U/Th | 0.20 | 0.21 | 0.20 | 0.20 | 0.20 | 0.21 |
Tzr | 891 | 896 | 898 | 891 | 865 | 899 |
La | 53.9 | 52.8 | 53.3 | 55.3 | 49.1 | 61.3 |
Ce | 105 | 101 | 105 | 104 | 95.4 | 120 |
Pr | 12.8 | 12.5 | 13 | 12.9 | 11.4 | 15.1 |
Nd | 45.5 | 44.9 | 45.6 | 46.0 | 41.2 | 52.9 |
Sm | 10.3 | 10.2 | 10.5 | 10.8 | 9.5 | 12.1 |
Eu | 1.37 | 1.65 | 1.77 | 1.85 | 1.62 | 1.70 |
Gd | 10.0 | 10.6 | 10.6 | 11.0 | 9.40 | 12.2 |
Tb | 1.68 | 1.83 | 1.73 | 1.86 | 1.60 | 2.10 |
Dy | 9.72 | 11.0 | 10.4 | 10.9 | 9.52 | 12.7 |
Ho | 2.10 | 2.41 | 2.20 | 2.30 | 2.00 | 2.65 |
Er | 6.04 | 7.00 | 6.39 | 6.44 | 5.79 | 7.69 |
Tm | 0.88 | 1.06 | 0.91 | 0.94 | 0.84 | 1.14 |
Yb | 5.67 | 6.84 | 5.80 | 5.83 | 5.30 | 7.14 |
(La/Yb)CN | 6.82 | 5.54 | 6.59 | 6.80 | 6.65 | 6.16 |
(Dy/Yb)CN | 1.15 | 1.08 | 1.20 | 1.25 | 1.20 | 1.19 |
Eu/Eu* | 0.41 | 0.48 | 0.51 | 0.51 | 0.52 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, K.; Li, Z.; Fei, X.; Wang, Y.; Deng, X. Geochronological and Geochemical Characterization of Triassic Felsic Volcanics in the Youjiang Basin, Southwest China: Implications for Tectonic Evolution of Eastern Tethyan Geodynamics. Minerals 2025, 15, 398. https://doi.org/10.3390/min15040398
Dong K, Li Z, Fei X, Wang Y, Deng X. Geochronological and Geochemical Characterization of Triassic Felsic Volcanics in the Youjiang Basin, Southwest China: Implications for Tectonic Evolution of Eastern Tethyan Geodynamics. Minerals. 2025; 15(4):398. https://doi.org/10.3390/min15040398
Chicago/Turabian StyleDong, Kai, Zhuoyang Li, Xiaoli Fei, Yongqing Wang, and Xiaohu Deng. 2025. "Geochronological and Geochemical Characterization of Triassic Felsic Volcanics in the Youjiang Basin, Southwest China: Implications for Tectonic Evolution of Eastern Tethyan Geodynamics" Minerals 15, no. 4: 398. https://doi.org/10.3390/min15040398
APA StyleDong, K., Li, Z., Fei, X., Wang, Y., & Deng, X. (2025). Geochronological and Geochemical Characterization of Triassic Felsic Volcanics in the Youjiang Basin, Southwest China: Implications for Tectonic Evolution of Eastern Tethyan Geodynamics. Minerals, 15(4), 398. https://doi.org/10.3390/min15040398