Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (527)

Search Parameters:
Keywords = Caenorhabditis elegans (C. elegans)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3575 KiB  
Article
Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo
by Lea Karlsberger, Georg Sandner, Lenka Molčanová, Tomáš Rýpar, Stéphanie Ladirat and Julian Weghuber
Mar. Drugs 2025, 23(8), 322; https://doi.org/10.3390/md23080322 - 6 Aug 2025
Abstract
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo [...] Read more.
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo model Caenorhabditis elegans (C. elegans). Aqueous AN and FV extracts were characterized for total phenolic content (TPC), antioxidant capacity (TEAC, FRAP), and phlorotannin composition using LC-HRMS/MS. Antioxidant effects were assessed in vitro, measuring AAPH-induced ROS production in Caco-2 and IPEC-J2 cells via H2DCF-DA, and in vivo, evaluating the effects of paraquat-induced oxidative stress and AN or FV treatment on worm motility, GST-4::GFP reporter expression, and gene expression in C. elegans. FV exhibited higher total phenolic content, antioxidant capacity (TEAC, FRAP), and a broader phlorotannin profile (degree of polymerization [DP] 2–9) than AN (DP 2–7), as determined by LC-HRMS/MS. Both extracts attenuated AAPH-induced oxidative stress in epithelial cells, with FV showing greater efficacy. In C. elegans, pre-treatment with AN and FV significantly mitigated a paraquat-induced motility decline by 22% and 11%, respectively, compared to PQ-stressed controls. Under unstressed conditions, both extracts enhanced nematode healthspan, with significant effects observed at 400 µg/g for AN and starting at 100 µg/g for FV. Gene expression analysis indicated that both extracts modulated antioxidant pathways in unstressed worms. Under oxidative stress, pre-treatment with AN and FV significantly reduced GST-4::GFP expression. In the nematode, AN was more protective under acute stress, whereas FV better supported physiological function in the absence of stressors. These findings demonstrate that AN and FV counteract oxidative stress in intestinal epithelial cells and in C. elegans, highlighting their potential as stress-reducing agents in animal feed. Full article
Show Figures

Figure 1

16 pages, 3236 KiB  
Article
Sulforaphane Prevents Cadmium Chloride-Induced Reproductive Toxicity in Caenorhabditis elegans
by Estefani Yaquelin Hernández-Cruz, Elí Juárez-Peredo, Karla Alejandra Avendaño-Briseño, Jorge Escutia-Martínez, Karla Jaqueline Ramírez-Magaña, Tania Gómez-Sierra and José Pedraza-Chaverri
Oxygen 2025, 5(3), 15; https://doi.org/10.3390/oxygen5030015 - 31 Jul 2025
Viewed by 119
Abstract
Cadmium (Cd) is a highly toxic heavy metal that disrupts development and reproduction, primarily through oxidative stress. In this context, sulforaphane (SFN), an antioxidant compound, may serve as a promising agent to counteract Cd-induced oxidative damage and prevent developmental and reproductive abnormalities. This [...] Read more.
Cadmium (Cd) is a highly toxic heavy metal that disrupts development and reproduction, primarily through oxidative stress. In this context, sulforaphane (SFN), an antioxidant compound, may serve as a promising agent to counteract Cd-induced oxidative damage and prevent developmental and reproductive abnormalities. This study aimed to evaluate the effect of SFN on reproductive toxicity induced by cadmium chloride (CdCl2) in the nematode Caenorhabditis elegans (C. elegans). Five experimental groups were established: (I) Control: no treatment, (II) dimethyl sulfoxide (DMSO): 48 h with 0.01% DMSO, (III) CdCl2: 24 h with 4600 µM CdCl2, (IV) SFN + CdCl2: 24 h with 100 µM SFN followed by 24 h with both SFN and CdCl2, and (V) SFN: 48 h with 100 µM SFN. Co-exposure to SFN and CdCl2 prevented the reduction in the percentage of adult nematodes and increased egg-laying. It also significantly improved hatching rates, allowing more embryos to reach the larval stage, and prevented reductions in body size. However, no effects were observed on glutathione S-transferase-4 (GST-4) levels in the transgenic CL2166 strain. In conclusion, SFN substantially prevents Cd-induced reproductive toxicity in C. elegans. Future studies should investigate the molecular mechanisms by which SFN enhances egg-laying and offspring viability in this model. Full article
Show Figures

Figure 1

19 pages, 4441 KiB  
Article
In Silico and In Vivo Pharmacological Evaluation of Iridoid Compounds: Geniposide and Asperuloside Profile Study Through Molecular Docking Assay and in the Caenorhabditis elegans Model
by Mariana Uczay, Péterson Alves Santos, Pricila Pflüger, Gilsane von Poser, José Brea, Maria Isabel Loza, Patrícia Pereira and José Angel Fontenla
Biomolecules 2025, 15(8), 1105; https://doi.org/10.3390/biom15081105 - 31 Jul 2025
Viewed by 242
Abstract
Iridoids are compounds recognized for their neuroprotective properties and their potential application in the treatment of neurodegenerative diseases. Geniposide (GP) and asperuloside (ASP) are iridoids that have demonstrated some biological activities. In this study, the potential neuroprotective effects of these iridoids were evaluated [...] Read more.
Iridoids are compounds recognized for their neuroprotective properties and their potential application in the treatment of neurodegenerative diseases. Geniposide (GP) and asperuloside (ASP) are iridoids that have demonstrated some biological activities. In this study, the potential neuroprotective effects of these iridoids were evaluated through in silico and in vivo assays, using Caenorhabditis elegans (C. elegans) strains CF1553 (sod-3::GFP), GA800 (cat::GFP), and CL2166 (gst-4::GFP). The results suggested that neither compound appears to have good passive permeability through the blood–brain barrier (BBB). However, an active transport mechanism involving the glucose transporter GLUT-1 may be present, as both compounds contain glucose in their molecular structure. In addition, they can inhibit the activity of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). GP at 1 and 2 mM reversed the H2O2-induced increase in sod-3 expression, while ASP at 1 and 2 mM reversed the increase in gst-4 expression. Worm survival was more adversely affected by higher concentrations of GP than ASP, although both similarly reduced acetylcholinesterase activity. These findings suggest that GP and ASP exhibit very low toxicity both in silico and in vivo in C. elegans, and positively modulate key enzymes involved in antioxidant pathways, highlighting their potential for neuroprotective applications. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

22 pages, 1370 KiB  
Review
Roles of Cyclic Nucleotide Phosphodiesterases in Signal Transduction Pathways in the Nematode Caenorhabditis elegans
by Kranti K. Galande and Rick H. Cote
Cells 2025, 14(15), 1174; https://doi.org/10.3390/cells14151174 - 30 Jul 2025
Viewed by 689
Abstract
Cyclic nucleotide signaling pathways play essential roles in the physiology of the nematode Caenorhabditis elegans, influencing processes such as reproduction, environmental sensing, and cellular homeostasis. The intracellular levels of cAMP and cGMP are tightly regulated by their synthesis by adenylyl and guanylyl [...] Read more.
Cyclic nucleotide signaling pathways play essential roles in the physiology of the nematode Caenorhabditis elegans, influencing processes such as reproduction, environmental sensing, and cellular homeostasis. The intracellular levels of cAMP and cGMP are tightly regulated by their synthesis by adenylyl and guanylyl cyclases and their degradation catalyzed by 3′,5′-cyclic nucleotide phosphodiesterases (PDEs). Mammals possess eleven PDE families (PDE1 through PDE11), whereas nematode genomes contain six PDE genes orthologous to six of the mammalian PDE families. Despite their evolutionary conservation, the signaling pathways, regulatory mechanisms, and enzymatic properties of nematode PDEs remain incompletely understood. This review synthesizes current knowledge on the regulation of cyclic nucleotide levels in C. elegans, highlighting how dysregulation of nematode PDEs affects a wide range of physiological and behavioral processes, including sensory transduction, development, and locomotion. Full article
Show Figures

Graphical abstract

16 pages, 2096 KiB  
Article
Acridine Derivatives as Antifungal and Antivirulence Agents Against Candida albicans
by Amra Yunus, Oluwatosin Oluwaseun Faleye, Jin-Hyung Lee and Jintae Lee
Int. J. Mol. Sci. 2025, 26(15), 7228; https://doi.org/10.3390/ijms26157228 - 25 Jul 2025
Viewed by 426
Abstract
Candida albicans is a clinically important fungal pathogen capable of causing both superficial and systemic infections, particularly in immunocompromised individuals. A key factor contributing to its pathogenicity is its ability to form biofilms, structured microbial communities that confer significant resistance to conventional antifungal [...] Read more.
Candida albicans is a clinically important fungal pathogen capable of causing both superficial and systemic infections, particularly in immunocompromised individuals. A key factor contributing to its pathogenicity is its ability to form biofilms, structured microbial communities that confer significant resistance to conventional antifungal therapies. Addressing this challenge, we explored the antivirulence potential of acridine derivatives, a class of heterocyclic aromatic compounds known for their diverse biological activities, including antimicrobial, antitumor, and antiparasitic properties. In this study, a series of acridine derivatives was screened against C. albicans biofilms, revealing notable inhibitory activity and highlighting their potential as scaffolds for the development of novel antifungal agents. Among the tested compounds, acridine-4-carboxylic acid demonstrated the most promising activity, significantly inhibiting the biofilm formation at 10 µg/mL without affecting planktonic cell growth, and with a minimum inhibitory concentration (MIC) of 60 µg/mL. Furthermore, it attenuated filamentation and cell aggregation in a fluconazole-resistant C. albicans strain. Toxicity assessments using Caenorhabditis elegans and plant models supported its low-toxicity profile. These findings highlight the potential of acridine-based scaffolds, particularly acridine-4-carboxylic acid, as lead structures for the development of therapeutics targeting both fungal growth and biofilm formation in Candida albicans infections. Full article
Show Figures

Figure 1

11 pages, 3393 KiB  
Article
Aryl Hydrocarbon Receptor Is Required for Fasting-Induced Improvement of Gut Barrier Integrity in Caenorhabditis elegans
by Junjie Sun and Yuseok Moon
Antioxidants 2025, 14(8), 905; https://doi.org/10.3390/antiox14080905 - 24 Jul 2025
Viewed by 292
Abstract
The intestinal barrier governs organismal health through nutrient absorption, microbial homeostasis, and immune surveillance. While calorie restriction (CR) enhances metabolic health, the molecular mechanisms underlying its beneficial effects on gut integrity remain unclear. Here, we demonstrate that the aryl hydrocarbon receptor (AHR), a [...] Read more.
The intestinal barrier governs organismal health through nutrient absorption, microbial homeostasis, and immune surveillance. While calorie restriction (CR) enhances metabolic health, the molecular mechanisms underlying its beneficial effects on gut integrity remain unclear. Here, we demonstrate that the aryl hydrocarbon receptor (AHR), a conserved xenobiotic sensor and metabolic regulator, is essential for CR-mediated improvements in intestinal function. Using Caenorhabditis elegans (C. elegans), we subjected wild-type (N2) and AHR-deficient strains (CZ2485 and ZG24) to ad libitum feeding (AL), intermittent fasting (IF), or complete food deprivation (FD). In wild-type animals, intermittent fasting markedly reduced intestinal permeability and bacterial burden while enhancing mitochondrial function and reducing reactive oxygen species. Complete food deprivation conferred modest benefits. Remarkably, these protective effects were severely compromised in AHR mutants, which exhibited increased gut leakage, bacterial colonization, and mitochondrial oxidative stress under fasting conditions. These findings establish AHR as a critical mediator of fasting-induced intestinal resilience, revealing a previously unrecognized regulatory axis linking metabolic sensing to gut barrier homeostasis. Our work illuminates fundamental mechanisms through which calorie restriction promotes gastrointestinal health and identifies AHR-dependent pathways as promising therapeutic targets for metabolic and inflammatory distress affecting the gut–systemic interface. Full article
Show Figures

Figure 1

23 pages, 3832 KiB  
Article
Novel Probiotic Strain Lactiplantibacillus plantarum CNTA 628 Modulates Lipid Metabolism and Improves Healthspan in C. elegans
by Ignacio Goyache, Lorena Valdés-Varela, Raquel Virto, Miguel López-Yoldi, Noelia López-Giral, Ana Sánchez-Vicente, Fermín I. Milagro and Paula Aranaz
Appl. Sci. 2025, 15(14), 8007; https://doi.org/10.3390/app15148007 - 18 Jul 2025
Viewed by 301
Abstract
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, [...] Read more.
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, and investigate its potential anti-obesity and health-promoting activities in the Caenorhabditis elegans model, additionally elucidating the molecular mechanisms involved. Lactiplantibacillus plantarum CNTA 628 exhibited sensitivity to the entire spectrum of antibiotics analyzed, gastric and intestinal resistance in vitro, β-galactosidase and bile-salt hydrolysate activities, and the capacity to form biofilms and produce SCFAs. In addition, it reduced the binding of the pathogenic E. coli O157:H7 to intestinal epithelial cells (Caco-2) and exerted immune-modulating effects in cellular models. Supplementation with this probiotic significantly reduced C. elegans fat accumulation by more than 18% under control and high-glucose conditions, lowered senescence, improved oxidative stress, and significantly enhanced lifespan without affecting the development of the worms. Gene expression analyses evidenced that L. plantarum CNTA 628 plays a role in regulating daf-22 and maoc-1 gene expression, both linked to beta-oxidation pathways. Our results demonstrate the health-benefiting properties of this novel strain and suggest its potential as probiotic candidate for the prevention and treatment of metabolic syndrome-related conditions. Full article
(This article belongs to the Special Issue Probiotics, Prebiotics, Postbiotics: From Mechanisms to Applications)
Show Figures

Figure 1

19 pages, 1923 KiB  
Article
Anthelmintic Potential of Agelasine Alkaloids from the Australian Marine Sponge Agelas axifera
by Kanchana Wijesekera, Aya C. Taki, Joseph J. Byrne, Darren C. Holland, Ian D. Jenkins, Merrick G. Ekins, Anthony R. Carroll, Robin B. Gasser and Rohan A. Davis
Mar. Drugs 2025, 23(7), 276; https://doi.org/10.3390/md23070276 - 1 Jul 2025
Viewed by 574
Abstract
A recent high-throughput screening of the NatureBank marine extract library (7616 samples) identified an extract from the Australian marine sponge Agelas axifera with in vitro activity against an economically important parasitic nematode, Haemonchus contortus (barber’s pole worm). The bioassay-guided fractionation of the CH [...] Read more.
A recent high-throughput screening of the NatureBank marine extract library (7616 samples) identified an extract from the Australian marine sponge Agelas axifera with in vitro activity against an economically important parasitic nematode, Haemonchus contortus (barber’s pole worm). The bioassay-guided fractionation of the CH2Cl2/MeOH extract from A. axifera led to the purification of a new diterpene alkaloid, agelasine Z (1), together with two known compounds agelasine B (2) and oxoagelasine B (3). Brominated compounds (–)-mukanadin C (4) and 4-bromopyrrole-2-carboxylic acid (5) were also isolated from neighbouring UV-active fractions. All compounds, together with agelasine D (6) from NatureBank’s pure compound library, were tested for in vitro anthelmintic activity against exsheathed third-stage (xL3s) and fourth-stage larvae (L4s) of H. contortus and young adult Caenorhabditis elegans. Compounds 1, 2 and 6 induced an abnormal “skinny” phenotype, while compounds 2 and 6 also reduced the motility of H. contortus L4s by 50.5% and 51.8% at 100 µM, respectively. The minimal activity of agelasines against C. elegans young adults suggests a possible species-specific mechanism warranting further investigation. For the first time, the unexpected lability of agelasine H-8′ was explored using kinetic studies, revealing rapid deuterium exchange in MeOH-d4 at room temperature. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

18 pages, 3655 KiB  
Article
Herbal Cuscutae Semen Contributes to Oxidative Stress Tolerance and Extends Lifespan via Sirtuin1 in Caenorhabditis elegans
by Chunyan Chen, Yudie Liu, Jing Hu, Yihan Gu, Weiwei Li, Hui Yue, Sijing An, Na Sun, Peng Zhang, Nan Li and Lin Miao
Antioxidants 2025, 14(7), 786; https://doi.org/10.3390/antiox14070786 - 26 Jun 2025
Viewed by 590
Abstract
Cuscutae Semen (CS), a traditional herb recognized as a nutraceutical food in China, has been widely utilized in managing aging-related diseases throughout history. However, whether this mechanism is associated with mitochondrial stress tolerance remains unclear. In the present study, Caenorhabditis elegans (C. [...] Read more.
Cuscutae Semen (CS), a traditional herb recognized as a nutraceutical food in China, has been widely utilized in managing aging-related diseases throughout history. However, whether this mechanism is associated with mitochondrial stress tolerance remains unclear. In the present study, Caenorhabditis elegans (C. elegans) was used to investigate the effects of CS on their longevity. The data demonstrated that CS prolonged the average lifespan of the nematodes by 15.26%, reducing lipofuscin accumulation by 61.46%, as well as improving spontaneous motility. CS treatment significantly enhanced the resistance of C. elegans to hydrogen peroxide-induced oxidative stress and 37 °C induced heat stress, reducing reactive oxygen species (ROS) production by 71.45%. Additionally, membrane potential (MMP) and adenosine triphosphate (ATP) were increased by 354.72% and 69.64%, respectively. However, mitochondrion-specific ROS and calcium flux were significantly reduced to 45.86% and 63.25%, respectively, in C. elegans treated with CS. Consistently, the polymerase chain reaction data revealed that CS significantly up-regulated the expressions of the antioxidant-related genes skn-1, ctl-1, sod-3, and gst-4; the heat shock gene hsp-16.2; and the autophagy-related genes lgg-1 and bec-1. Considering the crucial role of the silent information regulator sirtuin 1 (SIR-2.1/SIRT1) in aging-related mitochondrial oxidative stress, we examined its expression and transcriptional activity. As expected, treatment with CS induced SIRT1 expression, and isorhamnetin identified from CS extract significantly enhanced SIRT1 transcriptional activity in HEK293T cells. Collectively, our results provided evidence that CS prolonged the lifespan of C. elegans by ameliorating oxidative stress damage and mitochondrial dysfunction via SIRT1. Full article
Show Figures

Figure 1

14 pages, 610 KiB  
Review
Experimental Models and Their Applicability in Inflammation Studies: Rodents, Fish, and Nematodes
by Ana Emilia Nascimento Lemos, Jaluza Luana Carvalho de Queiroz, Bruna Leal Lima Maciel and Ana Heloneida de Araújo Morais
Int. J. Mol. Sci. 2025, 26(13), 5987; https://doi.org/10.3390/ijms26135987 - 22 Jun 2025
Viewed by 489
Abstract
Experimental models have been widely used to study the mechanisms of inflammation due to their genetic and physiological relevance to humans. These models include rodents (rats and mice), zebrafish, and nematodes (C. elegans). Considering the similarities and divergences between experimental models [...] Read more.
Experimental models have been widely used to study the mechanisms of inflammation due to their genetic and physiological relevance to humans. These models include rodents (rats and mice), zebrafish, and nematodes (C. elegans). Considering the similarities and divergences between experimental models and the human organism, this narrative review aimed to compare and discuss their applicability in inflammation studies. Rodents, in particular, share significant similarities with humans across approximately 85% of their genome, making them ideal for investigating complex diseases and inflammatory responses. Zebrafish also stand out for showing high conservation of the immune system compared to humans, being useful for studies of adaptive and innate inflammation. Despite not having adaptive immunity, Caenorhabditis elegans is a robust model for understanding innate immune responses, especially in studies involving host–pathogen interactions. These organisms allow us to efficiently investigate the acute and chronic phases of inflammation, offering an accessible platform to study complex biological processes that are unfeasible in humans due to ethical and financial constraints. Thus, the use of these models has been essential for inflammation research. However, the use of each one will depend on the research question and hypothesis raised. Full article
(This article belongs to the Special Issue Zebrafish: A Model Organism for Human Health and Disease: 2nd Edition)
Show Figures

Figure 1

11 pages, 2351 KiB  
Communication
Application of N-NOSE for Evaluating the Response to Neoadjuvant Chemotherapy in Breast Cancer Patients
by Yoshihisa Tokumaru, Yoshimi Niwa, Ryutaro Mori, Mai Okawa, Akira Nakakami, Yuta Sato, Hideyuki Hatakeyama, Takaaki Hirotsu, Eric di Luccio, Nobuhisa Matsuhashi and Manabu Futamura
Cells 2025, 14(13), 950; https://doi.org/10.3390/cells14130950 - 21 Jun 2025
Viewed by 525
Abstract
Background: Breast cancer remains a leading cause of cancer-related deaths despite advances in its diagnosis and treatment. Accurate evaluation of the response to neoadjuvant chemotherapy (NAC), especially in HER2-positive and triple-negative subtypes, is critical. The current methods, including imaging and liquid biopsies, have [...] Read more.
Background: Breast cancer remains a leading cause of cancer-related deaths despite advances in its diagnosis and treatment. Accurate evaluation of the response to neoadjuvant chemotherapy (NAC), especially in HER2-positive and triple-negative subtypes, is critical. The current methods, including imaging and liquid biopsies, have limitations. N-NOSE, a novel urine-based cancer screening test using Caenorhabditis elegans (C. elegans) chemotaxis, offers a non-invasive alternative. This study investigates the potential of N-NOSE to predict the NAC response in breast cancer patients for improved treatment evaluations. Materials and Methods: This prospective study enrolled 36 breast cancer patients undergoing NAC and surgery to assess the predictive power of the N-NOSE method using urine samples. A chemotaxis analysis of C. elegans was used to calculate the index reduction scores (IRS1–3), reflecting the changes in tumor-related odorants across the treatment stages. Results: Between August 2020 and May 2023, 36 breast cancer patients were enrolled to evaluate the predictive value of N-NOSE IRSs for NAC response. A pathological complete response (pCR) was achieved in 36.1% of the patients. Among the three IRS types analyzed in the 35 patients, IRS3, which showed the IRS at pre-treatment minus that after surgery, showed the highest predictive performance for a pCR, with an AUC of 0.75, indicating its potential utility as a non-invasive biomarker for treatment response evaluations. Conclusions: Index reduction scores evaluated using the N-NOSE method may reflect the efficacy of NAC in breast cancer patients. Future large-scale and multi-institutional prospective studies are warranted. Full article
(This article belongs to the Special Issue Molecular Mechanism and Therapeutic Opportunities of Breast Cancer)
Show Figures

Figure 1

18 pages, 6109 KiB  
Article
The Impact of Boron Carbide Nanoparticle (B4C-NPs) Toxicity on Caenorhabditis elegans Models
by Sen-Ting Huang, Erin P. Bulaon, Kai-Jie Yang, Adriana Taw, Lemmuel L. Tayo, Ping-Heng Hsieh, Jen-Hsiung Tsai, Jian-He Lu, Jheng-Jie Jiang, Hsing-Hsien Wu and How-Ran Chao
Toxics 2025, 13(6), 492; https://doi.org/10.3390/toxics13060492 - 12 Jun 2025
Viewed by 534
Abstract
Boron carbide (B4C) is a widely recognized ceramic prized for its remarkable properties, including exceptional hardness, low density, and excellent chemical and mechanical stability. To date, limited research has explored the possible health risks associated with B4C nanoparticles (B4C-NPs). This study utilized a [...] Read more.
Boron carbide (B4C) is a widely recognized ceramic prized for its remarkable properties, including exceptional hardness, low density, and excellent chemical and mechanical stability. To date, limited research has explored the possible health risks associated with B4C nanoparticles (B4C-NPs). This study utilized a Caenorhabditis elegans (C. elegans) in vivo model to investigate the toxicological effects of B4C-NPs at concentrations of 40, 80, 160, and 320 mg/L. Larval nematodes were subjected to prolonged exposure, and their locomotion (head thrashing and body bending), reproduction (brood size), development (body length), lifespan, and gene expression (linked to oxidative stress, metal detoxification, apoptosis, and neurotransmitter synthesis) were assessed. Regarding survival rates, lethality was significantly increased to 5.41% at 320 mg/L of B4C-NPs and lifespan was significantly shortened across all concentrations compared with the controls. Development and reproduction showed slight reductions between 40 and 320 mg/L, while locomotion was markedly impaired at the doses from 80 to 320 mg/L. Gene expression related to antioxidants, apoptosis, cell cycle arrest, neurotransmitter synthesis, and metal detoxification rose significantly at 160–320 mg/L in C. elegans, suggesting that B4C-NPs may induce reproductive and neurological toxicity, delay development, reduce lifespan, and potentially cause genotoxicity in C. elegans. Full article
(This article belongs to the Special Issue Toxicity Assessment and Safety Management of Nanomaterials)
Show Figures

Figure 1

19 pages, 1601 KiB  
Article
Isolation and Characterization of Lactic Acid Bacteria from an Italian Traditional Raw Milk Cheese: Probiotic Properties and Technological Performance of Selected Strains
by Marianna Roselli, Federica Colafranceschi, Valentina Cipriani, Alessandra Valle, Paola Zinno, Barbara Guantario, Emily Schifano, Daniela Uccelletti and Chiara Devirgiliis
Microorganisms 2025, 13(6), 1368; https://doi.org/10.3390/microorganisms13061368 - 12 Jun 2025
Viewed by 636
Abstract
The increasing interest in fermented foods stems from their health benefits, mediated by foodborne microorganisms. This study aimed to characterize the fermentative microbiota of Pecorino di Picinisco, a traditional Italian cheese made from ovine raw milk, and to evaluate the probiotic and technological [...] Read more.
The increasing interest in fermented foods stems from their health benefits, mediated by foodborne microorganisms. This study aimed to characterize the fermentative microbiota of Pecorino di Picinisco, a traditional Italian cheese made from ovine raw milk, and to evaluate the probiotic and technological potential of selected lactic acid bacteria strains. Three strains representative of the different species found (Lactococcus lactis, Lactiplantibacillus plantarum and Latilactobacillus curvatus) were chosen and analyzed. All three strains were able to adhere to human intestinal Caco-2 cells, were resistant to simulated in vitro digestion and significantly prolonged the lifespan of Caenorhabditis elegans, used as a simplified in vivo model, with respect to the commercial probiotic strain Lacticaseibacillus rhamnosus GG. The L. plantarum Pic37.4 strain was particularly promising; therefore, its cell-free supernatant was employed to evaluate the antimicrobial activity against indicator strains of foodborne and intestinal pathogens or spoilage bacteria. The results demonstrated the effectiveness of the supernatant against all strains tested, with the strongest effect on the intestinal pathogen enterotoxigenic Escherichia coli K88. In addition, the inhibitory effect on pathogen adhesion to intestinal mucosa was investigated on Caco-2 cells, resulting in a significant reduction in adhesion mediated by the L. plantarum Pic37.4 supernatant. The antimicrobial properties of the L. plantarum strain were confirmed in vivo in C. elegans. These promising results lay the ground for further investigations aimed at substantiating the probiotic and technological potential of the L. plantarum Pic37.4 investigated in this work. Full article
Show Figures

Graphical abstract

23 pages, 2623 KiB  
Article
Chromosome-Contiguous Ancylostoma duodenale Reference Genome from a Single Archived Specimen Elucidates Human Hookworm Biology and Host–Parasite Interactions
by Neil D. Young, Yuanting Zheng, Sunita B. Sumanam, Tao Wang, Jiangning Song, Bill C. H. Chang and Robin B. Gasser
Int. J. Mol. Sci. 2025, 26(12), 5576; https://doi.org/10.3390/ijms26125576 - 11 Jun 2025
Viewed by 533
Abstract
Soil-transmitted helminths (STHs) are parasitic nematodes that infect humans, particularly in tropical and subtropical regions, where they contribute substantially to neglected tropical diseases (NTDs). Among them, hookworms (Ancylostoma duodenale, Necator americanus and Ancylostoma ceylanicum) cause substantial morbidity, leading to anaemia, [...] Read more.
Soil-transmitted helminths (STHs) are parasitic nematodes that infect humans, particularly in tropical and subtropical regions, where they contribute substantially to neglected tropical diseases (NTDs). Among them, hookworms (Ancylostoma duodenale, Necator americanus and Ancylostoma ceylanicum) cause substantial morbidity, leading to anaemia, malnutrition, and developmental impairment. Despite the global impact of hookworm disease, genomic research on A. duodenale has lagged behind that of other hookworms, limiting comparative and molecular biological investigations. Here, we report the first chromosome-level reference genome of A. duodenale, assembled from a single adult specimen archived in ethanol at −20 °C for more than 27 years. Using third-generation sequencing (PacBio Revio, Menlo Park, CA, USA, Oxford Nanopore, Oxford, UK), Hi-C scaffolding, and advanced computational tools, we produced a high-quality 319 Mb genome, filling a critical gap in hookworm genomics. Comparative analyses with N. americanus and the related, free-living nematode Caenorhabditis elegans provided new insights into genome organisation, synteny, and specific adaptations. While A. duodenale exhibited strong chromosomal synteny with N. americanus, its limited synteny with C. elegans highlights its distinct parasitic adaptations. We identified 20,015 protein-coding genes, including conserved single-copy orthologues (SCOs) linked to host–pathogen interactions, immune evasion and essential biological processes. The first comprehensive secretome analysis of A. duodenale revealed a diverse repertoire of excretory/secretory (ES) proteins, including immunomodulatory candidates predicted to interact with host structural and immune-related proteins. This study advances hookworm genomics, establishes a basis for the sequencing of archival specimens, and provides fundamental insights into the molecular biology of A. duodenale. The genomic resource for this hookworm species creates new opportunities for diagnostic, therapeutic, and vaccine development within a One Health framework. It complements recent epidemiological work and aligns with the WHO NTD roadmap (2021–2030) and Sustainable Development Goal 3.3. Full article
(This article belongs to the Special Issue Parasite Biology and Host-Parasite Interactions: 2nd Edition)
Show Figures

Figure 1

15 pages, 2666 KiB  
Article
Limosilactobacillus fermentum MG4244 Protects Against Metabolic and Inflammatory Stress in Caenorhabditis elegans
by Yebin Kim, Opeyemi O. Deji-Oloruntoba, Yunji Choe, Jiyeon Lee, Jeongyong Park, Byoungkook Kim, Sooim Choi and Miran Jang
Foods 2025, 14(11), 1995; https://doi.org/10.3390/foods14111995 - 5 Jun 2025
Viewed by 590
Abstract
In this study, we investigated the effects of MG4244 on intestinal permeability, oxidative stress, and lipid accumulation in Caenorhabditis elegans with metabolic inflammation induced by Pseudomonas aeruginosa (PA) and a high-glucose diet (HGD). The worms infected with PA exhibited increased intestinal permeability and [...] Read more.
In this study, we investigated the effects of MG4244 on intestinal permeability, oxidative stress, and lipid accumulation in Caenorhabditis elegans with metabolic inflammation induced by Pseudomonas aeruginosa (PA) and a high-glucose diet (HGD). The worms infected with PA exhibited increased intestinal permeability and reactive oxygen species (ROS) production, which were improved upon MG4244 treatment. Also, MG4244 inhibited lipid and ROS accumulation induced by an HGD. In addition, MG4244-treated worms showed extended lifespans under various conditions. To elucidate the mechanism of the MG4244 effects, we conducted further investigation using mutant strains with knockdown of genes associated with the AMP-activated protein kinase (AMPK) and mitogen-activated protein kinase (MAPK) pathways. The results demonstrated that the MG4244 effect on lipid metabolism was primarily mediated through the AMPK signaling pathway. Furthermore, MG4244 enhanced pathogen resistance by MAPK signaling pathways, mitigating stress responses, and maintaining intestinal integrity. In further studies, combined treatment with PA and an HGD significantly increased intestinal permeability, lipid, and ROS levels, confirming their negative synergistic effects. However, MG4244 under PA and HGD co-treatment conditions effectively mitigated these health disruptions, suggesting a protective role of MG4244. This study provides an in vivo platform using C. elegans to evaluate probiotic efficacy related to the intestinal environment. Also, our results highlight the therapeutic potential of MG4244 in improving resilience to metabolic inflammation through gut-targeted mechanisms. Full article
(This article belongs to the Special Issue Fermented Foods: Microbiology, Technology, and Health Benefits)
Show Figures

Figure 1

Back to TopTop