Application of N-NOSE for Evaluating the Response to Neoadjuvant Chemotherapy in Breast Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Population
2.2. The Study Endpoint
2.3. The Treatment Strategy and Collection of the Urine Samples
2.4. The Measurement Method of N-NOSE and the Index Reduction Scores
2.5. The Statistical Analyses
2.6. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; André, F.; Bachelot, T.; Barrios, C.H.; Bergh, J.; Burstein, H.J.; Cardoso, M.J.; Carey, L.A.; Dawood, S.; Del Mastro, L.; et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2024, 35, 159–182. [Google Scholar] [CrossRef]
- van Mackelenbergh, M.T.; Loibl, S.; Untch, M.; Buyse, M.; Geyer, C.E., Jr.; Gianni, L.; Schneeweiss, A.; Conte, P.; Piccart, M.; Bonnefoi, H.; et al. Pathologic Complete Response and Individual Patient Prognosis After Neoadjuvant Chemotherapy Plus Anti-Human Epidermal Growth Factor Receptor 2 Therapy of Human Epidermal Growth Factor Receptor 2-Positive Early Breast Cancer. J. Clin. Oncol. 2023, 41, 2998–3008. [Google Scholar] [CrossRef]
- Helal, C.; Djerroudi, L.; Ramtohul, T.; Laas, E.; Vincent-Salomon, A.; Jin, M.; Seban, R.D.; Bieche, I.; Bello-Roufai, D.; Bidard, F.C.; et al. Clinico-pathological factors predicting pathological response in early triple-negative breast cancer. NPJ Breast Cancer 2025, 11, 15. [Google Scholar] [CrossRef]
- Janssen, L.M.; den Dekker, B.M.; Gilhuijs, K.G.A.; van Diest, P.J.; van der Wall, E.; Elias, S.G. MRI t assess response after neoadjuvant chemotherapy in breast cancer subtypes: A systematic review and meta-analysis. NPJ Breast Cancer 2022, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Cavallone, L.; Aguilar-Mahecha, A.; Lafleur, J.; Brousse, S.; Aldamry, M.; Roseshter, T.; Lan, C.; Alirezaie, N.; Bareke, E.; Majewski, J.; et al. Prognostic and predictive value of circulating tumor DNA during neoadjuvant chemotherapy for triple negative breast cancer. Sci. Rep. 2020, 10, 14704. [Google Scholar] [CrossRef]
- Magbanua, M.J.M.; Swigart, L.B.; Wu, H.T.; Hirst, G.L.; Yau, C.; Wolf, D.M.; Tin, A.; Salari, R.; Shchegrova, S.; Pawar, H.; et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann. Oncol. 2021, 32, 229–239. [Google Scholar] [CrossRef]
- Rothé, F.; Silva, M.J.; Venet, D.; Campbell, C.; Bradburry, I.; Rouas, G.; de Azambuja, E.; Maetens, M.; Fumagalli, D.; Rodrik-Outmezguine, V.; et al. Circulating Tumor DNA in HER2-Amplified Breast Cancer: A Translational Research Substudy of the NeoALTTO Phase III Trial. Clin. Cancer Res. 2019, 25, 3581–3588. [Google Scholar] [CrossRef] [PubMed]
- Janssen, L.M.; Janse, M.H.A.; Penning de Vries, B.B.L.; van der Velden, B.H.M.; Wolters-van der Ben, E.J.M.; van den Bosch, S.M.; Sartori, A.; Jovelet, C.; Agterof, M.J.; Ten Bokkel Huinink, D.; et al. Predicting response to neoadjuvant chemotherapy with liquid biopsies and multiparametric MRI in patients with breast cancer. NPJ Breast Cancer 2024, 10, 10. [Google Scholar] [CrossRef]
- Oshi, M.; Murthy, V.; Takahashi, H.; Huyser, M.; Okano, M.; Tokumaru, Y.; Rashid, O.M.; Matsuyama, R.; Endo, I.; Takabe, K. Urine as a Source of Liquid Biopsy for Cancer. Cancers 2021, 13, 2652. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Shen, S. Treatment and relapse in breast cancer show significant correlations to noninvasive testing using urinary and plasma DNA. Future Oncol. 2020, 16, 849–858. [Google Scholar] [CrossRef]
- Bargmann, C.I.; Hartwieg, E.; Horvitz, H.R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 1993, 74, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Hirotsu, T.; Sonoda, H.; Uozumi, T.; Shinden, Y.; Mimori, K.; Maehara, Y.; Ueda, N.; Hamakawa, M. A highly accurate inclusive cancer screening test using Caenorhabditis elegans scent detection. PLoS ONE 2015, 10, e0118699. [Google Scholar] [CrossRef] [PubMed]
- Bargmann, C.I. Comparative chemosensation from receptors to ecology. Nature 2006, 444, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Futamura, M.; Tanaka, Y.; Tsuchiya, H.; Fukada, M.; Higashi, T.; Yasufuku, I.; Asai, R.; Tajima, J.Y.; Kiyama, S.; et al. Clinical Possibility of Caenorhabditis elegans as a Novel Evaluation Tool for Esophageal Cancer Patients Receiving Chemotherapy: A Prospective Study. Cancers 2023, 15, 3870. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Increasing the dose intensity of chemotherapy by more frequent administration or sequential scheduling: A patient-level meta-analysis of 37 298 women with early breast cancer in 26 randomised trials. Lancet 2019, 393, 1440–1452. [Google Scholar] [CrossRef]
- Futamura, M.; Ishihara, K.; Nagao, Y.; Ogiso, A.; Niwa, Y.; Nakada, T.; Kawaguchi, Y.; Ikawa, A.; Kumazawa, I.; Mori, R.; et al. Neoadjuvant chemotherapy using nanoparticle albumin-bound paclitaxel plus trastuzumab and pertuzumab followed by epirubicin and cyclophosphamide for operable HER2-positive primary breast cancer: A multicenter phase II clinical trial (PerSeUS-BC04). Breast Cancer 2023, 30, 293–301. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Fisher, B. Biological and clinical considerations regarding the use of surgery and chemotherapy in the treatment of primary breast cancer. Cancer 1977, 40, 574–587. [Google Scholar] [CrossRef]
- Freitas, A.J.A.; Causin, R.L.; Varuzza, M.B.; Calfa, S.; Hidalgo Filho, C.M.T.; Komoto, T.T.; Souza, C.P.; Marques, M.M.C. Liquid Biopsy as a Tool for the Diagnosis, Treatment, and Monitoring of Breast Cancer. Int. J. Mol. Sci. 2022, 23, 9952. [Google Scholar] [CrossRef]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: Current technology and clinical applications. J. Hematol. Oncol. 2022, 15, 131. [Google Scholar] [CrossRef]
- Lu, T.; Li, J. Clinical applications of urinary cell-free DNA in cancer: Current insights and promising future. Am. J. Cancer Res. 2017, 7, 2318–2332. [Google Scholar]
- Sun, Q.; Hong, Z.; Zhang, C.; Wang, L.; Han, Z.; Ma, D. Immune checkpoint therapy for solid tumours: Clinical dilemmas and future trends. Signal Transduct. Target. Ther. 2023, 8, 320. [Google Scholar] [CrossRef] [PubMed]
- Iitaka, S.; Kuroda, A.; Narita, T.; Hatakeyama, H.; Morishita, M.; Ungkulpasvich, U.; Hirotsu, T.; di Luccio, E.; Yagi, K.; Seto, Y. Evaluation of N-NOSE as a surveillance tool for recurrence in gastric and esophageal cancers: A prospective cohort study. BMC Cancer 2024, 24, 1544. [Google Scholar] [CrossRef] [PubMed]
- Yau, C.; Osdoit, M.; van der Noordaa, M.; Shad, S.; Wei, J.; de Croze, D.; Hamy, A.S.; Laé, M.; Reyal, F.; Sonke, G.S.; et al. Residual cancer burden after neoadjuvant chemotherapy and long-term survival outcomes in breast cancer: A multicentre pooled analysis of 5161 patients. Lancet Oncol. 2022, 23, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, H.; Tashiro, K.; Shimaoka, S.; Tsukasa, K.; Baba, Y.; Furukawa, S.; Furukawa, J.; Niihara, T.; Hirotsu, T.; Uozumi, T. Efficiency of Gastrointestinal Cancer Detection by Nematode-NOSE (N-NOSE). In Vivo 2020, 34, 73–80. [Google Scholar] [CrossRef]
- Hatakeyama, H.; Morishita, M.; Alshammari, A.H.; Ungkulpasvich, U.; Yamaguchi, J.; Hirotsu, T.; di Luccio, E. A non-invasive screening method using Caenorhabditis elegans for early detection of multiple cancer types: A prospective clinical study. Biochem. Biophys. Rep. 2024, 39, 101778. [Google Scholar] [CrossRef]
Clinicopathological Characteristics | Number of Patients (n = 36) |
---|---|
Age (median, range) | 51 (35–77) |
Menopause status | |
Pre | 17 (47.2%) |
Post | 18 (50.0%) |
Unknown | 1 (2.8%) |
Clinical T stage | |
1 | 4 (11.1%) |
2 | 20 (55.6%) |
3 | 5 (13.9%) |
4 | 7 (19.4%) |
Clinical N stage | |
0 | 9 (25.0%) |
1 | 17 (47.2%) |
2 | 5 (13.9%) |
3 | 5 (13.9%) |
Clinical M stage | |
0 | 36 (100.0%) |
1 | 0 (0.0%) |
Clinical stage | |
I | 1 (2.8%) |
IIA | 10 (27.8%) |
IIB | 11 (30.6%) |
IIIA | 5 (13.9%) |
IIIB | 4 (11.1%) |
IIIC | 5 (13.9%) |
Subtype | |
Luminal | 11 (30.6%) |
Luminal HER2 | 4 (11.1%) |
HER2 | 10 (27.8%) |
TN | 11 (30.6%) |
Treatment response | |
CR | 13 (36.1%) |
PR | 16 (44.4%) |
SD | 6 (16.7%) |
PD | 1 (2.8%) |
CR or PR | |||||
---|---|---|---|---|---|
AUC | 95%CI | Sensitivity | Specificity | Cut-Off Point | |
IRS1 | 0.53 | 0.19–0.87 | 0.79 | 0.40 | 0.11 |
IRS2 | 0.76 | 0.56–0.96 | 0.58 | 1.00 | 0.00 |
IRS3 | 0.66 | 0.37–0.96 | 0.79 | 0.6 | −0.05 |
CR | |||||
---|---|---|---|---|---|
AUC | 95%CI | Sensitivity | Specificity | Cut-Off Point | |
IRS1 | 0.58 | 0.34–0.82 | 0.46 | 0.82 | 0.06 |
IRS2 | 0.64 | 0.40–0.88 | 0.46 | 0.91 | 0.03 |
IRS3 | 0.75 | 0.54–0.95 | 0.69 | 0.82 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokumaru, Y.; Niwa, Y.; Mori, R.; Okawa, M.; Nakakami, A.; Sato, Y.; Hatakeyama, H.; Hirotsu, T.; di Luccio, E.; Matsuhashi, N.; et al. Application of N-NOSE for Evaluating the Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Cells 2025, 14, 950. https://doi.org/10.3390/cells14130950
Tokumaru Y, Niwa Y, Mori R, Okawa M, Nakakami A, Sato Y, Hatakeyama H, Hirotsu T, di Luccio E, Matsuhashi N, et al. Application of N-NOSE for Evaluating the Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Cells. 2025; 14(13):950. https://doi.org/10.3390/cells14130950
Chicago/Turabian StyleTokumaru, Yoshihisa, Yoshimi Niwa, Ryutaro Mori, Mai Okawa, Akira Nakakami, Yuta Sato, Hideyuki Hatakeyama, Takaaki Hirotsu, Eric di Luccio, Nobuhisa Matsuhashi, and et al. 2025. "Application of N-NOSE for Evaluating the Response to Neoadjuvant Chemotherapy in Breast Cancer Patients" Cells 14, no. 13: 950. https://doi.org/10.3390/cells14130950
APA StyleTokumaru, Y., Niwa, Y., Mori, R., Okawa, M., Nakakami, A., Sato, Y., Hatakeyama, H., Hirotsu, T., di Luccio, E., Matsuhashi, N., & Futamura, M. (2025). Application of N-NOSE for Evaluating the Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Cells, 14(13), 950. https://doi.org/10.3390/cells14130950