Experimental Models and Their Applicability in Inflammation Studies: Rodents, Fish, and Nematodes
Abstract
1. Introduction
2. Experimental Models for Evaluating the Inflammatory Response
2.1. Rodents
2.2. Zebrafish (Danio rerio)
2.3. Caenorhabditis elegans
3. Anti-Inflammatory, Inflammation, and Experimental Models
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PRR | receptors or pattern recognition receptors |
TNFα | tumor necrosis factor-alpha |
IL1β | interleukin-beta |
IL-6 | interleukin-6 |
NF-κB | nuclear family factor kappa B |
Myd88 | myeloid differentiation factor 88 |
TLRs | Toll-like receptors |
STAT 1 | transcription activator signal transducers 1 |
PAMPs | pathogen-associated molecular patterns |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
Cas-9 | protein 9 |
(TGF)-β | growth transformation factor beta |
p38 MAPK | mitogen-activated protein kinase signaling pathway p38 |
IGF-1 | insulin-like growth factor type 1 |
(ATF-7)/CREB | activating transcription factor |
DAF-16/FOXO | transcription factor forkhead |
References
- Célia Regina Monte Barardi; Carobrez, S.G.; Pinto, A.R. Immunology; Federal University of Santa Catarina: Florianópolis, Brazil, 2010. [Google Scholar]
- Alfaro, S.; Acuña, V.; Ceriani, R.; Cavieres, M.F.; Weinstein-Oppenheimer, C.R.; Campos-Estrada, C. Involvement of Inflammation and Its Resolution in Disease and Therapeutics. Int. J. Mol. Sci. 2022, 23, 10719. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Wang, X.; Xiong, H.; Qiu, T.; Zhang, H.; Guo, F.; Jiang, L.; Sun, Y. Anti-inflammatory effects of three selenium-enriched brown rice protein hydrolysates on LPS-induced RAW264. 7 Macrophages via NF-κB/MAPKs signaling pathways. J. Funct. Food 2021, 76, 104320. [Google Scholar] [CrossRef]
- Wang, L.; Oh, J.-Y.; Yang, H.-W.; Fu, X.; Kim, J.-I.; Jeon, Y.-J. Fucoidan isolated from the popular edible brown seaweed Sargassum fusiforme suppresses lipopolysaccharide-induced inflammation by blocking NF-κB signal pathway. J. Appl. Ficol. 2021, 33, 1845–1852. [Google Scholar] [CrossRef]
- Lukácsi, S.; Farkas, Z.; Saskői, É.; Bajtay, Z.; Takács-Vellai, K. Conserved and Distinct Elements of Phagocytosis in Human and C. elegans. Int. J. Mol. Sci. 2021, 22, 8934. [Google Scholar] [CrossRef]
- Pahwa, R.; Goyal, A.; Jialal, I. Chronic Inflammation; Statpearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Kaur, B.P.; Secord, E. Innate Immunity. Pediatr. Clin. N. Am. 2019, 66, 905–911. [Google Scholar] [CrossRef]
- Taguchi, T.; Mukai, K. Innate immunity signalling and membrane trafficking. Curr. Opin. Cell Biol. 2019, 59, 1–7. [Google Scholar] [CrossRef]
- Rafiyan, M.; Sadeghmousavi, S.; Akbarzadehmoallemkolaei, M.; Rezaei, N. Rezaei. Experimental animal models of chronic inflammation. Curr. Res. Immunol. 2023, 4, 100063. [Google Scholar] [CrossRef] [PubMed]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Y.; Li, Z.; Ma, L.; Wei, X.; Yang, J.; Xiao, R.; Xia, C. The unique structure of the zebrafish TNF-α homotrimer. Dev. Comp. Immunol. 2021, 122, 104–129. [Google Scholar] [CrossRef]
- Campos-Sánchez, J.C.; Esteban, M.Á. Review of inflammation in fish and value of the zebrafish model. J. Fish Dis. 2021, 44, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Hawiger, J.; Zienkiewicz, J. Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scand. J. Immunol. 2019, 90, 12812. [Google Scholar] [CrossRef] [PubMed]
- Mulero, M.C.; Wang, V.Y.F.; Huxford, T.; Ghosh, G. Genome reading by NF-κB transcription factors. Nucleic Acid Res. 2019, 47, 9967–9989. [Google Scholar] [CrossRef]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef]
- Chaudhary, M.K.; Rizvi, S.I. Invertebrate and vertebrate models in aging research. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2019, 163, 114–121. [Google Scholar] [CrossRef]
- Szpirer, C. Rat models of human diseases and related phenotypes: A systematic inventory of the causative genes. J. Biomed. Sci. 2020, 27, 84. [Google Scholar] [CrossRef] [PubMed]
- Andersen-Civil, A.I.S.; Sawale, R.A.; Vanwalleghem, G.C. Zebrafish (Danio rerio) as a translational model for neuro-immune interactions in the enteric nervous system in autism spectrum disorders. Brain Behav. Immun. 2023, 112, 254–266. [Google Scholar] [CrossRef]
- Peng, H.; Bai, H.; Pan, Y.; Li, J.; Pei, Z.; Liao, Y.; Wu, C.; Li, C.; Tao, L.; Zhong, S.; et al. Immunological pathogenesis of Bovine E. coli infection in a model of C. elegans. BMC Microbiol. 2022, 22, 311. [Google Scholar] [CrossRef]
- da Silva Xavier, G.; Hodson, D.J. Mouse models of peripheral metabolic disease. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 299–315. [Google Scholar] [CrossRef]
- Kleinert, M.; Clemmensen, C.; Hofmann, S.M.; Moore, M.C.; Renner, S.; Woods, S.C.; Huypens, P.; Beckers, J.; de Angelis, M.H.; Schürmann, A.; et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 2018, 14, 140–162. [Google Scholar] [CrossRef]
- Babu, A.H.; Sai, A.R.; Bandhavi, K.B.; Jyothsna, M.; Snehitha, B.; Reddy, K.S.; Pasala, P.K. An Updated Review on Mouse Genetics and Genomics: Understanding Complex Traits and Diseases. Uttar Pradesh J. Zool. 2024, 45, 74–85. [Google Scholar] [CrossRef]
- Li, H.; Auwerx, J. Mouse Genetics Systems as a Prelude to Precision Medicine. Trends Genet. 2020, 36, 259–272. [Google Scholar] [CrossRef]
- Vatashchuk, M.V.; Bayliak, M.M.; Hurza, V.V.; Storey, K.B.; Lushchak, V.I. Metabolic Syndrome: Lessons from Rodent and Drosophila Models. BioMed Res. Int. 2022, 22, 5850507. [Google Scholar] [CrossRef]
- Cooper, T.K.; Meyerholz, D.K.; Beck, A.P.; Delaney, M.A.; Piersigilli, A.; Southard, T.L.; Brayton, C.F. Research-Relevant Conditions and Pathology of Laboratory Mice, Rats, Gerbils, Guinea Pigs, Hamsters, Naked Mole Rats, and Rabbits. ILAR J. 2021, 62, 77–132. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.D. Advances in mouse genetics for the study of human disease. Hum. Mol. Genet. 2021, 30, R274–R284. [Google Scholar] [CrossRef]
- Osuchowski, M.F.; Remick, D.G.; Lederer, J.A.; Lang, C.H.; Aasen, A.O.; Aibiki, M.; Azevedo, L.C.; Bahrami, S.; Boros, M.; Cooney, R.; et al. Abandon the Mouse Research Ship? Not Just Yet! Shock 2014, 41, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, A.H.; Philip, V.M.; Chesler, E.J.; Mogil, J.S. Comparing phenotypic variation between inbred and outbred mice. Nat. Methods 2018, 15, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Mastrogiovanni, M.; Martínez-Navarro, F.J.; Bowman, T.V.; Cayuela, M.L. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int. J. Mol. Sci. 2024, 25, 2145. [Google Scholar] [CrossRef]
- Kim, E.-A.; Lee, J.-H.; Heo, S.-J.; Jeon, Y.-J. Saringosterol acetate isolated from Hizikia fusiforme, an edible brown alga, suppressed hepatocellular carcinoma growth and metastasis in a zebrafish xenograft model. Chem. Biol. Interact. 2021, 335, 109362. [Google Scholar] [CrossRef]
- Charlie-Silva, I.; Klein, A.; Gomes, J.M.; Prado, E.J.; Moraes, A.C.; Eto, S.F.; Fernandes, D.C.; Fagliari, J.J.; Junior, J.D.C.; Lima, C.; et al. Acute-phase proteins during inflammatory reaction by bacterial infection: Fish-model. Sci. Rep. 2019, 9, 4776. [Google Scholar] [CrossRef]
- Forn-Cuní, G.; Varela, M.; Pereiro, P.; Novoa, B.; Figueras, A. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci. Rep. 2017, 7, 41905. [Google Scholar] [CrossRef] [PubMed]
- Kam, J.Y.; Hortle, E.; Krogman, E.; Warner, S.E.; Wright, K.; Luo, K.; Cheng, T.; Cholan, P.M.; Kikuchi, K.; Triccas, J.A.; et al. Rough and smooth variants of Mycobacterium abscessus are differentially controlled by host immunity during chronic infection of adult zebrafish. Nat. Commun. 2022, 13, 952. [Google Scholar] [CrossRef] [PubMed]
- Ogryzko, N.V.; Lewis, A.; Wilson, H.L.; Meijer, A.H.; Renshaw, S.A.; Elks, P.M. Hif-1α-induced expression of IL-1β protects against Mycobacterial infection in zebrafish. J. Immunol. 2019, 202, 494–502. [Google Scholar] [CrossRef]
- Jacobs, S.H.; Dóró, E.; Hammond, F.R.; Nguyen-Chi, M.E.; Lutfalla, G.; Wiegertjes, G.F.; Forlenza, M. Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections. eLife 2021, 10, e64520. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Zhang, H.; Hu, J.; Peng, Y.; Yang, J.; Liao, X.; Liu, F.; Guo, J.; Hu, C.; Lu, H. The immunotoxicity and neurobehavioral toxicity of zebrafish induced by famoxadone-cymoxanil. Chemosphere 2020, 247, 125870. [Google Scholar] [CrossRef]
- Zhu, J.; Xia, R.; Liu, Z.; Shen, J.; Gong, X.; Hu, Y.; Chen, H.; Yu, Y.; Gao, W.; Wang, C.; et al. Fenvalerate triggers Parkinson-like symptom during zebrafish development through initiation of autophagy and p38 MAPK/mTOR signaling pathway. Chemosphere 2020, 243, 125336. [Google Scholar] [CrossRef]
- Zhong, Y.; Shen, L.; Ye, X.; Zhou, D.; He, Y.; Zhang, H. Mechanism of immunosuppression in zebrafish (Danio rerio) spleen induced by environmentally relevant concentrations of perfluorooctanoic acid. Chemosphere 2020, 249, 126200. [Google Scholar] [CrossRef]
- Tang, L.; Qiu, W.; Zhang, S.; Wang, J.; Yang, X.; Xu, B.; Magnuson, J.T.; Xu, E.G.; Wu, M.; Zheng, C. Poly- and perfluoroalkyl substances induce immunotoxicity via the TLR pathway in zebrafish: Links to carbon chain length. Environ. Sci. Technol. 2023, 57, 6139–6149. [Google Scholar] [CrossRef]
- Lee, J.W.; Jo, A.H.; Lee, D.C.; Choi, C.Y.; Kang, J.C.; Kim, J.H. Review of cadmium toxicity effects on fish: Oxidative stress and immune responses. Environ. Res. 2023, 236, 116600. [Google Scholar] [CrossRef]
- Lin, W.; Guo, H.; Wang, L.; Zhang, D.; Wu, X.; Li, L.; Qiu, Y.; Yang, L.; Li, D.; Tang, R. Waterborne microcystin-LR exposure induced chronic inflammatory response via MyD88-dependent toll-like receptor signaling pathway in male zebrafish. Sci. Total Environ. 2020, 702, 134969. [Google Scholar] [CrossRef]
- Martínez-Navarro, F.J.; Martínez-Morcillo, F.J.; de Oliveira, S.; Candel, S.; Cabas, I.; García-Ayala, A.; Martínez-Menchón, T.; Corbalán-Vélez, R.; Mesa-del-Castillo, P.; Cayuela, M.L.; et al. Hydrogen peroxide in neutrophil inflammation: Lesson from the zebrafish. Dev. Comp. Immunol. 2020, 105, 103–583. [Google Scholar] [CrossRef] [PubMed]
- Iribarne, M. Inflammation induces zebrafish regeneration. Neural Regen. Res. 2021, 16, 1693–1701. [Google Scholar] [CrossRef]
- Cao, J.; Li, Q.; Shen, X.; Yao, Y.; Li, L.; Ma, H. Dehydroepiandrosterone attenuates LPS-induced inflammatory responses through activation of Nrf2 in RAW264. 7 macrophages. Mol. Imunol. 2021, 131, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Phulara, S.C.; Jha, A.; Chauhan, P.S.; Gupta, P.; Shukla, V. 3-Methyl-3-buten-1-ol (isoprenol) confers longevity and stress tolerance in Caenorhabditis elegans. Int. J. Food Sci. Nurtur. 2019, 70, 595–602. [Google Scholar] [CrossRef]
- Zhang, S.; Li, F.; Zhou, T.; Wang, G.; Li, Z. Caenorhabditis elegans as a useful model for studying aging mutations. Front. Endocrinol. 2020, 11, 554–994. [Google Scholar] [CrossRef]
- Shah, P.; Bao, Z.; Zaidel-Bar, R. Visualizing and quantifying molecular and cellular processes in Caenorhabditis elegans using light microscopy. Genetics 2022, 221, iyac068. [Google Scholar] [CrossRef]
- Park, H.-E.H.; Hwang, W.; Ham, S.; Kim, E.; Altintas, O.; Park, S.; Son, H.G.; Lee, Y.; Lee, D.; Heo, W.D.; et al. A PTEN variant uncouples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF-1 signaling. Nat. Commun. 2021, 12, 5631. [Google Scholar] [CrossRef]
- An, L.; Fu, X.; Chen, J.; Ma, J. Application of Caenorhabditis elegans in Lipid Metabolism Research. Int. J. Mol. Sci. 2023, 24, 1173. [Google Scholar] [CrossRef] [PubMed]
- Wellenberg, A.; Weides, L.; Kurzke, J.; Hennecke, T.; Bornhorst, J.; Crone, B.; Karst, U.; Brinkmann, V.; Fritz, G.; Honnen, S. Use of C. elegans as a 3R-compliant in vivo model for the chemoprevention of cisplatin-induced neurotoxicity. Exp. Neurol. 2021, 341, 113705. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Li, P.; Zhou, Q.; Zheng, X.; Gu, Q. Caenorhabditis elegans: A nature present for advanced food science. Curr. Opin. Food Sci. 2023, 49, 100971. [Google Scholar] [CrossRef]
- Navarro-Hortal, M.D.; Romero-Márquez, J.M.; Varela-López, A.; Forbes-Hernandez, T.Y.; Rivas García, L.; Llopis, J.; Sánchez-González, C.; Quiles, J.L. Strawberry Phenolic Extract Increases the Lifespan of C. elegans. Int. Soc. Hortic. 2021, 1309, 995–1002. [Google Scholar] [CrossRef]
- de Guzman, A.C.V.; Razzak, M.A.; Cho, J.H.; Kim, J.Y.; Choi, S.S. Nanoparticles. Curcumin-loaded human serum albumin nanoparticles prevent Parkinson’s disease-like symptoms in C. elegans. Nanomaterials 2022, 12, 758. [Google Scholar] [CrossRef]
- Goyache, I.; Yavorov-Dayliev, D.; Milagro, F.I.; Aranaz, P. Caenorhabditis elegans as a screening model for probiotics with properties against metabolic syndrome. Int. J. Mol. Sci. 2024, 25, 1321. [Google Scholar] [CrossRef] [PubMed]
- Harding, B.W.; Ewbank, J.J. An integrated view of innate immune mechanisms in C. elegans. Biochem. Soc. Trans. 2021, 49, 2307–2317. [Google Scholar] [CrossRef]
- Kim, D.H.; Ewbank, J.J. Signaling in the Innate Immune Response. WormBook 2018, 2018, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Madende, M.; Albertyn, J.; Sebolai, O.; Pohl, C.H. Caenorhabditis elegans as an Animal Model for Investigating Fungal Pathogenesis. Med. Microbiol. Immunol. 2020, 209, 1–13. [Google Scholar] [CrossRef]
- Huang, X.; Pan, W.; Kim, W.; White, A.; Li, S.; Li, H.; Lee, K.; Fuchs, B.B.; Zeng, K.; Mylonakis, E. Caenorhabditis elegans mounts a p38 MAPK pathway-mediated defence to Cutibacterium acnes infection. Cell. Microbiol. 2020, 22, 13–234. [Google Scholar] [CrossRef]
- Batlle, E.; Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 2019, 50, 924–940. [Google Scholar] [CrossRef]
- Tissenbaum, H.A. DAF-16: FOXO in the context of C. elegans. Curr. Top. Dev. Biol. 2018, 127, 1–21. [Google Scholar] [CrossRef]
- Wu, Z.; Isik, M.; Moroz, N.; Steinbaugh, M.J.; Zhang, P.; Blackwell, T.K. Dietary restriction extends lifespan through metabolic regulation of innate immunity. Cell Metab. 2019, 29, 1192–1205. [Google Scholar] [CrossRef]
- Balaguer, F.; Enrique, M.; Llopis, S.; Barrena, M.; Navarro, V.; Álvarez, B.; Chenoll, E.; Ramon, D.; Tortajada, M.; Martorell, P. Lipoteichoic Acid from Bifidobacterium animalis subsp. lactis BPL1: A Novel Postbiotic that Reduces Fat Deposition via the IGF-1 Pathway. Microb. Biotechnol. 2022, 15, 805–808. [Google Scholar] [CrossRef] [PubMed]
- McHugh, D.R.; Koumis, E.; Jacob, P.; Goldfarb, J.; Schlaubitz-Garcia, M.; Bennani, S.; Regan, P.; Patel, P.; Youngman, M.J. DAF-16 and SMK-1 Contribute to Innate Immunity During Adulthood in Caenorhabditis elegans. Genet. Soc. Am. 2020, 10, 1521–1539. [Google Scholar] [CrossRef]
- Lee, Y.; Jung, Y.; Jeong, D.-E.; Hwang, W.; Ham, S.; Park, H.-E.H.; Kwon, S.; Ashraf, J.M.; Murphy, C.T.; Lee, S.-J.V. Reduced insulin/IGF1 signaling prevents immune aging via ZIP-10/bZIP-mediated feedforward loop. J. Cell Biol. 2021, 220, e202006174. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, X.; Liu, J.; He, P.; Zhang, S.; Zhang, Y.; Gao, J.; Yang, S.; Kang, N.; Afridi, M.I.; et al. GABAergic synapses suppress intestinal innate immunity via insulin signaling in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2021, 118, 63–118. [Google Scholar] [CrossRef]
- Otarigho, B.; Aballay, A. Immunity-longevity tradeoff neurally controlled by GABAergic transcription factor PITX1/UNC-30. Cell Rep. 2021, 35, 109187. [Google Scholar] [CrossRef]
- Fasipe, O.J. Recent advances and current trend in the pharmacotherapy of obesity. Arch. Med. Health Sci. 2018, 6, 99. [Google Scholar] [CrossRef]
- Shin, S.A.; Joo, B.J.; Lee, J.S.; Ryu, G.; Han, M.; Kim, W.Y.; Park, H.H.; Lee, J.H.; Lee, C.S. Phytochemicals as anti-inflammatory agents in animal models of prevalent inflammatory diseases. Molecules 2020, 25, 5932. [Google Scholar] [CrossRef]
- Hongzhi, D.; Xiaoying, H.; Yujie, G.; Le, C.; Yuhuan, M.; Dahui, L.; Luqi, H. Classic mechanisms and experimental models for the anti-inflammatory effect of traditional Chinese medicine. Anim. Models Exp. Med. 2022, 5, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Meijer, A.H.; Schaaf, M.J. Modeling inflammation in zebrafish for the development of anti-inflammatory drugs. Front. Cell. Dev. Biol. 2021, 8, 620984. [Google Scholar] [CrossRef]
- Kanwal, Z.; Wiegertjes, G.F.; Veneman, W.J.; Meijer, A.H.; Spaink, H.P. Comparative studies of Toll-like receptor signalling using zebrafish. Dev. Comp. Immunol. 2014, 46, 35–52. [Google Scholar] [CrossRef]
- Bouyanfif, A.; Jayarathne, S.; Koboziev, I.; Moustaid-Moussa, N. The nematode Caenorhabditis elegans as a model organism to study metabolic effects of ω-3 polyunsaturated fatty acids in obesity. Adv. Nutr. 2019, 10, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Sohn, J.; Lee, S.-J.V. Immunosenescence in Caenorhabditis elegans. Immun. Ageing 2022, 19, 56. [Google Scholar] [CrossRef] [PubMed]
- Verwilligen, R.; Bussmann, J.; Van Eck, M. Zebrafish atherosclerosis: Experimental definitions and difficulties. Atherosclerosis 2020, 302, 52–54. [Google Scholar] [CrossRef]
- Mora, I.; Puiggròs, F.; Serras, F.; Gil-Cardoso, K.; Escoté, X. Emerging models for studying adipose tissue metabolism. Biochem. Pharmacol. 2024, 223, 116123. [Google Scholar] [CrossRef] [PubMed]
- Ayuda-Durán, B.; González-Manzano, S.; González-Paramás, A.M.; Santos-Buelga, C. Caernohabditis elegans as a model organism to evaluate the antioxidant effects of phytochemicals. Molecules 2020, 25, 3194. [Google Scholar] [CrossRef]
- Preguiça, I.; Alves, A.; Nunes, S.; Fernandes, R.; Gomes, P.; Viana, S.D.; Reis, F. Diet-induced rodent models of obesity-related metabolic disorders A guide to a translational perspective. Obes. Rev. 2020, 21, e13081. [Google Scholar] [CrossRef]
Criteria | Rats | Mice |
---|---|---|
Similarities | Rodents share approximately 85% of their genome with humans and can be bred into genetically identical strains, enabling reproducible studies of human diseases | |
Differences | Inbred rodents are genetically identical, presenting a gap from the heterogeneity of the human population Inbred rodents are markedly smaller than outbred rodents | |
Use in research | Preferred in genetics and genomics studies due to their high genetic similarity to humans | Used in gene–environment interaction studies and genetic manipulation |
Reproduction and life cycle | Short gestation (21–23 days) and sexual maturity before 8 weeks | Short gestation (18.5–21 days) and sexual maturity from 5 to 8 weeks |
Immune system | There is conservation of innate and adaptive immune mechanisms, including similarities in epithelial barriers and in the presence of T cells, B cells, and natural killer (NK) cells | Similarities in the activation of the NF-κB and regulation of neutrophil chemotaxis |
Limitations | Genetic and age similarities between rats or mice and humans; consanguineous genetic profile limits genetic variability and consequently clinical application |
Experimental Model | Advantages | Disadvantages |
---|---|---|
Rodents (rats and mice) | Greater ease in evaluating the pathological characteristics of inflammatory diseases | Inbred rodents have an identical genetic profile, which does not reflect the genetic heterogeneity observed in human populations |
Recommended for evaluating humoral or cellular immunity | Although many studies use young animals, which may limit direct applicability to elderly human populations, there are also experimental models using aged rodents that help address age-related immune changes, such as immunosenescence | |
Indicated for further investigations and for confirming the inflammatory process (facilitates clinical application in studies on inflammation) | Because they are created in controlled laboratory environments, they may exhibit physiological responses different from those observed in humans exposed to diverse environmental conditions | |
Zebrafish | Used to evaluate the anti-inflammatory effect of nutrients, bioactive compounds, and medications | Different inflammatory responses, such as facilitating tissue regeneration |
High similarity of inflammatory genes compared to the human organism | Differences in stem cell activity, which may limit the applicability of results in human therapies | |
Easy maintenance and high reproductive capacity | Imbalance in receptor signaling pathways Toll-like (TLRs) in zebrafish, which can lead to abnormal functioning of the immune system, creating challenges in interpreting data for human application | |
Indicated for evaluating humoral or cellular immunity | Although many immune pathways are conserved, evolutionary differences may create limitations when attempting to fully replicate human inflammatory responses | |
Indicated for primary or rapid screening studies | Difficulty in modeling complex human inflammatory diseases, such as chronic or multifactorial diseases | |
Nematodes (C. elegans) | A useful model to elucidate mechanisms of action and as a rapid screening system for early-stage research | Morphological differences, limiting the extrapolation of results to humans |
Indicated for studying the understanding of the host–pathogen correlation | Many molecular pathways present in mammals do not exist in nematodes, which may limit certain studies | |
Does not require an ethics committee | Limited innate immunity and absence of adaptive immunity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemos, A.E.N.; de Queiroz, J.L.C.; Maciel, B.L.L.; de Araújo Morais, A.H. Experimental Models and Their Applicability in Inflammation Studies: Rodents, Fish, and Nematodes. Int. J. Mol. Sci. 2025, 26, 5987. https://doi.org/10.3390/ijms26135987
Lemos AEN, de Queiroz JLC, Maciel BLL, de Araújo Morais AH. Experimental Models and Their Applicability in Inflammation Studies: Rodents, Fish, and Nematodes. International Journal of Molecular Sciences. 2025; 26(13):5987. https://doi.org/10.3390/ijms26135987
Chicago/Turabian StyleLemos, Ana Emilia Nascimento, Jaluza Luana Carvalho de Queiroz, Bruna Leal Lima Maciel, and Ana Heloneida de Araújo Morais. 2025. "Experimental Models and Their Applicability in Inflammation Studies: Rodents, Fish, and Nematodes" International Journal of Molecular Sciences 26, no. 13: 5987. https://doi.org/10.3390/ijms26135987
APA StyleLemos, A. E. N., de Queiroz, J. L. C., Maciel, B. L. L., & de Araújo Morais, A. H. (2025). Experimental Models and Their Applicability in Inflammation Studies: Rodents, Fish, and Nematodes. International Journal of Molecular Sciences, 26(13), 5987. https://doi.org/10.3390/ijms26135987