Roles of Cyclic Nucleotide Phosphodiesterases in Signal Transduction Pathways in the Nematode Caenorhabditis elegans
Abstract
1. Introduction
1.1. PDEs and Cyclases Constitute a Metabolic Pathway Responsible for Regulating Cyclic Nucleotide Levels in Cells
1.2. The PDE Superfamily
1.3. The Nematode Phylum Contains Six PDE Families Orthologous to Mammalian PDEs
Gene Family | Gene Name | Isoforms | Vertebrate Ortholog | Substrate Preference (Vertebrate) |
---|---|---|---|---|
PDE-1 | T04D3.3 | 2 | PDE1 | cAMP and cGMP |
PDE-2 | R08D7.6 | 2 | PDE2 | cAMP and cGMP |
PDE-3 | E01F3.1 | 10 | PDE3 | cAMP and cGMP |
PDE-4 | R153.1 | 9 | PDE4 | cAMP |
PDE-5 | C32E12.2 | 1 | PDE10 | cAMP and cGMP |
PDE-6 | Y95B8A.10 | 3 | PDE8 | cAMP |
2. The Overall Structure of PDEs
2.1. Catalytic Domain Structure of PDEs
2.2. Regulatory Domains in the Mammalian PDE Superfamily
3. Biochemical Properties and Physiological Roles of C. elegans PDEs
3.1. C. elegans PDE-1
3.1.1. Studies Implicating C. elegans PDE-1 in Nematode Physiology and Behavior
3.1.2. Effects of Compounds That Selectively Inhibit Human PDE1 on C. elegans In Vivo
3.2. C. elegans PDE-2
3.2.1. Role of C. elegans PDE-2 in Nematode Physiology and Behavior
3.2.2. Effects of Compounds That Selectively Inhibit Human PDE2 on C. elegans In Vivo
3.3. C. elegans PDE-3
3.3.1. Studies Implicating C. elegans PDE-3 in Nematode Physiology and Behavior
3.3.2. Effects of Compounds That Selectively Inhibit Human PDE3 on C. elegans In Vivo
3.4. C. elegans PDE-4
3.4.1. Studies Implicating C. elegans PDE-4 in Nematode Physiology and Behavior
3.4.2. In Vitro Biochemical and Pharmacological Properties of C. elegans PDE-4
3.4.3. Effects of Human PDE4 Inhibitors on C. elegans In Vivo
3.5. C. elegans PDE-5 (Human PDE10)
Studies Implicating C. elegans PDE-5 in Nematode Physiology and Behavior
3.6. C. elegans PDE-6 (Human PDE8)
Studies Implicating C. elegans PDE-6 in Nematode Physiology and Behavior
4. Multiple PDEs Coordinately Regulate Some Cyclic Nucleotide Signaling Pathways in C. elegans
4.1. PDE Double Mutants
4.1.1. pde-1:pde-5 and pde-1:pde-2 Double Mutants
4.1.2. pde-2:pde-3 Double Mutant
4.1.3. pde-4:pde-6 Double Mutant
4.2. PDE Quadruple Mutant
pde-1:pde-2:pde-3:pde-5 Quadruple Mutant
5. Conclusions
5.1. Synopsis
5.2. Translational Relevance to Human Health and Disease
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Beavo, J.A.; Brunton, L.L. Cyclic nucleotide research—Still expanding after half a century. Nat. Rev. Mol. Cell Biol. 2002, 3, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Maurice, D.H.; Ke, H.; Ahmad, F.; Wang, Y.; Chung, J.; Manganiello, V.C. Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov. 2014, 13, 290–314. [Google Scholar] [CrossRef]
- Omori, K.; Kotera, J. Overview of PDEs and their regulation. Circ. Res. 2007, 100, 309–327. [Google Scholar] [CrossRef] [PubMed]
- Ke, H.; Wang, H. Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Curr. Top. Med. Chem. 2007, 7, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Zaccolo, M.; Zerio, A.; Lobo, M.J. Subcellular Organization of the cAMP Signaling Pathway. Pharmacol. Rev. 2021, 73, 278–309. [Google Scholar] [CrossRef] [PubMed]
- Cote, R.H. Photoreceptor phosphodiesterase (PDE6): Activation and inactivation mechanisms during visual transduction in rods and cones. Pflugers Arch. 2021, 473, 1377–1391. [Google Scholar] [CrossRef]
- Bolger, G.B. The PDE-Opathies: Diverse Phenotypes Produced by a Functionally Related Multigene Family. Trends Genet. 2021, 37, 669–681. [Google Scholar] [CrossRef]
- Cygnar, K.D.; Zhao, H. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nat. Neurosci. 2009, 12, 454–462. [Google Scholar] [CrossRef]
- Assenza, M.R.; Barbagallo, F.; Barrios, F.; Cornacchione, M.; Campolo, F.; Vivarelli, E.; Gianfrilli, D.; Auletta, L.; Soricelli, A.; Isidori, A.M.; et al. Critical role of phosphodiesterase 2A in mouse congenital heart defects. Cardiovasc. Res. 2018, 114, 830–845. [Google Scholar] [CrossRef]
- Masciarelli, S.; Horner, K.; Liu, C.; Park, S.H.; Hinckley, M.; Hockman, S.; Nedachi, T.; Jin, C.; Conti, M.; Manganiello, V. Cyclic nucleotide phosphodiesterase 3A-deficient mice as a model of female infertility. J. Clin. Investig. 2004, 114, 196–205. [Google Scholar] [CrossRef]
- Jin, S.C.; Richard, F.J.; Kuo, W.P.; D’Ercole, A.J.; Conti, M. Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D- deficient mice. Proc. Natl. Acad. Sci. USA 1999, 96, 11998–12003. [Google Scholar] [CrossRef]
- Vasta, V.; ShimizuAlbergine, M.; Beavo, J.A. Modulation of Leydig cell function by cyclic nucleotide phosphodiesterase 8A. Proc. Natl. Acad. Sci. USA 2006, 103, 19925–19930. [Google Scholar] [CrossRef] [PubMed]
- Piccart, E.; Langlois, X.; Vanhoof, G.; D’Hooge, R. Selective inhibition of phosphodiesterase 10A impairs appetitive and aversive conditioning and incentive salience attribution. Neuropharmacology 2013, 75, 437–444. [Google Scholar] [CrossRef]
- Schuster, K.D.; Mohammadi, M.; Cahill, K.B.; Matte, S.L.; Maillet, A.D.; Vashisth, H.; Cote, R.H. Pharmacological and molecular dynamics analyses of differences in inhibitor binding to human and nematode PDE4: Implications for management of parasitic nematodes. PLoS ONE 2019, 14, e0214554. [Google Scholar] [CrossRef]
- Francis, S.H.; Blount, M.A.; Corbin, J.D. Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. Physiol. Rev. 2011, 91, 651–690. [Google Scholar] [CrossRef]
- Wormbase. Wormbase Web Site. Release WS294. 2024. Available online: https://wormbase.org.
- Consortium, T.U. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2022, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Bianchini, G.; Sanchez-Baracaldo, P. TreeViewer: Flexible, modular software to visualise and manipulate phylogenetic trees. Ecol. Evol. 2024, 14, e10873. [Google Scholar] [CrossRef]
- Conti, M.; Beavo, J.A. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: Essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 2007, 76, 481–511. [Google Scholar] [CrossRef] [PubMed]
- Pandit, J.; Forman, M.D.; Fennell, K.F.; Dillman, K.S.; Menniti, F.S. Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc. Natl. Acad. Sci. USA 2009, 106, 18225–18230. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Srivastava, D.; Boyd, K.; Artemyev, N.O. Structural and functional dynamics of human cone cGMP-phosphodiesterase important for photopic vision. Proc. Natl. Acad. Sci. USA 2025, 122, e2419732121. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.X.; Hassell, A.M.; Vanderwall, D.; Lambert, M.H.; Holmes, W.D.; Luther, M.A.; Rocque, W.J.; Milburn, M.V.; Zhao, Y.; Ke, H.; et al. Atomic structure of PDE4: Insights into phosphodiesterase mechanism and specificity. Science 2000, 288, 1822–1825. [Google Scholar] [CrossRef]
- Zoraghi, R.; Corbin, J.D.; Francis, S.H. Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol. Pharmacol. 2004, 65, 267–278. [Google Scholar] [CrossRef]
- Wennogle, L.P.; Hoxie, H.; Peng, Y.; Hendrick, J.P. Phosphodiesterase 1: A Unique Drug Target for Degenerative Diseases and Cognitive Dysfunction. Adv. Neurobiol. 2017, 17, 349–384. [Google Scholar] [CrossRef]
- Kakkar, R.; Raju, R.V.S.; Sharma, R.K. Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1). Cell. Mol. Life Sci. 1999, 55, 1164–1186. [Google Scholar] [CrossRef]
- Goraya, T.A.; Cooper, D.M. Ca2+-calmodulin-dependent phosphodiesterase (PDE1): Current perspectives. Cell Signal 2005, 17, 789–797. [Google Scholar] [CrossRef]
- Shakur, Y.; Holst, L.S.; Landstrom, T.R.; Movsesian, M.; Degerman, E.; Manganiello, V. Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Prog. Nucleic Acid Res. Mol. Biol. 2000, 66, 241–277. [Google Scholar]
- Conti, M.; Richter, W.; Mehats, C.; Livera, G.; Park, J.Y.; Jin, C. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J. Biol. Chem. 2003, 278, 5493–5496. [Google Scholar] [CrossRef]
- Wang, P.; Wu, P.; Egan, R.W.; Billah, M.M. Human phosphodiesterase 8A splice variants: Cloning, gene organization, and tissue distribution. Gene 2001, 280, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Gamanuma, M.; Yuasa, K.; Sasaki, T.; Sakurai, N.; Kotera, J.; Omori, K. Comparison of enzymatic characterization and gene organization of cyclic nucleotide phosphodiesterase 8 family in humans. Cell. Signal. 2003, 15, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.M.; Robinson, V.L.; Goudreau, P.N. Two-component signal transduction. Annu. Rev. Biochem. 2000, 69, 183–215. [Google Scholar] [CrossRef]
- Brown, K.M.; Lee, L.C.; Findlay, J.E.; Day, J.P.; Baillie, G.S. Cyclic AMP-specific phosphodiesterase, PDE8A1, is activated by protein kinase A-mediated phosphorylation. FEBS Lett. 2012, 586, 1631–1637. [Google Scholar] [CrossRef]
- Baillie, G.S.; Tejeda, G.S.; Kelly, M.P. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: Inhibition and beyond. Nat. Rev. Drug Discov. 2019, 18, 770–796. [Google Scholar] [CrossRef] [PubMed]
- Couto, A.; Oda, S.; Nikolaev, V.O.; Soltesz, Z.; de Bono, M. In vivo genetic dissection of O2-evoked cGMP dynamics in a Caenorhabditis elegans gas sensor. Proc. Natl. Acad. Sci. USA 2013, 110, E3301–E3310. [Google Scholar] [CrossRef]
- Shen, X.; Valencia, C.A.; Gao, W.; Cotten, S.W.; Dong, B.; Huang, B.C.; Liu, R. Ca2+/Calmodulin-binding proteins from the C. elegans proteome. Cell Calcium 2008, 43, 444–456. [Google Scholar] [CrossRef]
- Hallem, E.A.; Spencer, W.C.; McWhirter, R.D.; Zeller, G.; Henz, S.R.; Ratsch, G.; Miller, D.M., 3rd; Horvitz, H.R.; Sternberg, P.W.; Ringstad, N. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2011, 108, 254–259. [Google Scholar] [CrossRef]
- Beets, I.; Zhang, G.; Fenk, L.A.; Chen, C.; Nelson, G.M.; Felix, M.A.; de Bono, M. Natural Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression. Neuron 2020, 105, 106–121.e10. [Google Scholar] [CrossRef]
- Rojo Romanos, T.; Petersen, J.G.; Pocock, R. Control of Neuropeptide Expression by Parallel Activity-dependent Pathways in Caenorhabditis elegans. Sci. Rep. 2017, 7, 38734. [Google Scholar] [CrossRef]
- Carrillo, M.A.; Guillermin, M.L.; Rengarajan, S.; Okubo, R.P.; Hallem, E.A. O2-sensing neurons control CO2 response in C. elegans. J. Neurosci. 2013, 33, 9675–9683. [Google Scholar] [CrossRef]
- Gray, J.M.; Karow, D.S.; Lu, H.; Chang, A.J.; Chang, J.S.; Ellis, R.E.; Marletta, M.A.; Bargmann, C.I. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 2004, 430, 317–322. [Google Scholar] [CrossRef]
- Mori, I.; Ohshima, Y. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 1995, 376, 344–348. [Google Scholar] [CrossRef]
- Garrity, P.A.; Goodman, M.B.; Samuel, A.D.; Sengupta, P. Running hot and cold: Behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. Genes Dev. 2010, 24, 2365–2382. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.B.; Sengupta, P. The extraordinary AFD thermosensor of C. elegans. Pflugers Arch. 2018, 470, 839–849. [Google Scholar] [CrossRef]
- Wang, D.; O’Halloran, D.; Goodman, M.B. GCY-8, PDE-2, and NCS-1 are critical elements of the cGMP-dependent thermotransduction cascade in the AFD neurons responsible for C. elegans thermotaxis. J. Gen. Physiol. 2013, 142, 437–449. [Google Scholar] [CrossRef]
- Ohta, A.; Ujisawa, T.; Sonoda, S.; Kuhara, A. Light and pheromone-sensing neurons regulates cold habituation through insulin signalling in Caenorhabditis elegans. Nat. Commun. 2014, 5, 4412. [Google Scholar] [CrossRef] [PubMed]
- Palumbos, S.D.; Skelton, R.; McWhirter, R.; Mitchell, A.; Swann, I.; Heifner, S.; Von Stetina, S.; Miller, D.M. cAMP controls a trafficking mechanism that maintains the neuron specificity and subcellular placement of electrical synapses. Dev. Cell 2021, 56, 3235–3249.e4. [Google Scholar] [CrossRef] [PubMed]
- Haerkens, F.; Kikken, C.; Kirkels, L.; van Amstel, M.; Wouters, W.; van Doornmalen, E.; Francke, C.; Hughes, S. A new use for old drugs: Identifying compounds with an anti-obesity effect using a high through-put semi-automated Caenorhabditis elegans screening platform. Heliyon 2022, 8, e10108. [Google Scholar] [CrossRef]
- Ye, X.; Linton, J.M.; Schork, N.J.; Buck, L.B.; Petrascheck, M. A pharmacological network for lifespan extension in Caenorhabditis elegans. Aging Cell 2014, 13, 206–215. [Google Scholar] [CrossRef]
- Zhang, X.J.; Feng, Q.; Cote, R.H. Efficacy and selectivity of phosphodiesterase-targeted drugs in inhibiting photoreceptor phosphodiesterase (PDE6) in retinal photoreceptors. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3060–3066. [Google Scholar] [CrossRef]
- Hahm, J.H.; Kim, S.; Paik, Y.K. Endogenous cGMP regulates adult longevity via the insulin signaling pathway in Caenorhabditis elegans. Aging Cell 2009, 8, 473–483. [Google Scholar] [CrossRef]
- Martinez, S.E.; Wu, A.Y.; Glavas, N.A.; Tang, X.B.; Turley, S.; Hol, W.G.; Beavo, J.A. The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc. Natl. Acad. Sci. USA 2002, 99, 13260–13265. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.J.; Mumby, M.C.; Beavo, J.A. Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J. Biol. Chem. 1982, 257, 1973–1979. [Google Scholar] [CrossRef] [PubMed]
- Inada, H.; Ito, H.; Satterlee, J.; Sengupta, P.; Matsumoto, K.; Mori, I. Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics 2006, 172, 2239–2252. [Google Scholar] [CrossRef] [PubMed]
- Ujisawa, T.; Ohta, A.; Uda-Yagi, M.; Kuhara, A. Diverse Regulation of Temperature Sensation by Trimeric G-Protein Signaling in Caenorhabditis elegans. PLoS ONE 2016, 11, e0165518. [Google Scholar] [CrossRef]
- Okahata, M.; Motomura, H.; Ohta, A.; Kuhara, A. Molecular physiology regulating cold tolerance and acclimation of Caenorhabditis elegans. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2022, 98, 126–139. [Google Scholar] [CrossRef]
- Fujiwara, M.; Sengupta, P.; McIntire, S.L. Regulation of body size and behavioral state of C-elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron 2002, 36, 1091–1102. [Google Scholar] [CrossRef]
- Fujiwara, M.; Hino, T.; Miyamoto, R.; Inada, H.; Mori, I.; Koga, M.; Miyahara, K.; Ohshima, Y.; Ishihara, T. The Importance of cGMP Signaling in Sensory Cilia for Body Size Regulation in Caenorhabditis elegans. Genetics 2015, 201, 1497–1510. [Google Scholar] [CrossRef]
- L’Etoile, N.D.; Coburn, C.M.; Eastham, J.; Kistler, A.; Gallegos, G.; Bargmann, C.I. The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans. Neuron 2002, 36, 1079–1089. [Google Scholar] [CrossRef]
- O’Halloran, D.M.; Hamilton, O.S.; Lee, J.I.; Gallegos, M.; L’Etoile, N.D. Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans. PLoS ONE 2012, 7, e31614. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.B.; Sengupta, P. How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli. Genetics 2019, 212, 25–51. [Google Scholar] [CrossRef]
- Liu, J.; Ward, A.; Gao, J.; Dong, Y.; Nishio, N.; Inada, H.; Kang, L.; Yu, Y.; Ma, D.; Xu, T.; et al. C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat. Neurosci. 2010, 13, 715–722. [Google Scholar] [CrossRef]
- Byers, D.; Davis, R.L.; Kiger, J.A. Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 1981, 289, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.R.; Nicodemus-Johnson, J.; Danziger, R.S. An evolutionary analysis of cAMP-specific phosphodiesterase 4 alternative splicing. BMC Evol. Biol. 2010, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Charlie, N.K.; Thomure, A.M.; Schade, M.A.; Miller, K.G. The dunce cAMP phosphodiesterase PDE-4 negatively regulates Ga(s)-dependent and Ga(s)-independent cAMP pools in the Caenorhabditis elegans synaptic signaling network. Genetics 2006, 173, 111–130. [Google Scholar] [CrossRef]
- Singh, K.; Ju, J.Y.; Walsh, M.B.; DiIorio, M.A.; Hart, A.C. Deep conservation of genes required for both Drosphila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep 2014, 37, 1439–1451. [Google Scholar] [CrossRef]
- Fernandez-Abascal, J.; Johnson, C.K.; Graziano, B.; Wang, L.; Encalada, N.; Bianchi, L. A glial ClC Cl− channel mediates nose touch responses in C. elegans. Neuron 2022, 110, 470–485.e7. [Google Scholar] [CrossRef]
- Nelson, M.D.; Raizen, D.M. A sleep state during C. elegans development. Curr. Opin. Neurobiol. 2013, 23, 824–830. [Google Scholar] [CrossRef]
- Raizen, D.M.; Zimmerman, J.E.; Maycock, M.H.; Ta, U.D.; You, Y.J.; Sundaram, M.V.; Pack, A.I. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 2008, 451, 569–572. [Google Scholar] [CrossRef]
- Belfer, S.J.; Chuang, H.S.; Freedman, B.L.; Yuan, J.; Norton, M.; Bau, H.H.; Raizen, D.M. Caenorhabditis-in-drop array for monitoring C. elegans quiescent behavior. Sleep 2013, 36, 689–698. [Google Scholar] [CrossRef]
- Gottschling, D.C.; Doring, F.; Luersen, K. Locomotion Behavior Is Affected by the Galpha(S) Pathway and the Two-Pore-Domain K+ Channel TWK-7 Interacting in GABAergic Motor Neurons in Caenorhabditis elegans. Genetics 2017, 206, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Ravi, B.; Zhao, J.; Chaudhry, S.I.; Signorelli, R.; Bartole, M.; Kopchock, R.J.; Guijarro, C.; Kaplan, J.M.; Kang, L.; Collins, K.M. Presynaptic Galphao (GOA-1) signals to depress command neuron excitability and allow stretch-dependent modulation of egg laying in Caenorhabditis elegans. Genetics 2021, 218, iyab080. [Google Scholar] [CrossRef]
- Ghosh-Roy, A.; Wu, Z.; Goncharov, A.; Jin, Y.; Chisholm, A.D. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J. Neurosci. 2010, 30, 3175–3183. [Google Scholar] [CrossRef]
- Yu, B.; Wang, X.; Wei, S.; Fu, T.; Dzakah, E.E.; Waqas, A.; Walthall, W.W.; Shan, G. Convergent Transcriptional Programs Regulate cAMP Levels in C. elegans GABAergic Motor Neurons. Dev. Cell 2017, 43, 212–226.e7. [Google Scholar] [CrossRef]
- Chen, S.Y.; Huang, P.H.; Cheng, H.J. Disrupted-in-Schizophrenia 1-mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling. Proc. Natl. Acad. Sci. USA 2011, 108, 5861–5866. [Google Scholar] [CrossRef]
- Beckert, U.; Aw, W.Y.; Burhenne, H.; Forsterling, L.; Kaever, V.; Timmons, L.; Seifert, R. The Receptor-Bound Guanylyl Cyclase DAF-11 Is the Mediator of Hydrogen Peroxide-Induced cGMP Increase in Caenorhabditis elegans [corrected]. PLoS ONE 2013, 8, e72569. [Google Scholar] [CrossRef]
- Kashyap, S.S.; Johnson, J.R.; McCue, H.V.; Chen, X.; Edmonds, M.J.; Ayala, M.; Graham, M.E.; Jenn, R.C.; Barclay, J.W.; Burgoyne, R.D.; et al. Caenorhabditis elegans dnj-14, the orthologue of the DNAJC5 gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol. Hum. Mol. Genet. 2014, 23, 5916–5927. [Google Scholar] [CrossRef]
- Fujishige, K.; Kotera, J.; Yuasa, K.; Omori, K. The human phosphodiesterase PDE10A gene: Genomic organization and evolutionary relatedness with other PDEs containing GAF domains. Eur. J. Biochem. 2000, 267, 5943–5951. [Google Scholar] [CrossRef]
- Gross-Langenhoff, M.; Hofbauer, K.; Weber, J.; Schultz, A.; Schultz, J.E. cAMP is a ligand for the tandem GAF domain of human phosphodiesterase 10 and cGMP for the tandem GAF domain of phosphodiesterase 11. J. Biol. Chem. 2006, 281, 2841–2846. [Google Scholar] [CrossRef]
- Handa, N.; Mizohata, E.; Kishishita, S.; Toyama, M.; Morita, S.; Uchikubo-Kamo, T.; Akasaka, R.; Omori, K.; Kotera, J.; Terada, T.; et al. Crystal structure of the GAF-B domain from human phosphodiesterase 10A complexed with its ligand, cAMP. JBC 2008, 283, 19657–19664. [Google Scholar] [CrossRef]
- Aoki, I.; Shiota, M.; Tsukada, Y.; Nakano, S.; Mori, I. cGMP dynamics that underlies thermosensation in temperature-sensing neuron regulates thermotaxis behavior in C. elegans. PLoS ONE 2022, 17, e0278343. [Google Scholar] [CrossRef]
- Ferkey, D.M.; Sengupta, P.; L’Etoile, N.D. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021, 217, iyab004. [Google Scholar] [CrossRef]
- Yoshida, K.; Hirotsu, T.; Tagawa, T.; Oda, S.; Wakabayashi, T.; Iino, Y.; Ishihara, T. Odour concentration-dependent olfactory preference change in C. elegans. Nat. Commun. 2012, 3, 739. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Y.; Xue, Y.; Shao, J.; Tan, Z.; Liu, S.; Duan, S.; Kang, L. Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans. Front. Mol. Neurosci. 2021, 14, 748214. [Google Scholar] [CrossRef]
- Kim, S.; Govindan, J.A.; Tu, Z.J.; Greenstein, D. SACY-1 DEAD-Box helicase links the somatic control of oocyte meiotic maturation to the sperm-to-oocyte switch and gamete maintenance in Caenorhabditis elegans. Genetics 2012, 192, 905–928. [Google Scholar] [CrossRef]
- Castaneda, P.G.; Cecchetelli, A.D.; Pettit, H.N.; Cram, E.J. Galpha/GSA-1 works upstream of PKA/KIN-1 to regulate calcium signaling and contractility in the Caenorhabditis elegans spermatheca. PLoS Genet. 2020, 16, e1008644. [Google Scholar] [CrossRef]
- Singhvi, A.; Liu, B.; Friedman, C.J.; Fong, J.; Lu, Y.; Huang, X.Y.; Shaham, S. A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC. Cell 2016, 165, 936–948. [Google Scholar] [CrossRef]
- Raiders, S.; Black, E.C.; Bae, A.; MacFarlane, S.; Klein, M.; Shaham, S.; Singhvi, A. Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior. Elife 2021, 10, e63532. [Google Scholar] [CrossRef]
- Maruyama, I.N. Receptor Guanylyl Cyclases in Sensory Processing. Front. Endocrinol. 2016, 7, 173. [Google Scholar] [CrossRef]
- Zhao, L.; Fenk, L.A.; Nilsson, L.; Amin-Wetzel, N.P.; Ramirez-Suarez, N.J.; de Bono, M.; Chen, C. ROS and cGMP signaling modulate persistent escape from hypoxia in Caenorhabditis elegans. PLoS Biol. 2022, 20, e3001684. [Google Scholar] [CrossRef]
- Cao, P.; Sun, W.; Kramp, K.; Zheng, M.; Salom, D.; Jastrzebska, B.; Jin, H.; Palczewski, K.; Feng, Z. Light-sensitive coupling of rhodopsin and melanopsin to G(i/o) and G(q) signal transduction in Caenorhabditis elegans. FASEB J. 2012, 26, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Murayama, T.; Takayama, J.; Fujiwara, M.; Maruyama, I.N. Environmental alkalinity sensing mediated by the transmembrane guanylyl cyclase GCY-14 in C. elegans. Curr. Biol. 2013, 23, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Apfeld, J.; Alper, S. What Can We Learn About Human Disease from the Nematode C. elegans? Methods Mol. Biol. 2018, 1706, 53–75. [Google Scholar] [CrossRef]
- Dranchak, P.K.; Oliphant, E.; Queme, B.; Lamy, L.; Wang, Y.; Huang, R.; Xia, M.; Tao, D.; Inglese, J. In vivo quantitative high-throughput screening for drug discovery and comparative toxicology. Dis. Model. Mech. 2023, 16, dmm049863. [Google Scholar] [CrossRef]
C. elegans PDE | PDE4D4 Residue # → | 212 | 219 | 220 | 223 | 259 | 260 | 263 | 265 | 279 | 289 | 291 | 292 | 330 | 377 | 398 | 406 | 428 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y | H | N | H | H | D | H | G | A | E | H | H | T | D | E | E | Q | ||
1 | Y | H | N | H | H | D | H | G | A | E | H | H | T | D | E | E | Q | |
2 | Y | H | N | H | H | D | H | G | S | E | H | H | T | D | E | E | Q | |
3 | Y | H | N | H | H | D | H | G | A | E | H | H | T | D | E | E | Q | |
4 | Y | H | N | H | H | D | H | G | A | E | H | H | T | D | E | E | Q | |
5 | Y | H | N | H | H | D | H | G | A | E | H | H | T | D | E | E | Q | |
6 | Y | H | N | H | H | D | H | G | A | E | H | H | T | D | E | E | Q |
C. elegans PDE | Physiological Role | Cellular Localization | Signaling Pathway Components | Section |
---|---|---|---|---|
PDE-1 | chemosensation: CO2 | BAG neurons | GC (GCY-9), Gα, CNGC (TAX-2, TAX-4) | Section 3.1.1 |
chemosensation: O2 | PQR neurons | GC (GCY-35), CNGC (TAX-2, TAX-4) | ||
thermosensation | AFD and ASJ neurons | GC (GCY-8, -18, -23), CNGC (TAX-2, TAX-4) | ||
PDE-2 | thermosensation | AFD neurons | GC (GCY-8, -18, -23), CNGC (TAX-2, TAX-4) | Section 3.2.1 |
developmental progression | N.D. | GC (GCY-12); PKG (EGL-2) | ||
PDE-3 | thermosensation | ASJ neurons | GC, Gα (GOA-1, GPA-1, GPA-3), CNGC (TAX-2, TAX-4) | Section 3.3.1 |
phototransduction | ASJ neurons | GC (DAF-11, ODR-1), GPCR (LITE-1), Gα (GOA-1, GPA-3), CNGC (TAX-2, TAX-4) | ||
chemosensation: multiple odorants | AWC neurons | GC (ODR-1, DAF-11), GPCR, Gα (ODR-3, GPA-2), PKG (EGL-4), CNGC (TAX-2, TAX-4) | ||
PDE-4 | mechanosensation | ASH neurons | GPCR (DOP-1), AC (ACY-1), Gα (GSA-1), PKA (KIN-2) | Section 3.4.1 |
locomotion | motor neurons | AC (ACY-1), Gα (GSA-1), PKA (KIN-2) | ||
developmental progression | N.D. | AC (ACY-1), Gα (GSA-1), PKA (KIN-2) | ||
neuronal development | PLM neurons | AC, Gα (GSA-1), PKA (KIN-2) | ||
PDE-5 | thermosensation | AFD neurons | GC (GCY-8, -18, -23), CNGC (TAX-2, TAX-4) | Section 3.5 |
chemosensation: multiple odorants | AWB neurons | GC (ODR-1, DAF-11), GPCR, Gα (GPA-3, ODR-3), CNGC (TAX-2, TAX-4, CNG-3) | ||
PDE-6 | developmental progression | gonadal sheath cells; spermathecae | AC (ACY-4), Gα (GSA-1), Gβ (GPB-1), PKA (KIN-1, KIN-2) | Section 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galande, K.K.; Cote, R.H. Roles of Cyclic Nucleotide Phosphodiesterases in Signal Transduction Pathways in the Nematode Caenorhabditis elegans. Cells 2025, 14, 1174. https://doi.org/10.3390/cells14151174
Galande KK, Cote RH. Roles of Cyclic Nucleotide Phosphodiesterases in Signal Transduction Pathways in the Nematode Caenorhabditis elegans. Cells. 2025; 14(15):1174. https://doi.org/10.3390/cells14151174
Chicago/Turabian StyleGalande, Kranti K., and Rick H. Cote. 2025. "Roles of Cyclic Nucleotide Phosphodiesterases in Signal Transduction Pathways in the Nematode Caenorhabditis elegans" Cells 14, no. 15: 1174. https://doi.org/10.3390/cells14151174
APA StyleGalande, K. K., & Cote, R. H. (2025). Roles of Cyclic Nucleotide Phosphodiesterases in Signal Transduction Pathways in the Nematode Caenorhabditis elegans. Cells, 14(15), 1174. https://doi.org/10.3390/cells14151174