Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo
Abstract
1. Introduction
2. Results
2.1. Contrasting Phenolic, Antioxidant, and Polysaccharide Contents in AN and FV
2.2. Tentative Identification of Phlorotannins via LC-HRMS/MS Analysis
2.3. AN and FV Reduce ROS Production Under Stress Conditions in Intestinal Epithelial Cells
2.4. AN and FV Improve Worm Motility Under Stressed and Unstressed Conditions
2.5. AN and FV Modulate Antioxidant Gene Expression in C. elegans Under Unstressed Conditions
2.6. AN and FV Reduce the Stress-Induced GST-4 Expression in Transgenic GFP Reporter Strains
3. Discussion
4. Materials and Methods
4.1. Brown Algae Extract Preparation
4.2. TPC of Brown Algae Extracts
4.3. TPSC of Brown Algae Extracts
4.4. TEAC of Brown Agae Extracts
4.5. FRAP of Brown Algae Extracts
4.6. LC-HRMS/MS Analysis
4.7. Cell Culture Maintenance
4.8. Cytotoxicity Assay
4.9. Quantification of Intracellular ROS Production in Caco-2 and IPEC-J2 Cells
4.10. C. elegans Strains and Maintenance
4.11. C. elegans Synchronization
4.12. Worm Toxicity Test
4.13. Monitoring Lifespan Worm Motily Under Unstressed Conditions
4.14. Monitoring Worm Motility Under PQ-Induced Oxidative Stress
4.15. Gene Expression Analysis
4.16. Protein Expression of GFP-Labeled GST-4 in Transgenic Nematodes
4.17. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Zhang, A.; van Klinken, R.D.; Jones, D.; Wang, J. Consumers’ perspectives on antibiotic use and antibiotic resistance in food animals: A systematic review. npj Sci. Food 2025, 9, 29. [Google Scholar] [CrossRef]
- Yang, C.; Chowdhury, M.A.K.; Huo, Y.; Gong, J. Phytogenic compounds as alternatives to in-feed antibiotics: Potentials and challenges in application. Pathogens 2015, 4, 137–156. [Google Scholar] [CrossRef]
- Rahman, M.R.T.; Fliss, I.; Biron, E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics 2022, 11, 766. [Google Scholar] [CrossRef]
- Peng, M.; Salaheen, S.; Biswas, D. Animal Health: Global Antibiotic Issues. In Encyclopedia of Agriculture and Food Systems; van Alfen, N.K., Ed.; Academic Press: Oxford, UK, 2014; pp. 346–357. ISBN 978-0-08-093139-5. [Google Scholar]
- Ismail, M.M.; El Zokm, G.M.; Miranda Lopez, J.M. Nutritional, bioactive compounds content, and antioxidant activity of brown seaweeds from the Red Sea. Front. Nutr. 2023, 10, 1210934. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326. [Google Scholar] [CrossRef]
- Jang, H.; Lee, J.; Park, Y.-K.; Lee, J.-Y. Exploring the health benefits and concerns of brown seaweed consumption: A comprehensive review of bioactive compounds in brown seaweed and its potential therapeutic effects. J. Agric. Food Res. 2024, 17, 101215. [Google Scholar] [CrossRef]
- Meng, W.; Mu, T.; Sun, H.; Garcia-Vaquero, M. Phlorotannins: A review of extraction methods, structural characteristics, bioactivities, bioavailability, and future trends. Algal Res. 2021, 60, 102484. [Google Scholar] [CrossRef]
- Ford, L.; Theodoridou, K.; Sheldrake, G.N.; Walsh, P.J. A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds. Phytochem. Anal. 2019, 30, 587–599. [Google Scholar] [CrossRef]
- Michalak, I.; Tiwari, R.; Dhawan, M.; Alagawany, M.; Farag, M.R.; Sharun, K.; Emran, T.B.; Dhama, K. Antioxidant effects of seaweeds and their active compounds on animal health and production—A review. Vet. Q. 2022, 42, 48–67. [Google Scholar] [CrossRef] [PubMed]
- González-Meza, G.M.; Elizondo-Luevano, J.H.; Cuellar-Bermudez, S.P.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Melchor-Martínez, E.M.; Parra-Saldívar, R. New Perspective for Macroalgae-Based Animal Feeding in the Context of Challenging Sustainable Food Production. Plants 2023, 12, 3609. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Fucaceae: A Source of Bioactive Phlorotannins. Int. J. Mol. Sci. 2017, 18, 1327. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.S.; Oh, H.; Rhee, S.G.; Yoo, Y.D. Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 2011, 32, 491–509. [Google Scholar] [CrossRef]
- Lauritzen, B.; Lykkesfeldt, J.; Skaanild, M.T.; Angen, Ø.; Nielsen, J.P.; Friis, C. Putative biomarkers for evaluating antibiotic treatment: An experimental model of porcine Actinobacillus pleuropneumoniae infection. Res. Vet. Sci. 2003, 74, 261–270. [Google Scholar] [CrossRef]
- Lauritzen, B.; Lykkesfeldt, J.; Friis, C. Evaluation of a single dose versus a divided dose regimen of danofloxacin in treatment of Actinobacillus pleuropneumoniae infection in pigs. Res. Vet. Sci. 2003, 74, 271–277. [Google Scholar] [CrossRef]
- Basu, S.; Eriksson, M. Oxidative injury and survival during endotoxemia. FEBS Lett. 1998, 438, 159–160. [Google Scholar] [CrossRef]
- Deaton, C.M.; Marlin, D.J.; Smith, N.C.; Roberts, C.A.; Harris, P.A.; Schroter, R.C.; Kelly, F.J. Antioxidant and inflammatory responses of healthy horses and horses affected by recurrent airway obstruction to inhaled ozone. Equine Vet. J. 2005, 37, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Circu, M.L.; Aw, T.Y. Intestinal redox biology and oxidative stress. Semin. Cell Dev. Biol. 2012, 23, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Kiani, A.; Santhiravel, S.; Holman, B.W.B.; Lauridsen, C.; Dunshea, F.R. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality-Invited Review. Animals 2022, 12, 3279. [Google Scholar] [CrossRef]
- Hejna, M.; Dell’Anno, M.; Liu, Y.; Rossi, L.; Aksmann, A.; Pogorzelski, G.; Jóźwik, A. Assessment of the antibacterial and antioxidant activities of seaweed-derived extracts. Sci. Rep. 2024, 14, 21044. [Google Scholar] [CrossRef]
- Quéguineur, B.; Goya, L.; Ramos, S.; Martín, M.A.; Mateos, R.; Guiry, M.D.; Bravo, L. Effect of phlorotannin-rich extracts of Ascophyllum nodosum and Himanthalia elongata (Phaeophyceae) on cellular oxidative markers in human HepG2 cells. J. Appl. Phycol. 2013, 25, 1–11. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Hayes, M.; Kerry, J.P.; O’Brien, N.M. The effect of solvents on the antioxidant activity in Caco-2 cells of Irish brown seaweed extracts prepared using accelerated solvent extraction (ASE®). J. Funct. Foods 2013, 5, 940–948. [Google Scholar] [CrossRef]
- Dutot, M.; Fagon, R.; Hemon, M.; Rat, P. Antioxidant, anti-inflammatory, and anti-senescence activities of a phlorotannin-rich natural extract from brown seaweed Ascophyllum nodosum. Appl. Biochem. Biotechnol. 2012, 167, 2234–2240. [Google Scholar] [CrossRef]
- Husain, A.; Meenakshi, D.U.; Ahmad, A.; Shrivastava, N.; Khan, S.A. A Review on Alternative Methods to Experimental Animals in Biological Testing: Recent Advancement and Current Strategies. J. Pharm. Bioallied Sci. 2023, 15, 165–171. [Google Scholar] [CrossRef]
- Zarroug, S.H.O. Caenorhabditis elegans as in vivo model for the screening of natural plants-derived novel anti-aging compounds: A short introduction. J. Asian Nat. Prod. Res. 2025, 27, 577–590. [Google Scholar] [CrossRef]
- Braeckman, B.P.; Smolders, A.; Back, P.; de Henau, S. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans. Antioxid. Redox Signal. 2016, 25, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, S.; Fan, D.; Sangha, J.S.; Khan, W.; Evans, F.; Critchley, A.T.; Prithiviraj, B. Tasco®, a product of Ascophyllum nodosum, imparts thermal stress tolerance in Caenorhabditis elegans. Mar. Drugs 2011, 9, 2256–2282. [Google Scholar] [CrossRef]
- Kandasamy, S.; Khan, W.; Evans, F.D.; Critchley, A.T.; Zhang, J.; Fitton, J.H.; Stringer, D.N.; Gardiner, V.-A.; Prithiviraj, B. A fucose containing polymer-rich fraction from the brown alga Ascophyllum nodosum mediates lifespan increase and thermal-tolerance in Caenorhabditis elegans, by differential effects on gene and protein expression. Food Funct. 2014, 5, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Keith, S.A.; Amrit, F.R.G.; Ratnappan, R.; Ghazi, A. The C. elegans healthspan and stress-resistance assay toolkit. Methods 2014, 68, 476–486. [Google Scholar] [CrossRef]
- Ferguson, G.D.; Bridge, W.J. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol. 2019, 24, 101171. [Google Scholar] [CrossRef] [PubMed]
- Monroy-García, I.N.; Torres-Romero, S.; Castro-Ochoa, L.D.; Mendoza-Acosta, A.; Viveros-Valdez, E.; Ayala-Zavala, F. Bioactive Compounds from Marine Macroalgae: A Natural Defense Against Oxidative Stress-Related Diseases. Stresses 2025, 5, 22. [Google Scholar] [CrossRef]
- Salehi, B.; Azzini, E.; Zucca, P.; Maria Varoni, E.; Anil Kumar, N.V.; Dini, L.; Panzarini, E.; Rajkovic, J.; Valere Tsouh Fokou, P.; Peluso, I.; et al. Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. Appl. Sci. 2020, 10, 947. [Google Scholar] [CrossRef]
- Agregán, R.; Munekata, P.E.S.; Franco, D.; Carballo, J.; Barba, F.J.; Lorenzo, J.M. Antioxidant Potential of Extracts Obtained from Macro- (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata) and Micro-Algae (Chlorella vulgaris and Spirulina platensis) Assisted by Ultrasound. Medicines 2018, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, M.; Barcala, M.; Rosell, C.M.; Sineiro, J.; Moreira, R. Aqueous extracts characteristics obtained by ultrasound-assisted extraction from Ascophyllum nodosum seaweeds: Effect of operation conditions. J. Appl. Phycol. 2021, 33, 3297–3308. [Google Scholar] [CrossRef]
- Silva, M.M.C.L.; Dos Santos Lisboa, L.; Paiva, W.S.; Batista, L.A.N.C.; Luchiari, A.C.; Rocha, H.A.O.; Camara, R.B.G. Comparison of in vitro and in vivo antioxidant activities of commercial fucoidans from Macrocystis pyrifera, Undaria pinnatifida, and Fucus vesiculosus. Int. J. Biol. Macromol. 2022, 216, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Catarino, M.D.; Silva, A.M.S.; Mateus, N.; Cardoso, S.M. Optimization of Phlorotannins Extraction from Fucus vesiculosus and Evaluation of Their Potential to Prevent Metabolic Disorders. Mar. Drugs 2019, 17, 162. [Google Scholar] [CrossRef] [PubMed]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Shevyrin, V.A.; Kovaleva, E.G.; Flisyuk, E.V.; Shikov, A.N. Optimization of Extraction of Phlorotannins from the Arctic Fucus vesiculosus Using Natural Deep Eutectic Solvents and Their HPLC Profiling with Tandem High-Resolution Mass Spectrometry. Mar. Drugs 2023, 21, 263. [Google Scholar] [CrossRef]
- Allwood, J.W.; Evans, H.; Austin, C.; McDougall, G.J. Extraction, Enrichment, and LC-MSn-Based Characterization of Phlorotannins and Related Phenolics from the Brown Seaweed, Ascophyllum nodosum. Mar. Drugs 2020, 18, 448. [Google Scholar] [CrossRef]
- Apostolova, E.; Lukova, P.; Baldzhieva, A.; Katsarov, P.; Nikolova, M.; Iliev, I.; Peychev, L.; Trica, B.; Oancea, F.; Delattre, C.; et al. Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers 2020, 12, 2338. [Google Scholar] [CrossRef]
- Ye, S.; Xie, C.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Alginates from Brown Seaweeds as a Promising Natural Source: A Review of Its Properties and Health Benefits. Food Rev. Int. 2024, 40, 2682–2710. [Google Scholar] [CrossRef]
- Sellimi, S.; Maalej, H.; Rekik, D.M.; Benslima, A.; Ksouda, G.; Hamdi, M.; Sahnoun, Z.; Li, S.; Nasri, M.; Hajji, M. Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed. Int. J. Biol. Macromol. 2018, 119, 633–644. [Google Scholar] [CrossRef]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative Stress and Antioxidants-A Critical Review on In Vitro Antioxidant Assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef]
- Tawe, W.N.; Eschbach, M.L.; Walter, R.D.; Henkle-Dührsen, K. Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res. 1998, 26, 1621–1627. [Google Scholar] [CrossRef]
- Hernández-Cruz, E.Y.; Eugenio-Pérez, D.; Ramírez-Magaña, K.J.; Pedraza-Chaverri, J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS Omega 2023, 8, 8936–8959. [Google Scholar] [CrossRef]
- Zavagno, G.; Raimundo, A.; Kirby, A.; Saunter, C.; Weinkove, D. Rapid measurement of ageing by automated monitoring of movement of C. elegans populations. GeroScience 2024, 46, 2281–2293. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Li, G.; Liu, Y.; Yang, L.; Zhang, Y.; Zhang, Y.; Ding, J.; Lu, M.; Yu, G.; Hu, G. Fucoidan from Fucus vesiculosus prevents the loss of dopaminergic neurons by alleviating mitochondrial dysfunction through targeting ATP5F1a. Carbohydr. Polym. 2023, 303, 120470. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, C.; Cao, Y.; Chen, Y. Caenorhabditis elegans as an in vivo model for the identification of natural antioxidants with anti-aging actions. Biomed. Pharmacother. 2023, 167, 115594. [Google Scholar] [CrossRef]
- Murphy, C.T.; McCarroll, S.A.; Bargmann, C.I.; Fraser, A.; Kamath, R.S.; Ahringer, J.; Li, H.; Kenyon, C. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003, 424, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, T.K.; Steinbaugh, M.J.; Hourihan, J.M.; Ewald, C.Y.; Isik, M. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic. Biol. Med. 2015, 88, 290–301. [Google Scholar] [CrossRef]
- Lüersen, K.; Stegehake, D.; Daniel, J.; Drescher, M.; Ajonina, I.; Ajonina, C.; Hertel, P.; Woltersdorf, C.; Liebau, E. The glutathione reductase GSR-1 determines stress tolerance and longevity in Caenorhabditis elegans. PLoS ONE 2013, 8, e60731. [Google Scholar] [CrossRef] [PubMed]
- McCallum, K.C.; Liu, B.; Fierro-González, J.C.; Swoboda, P.; Arur, S.; Miranda-Vizuete, A.; Garsin, D.A. TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans. Genetics 2016, 203, 387–402. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Wang, Y.; Jing, Y.; Leng, F.; Wang, S.; Wang, F.; Zhuang, Y.; Liu, X.; Wang, X.; Ma, X. Establishment and Application of a Method for Rapid Determination of Total Sugar Content Based on Colorimetric Microplate. Sugar Tech 2017, 19, 424–431. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.; Miller, N.J. Total antioxidant status in plasma and body fluids. Methods Enzymol. 1994, 234, 279–293. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Stratil, P.; Klejdus, B.; Kubán, V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables-evaluation of spectrophotometric methods. J. Agric. Food Chem. 2006, 54, 607–616. [Google Scholar] [CrossRef]
- Shrestha, S.; Zhang, W.; Smid, S.D. Phlorotannins: A review on biosynthesis, chemistry and bioactivity. Food Biosci. 2021, 39, 100832. [Google Scholar] [CrossRef]
- Furger, C. Live Cell Assays for the Assessment of Antioxidant Activities of Plant Extracts. Antioxidants 2021, 10, 944. [Google Scholar] [CrossRef]
- Wan, H.; Liu, D.; Yu, X.; Sun, H.; Li, Y. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants. Food Chem. 2015, 175, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Stiernagle, T. Maintenance of C. elegans. In WormBook: The Online Review of C. elegans Biology; WormBook: Pasadena, CA, USA, 2006; pp. 1–11. [Google Scholar] [CrossRef]
- Ly, K.; Reid, S.J.; Snell, R.G. Rapid RNA analysis of individual Caenorhabditis elegans. MethodsX 2015, 2, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Schurr, J.; Sandner, G.; Haghofer, A.; Hangweirer, K.; Scharinger, J.; Winkler, S. Analysis of Fluorescence Images of C. elegans. In International Conference on Computer Aided Systems Theory; Springer: Cham, Switzerland, 2025; pp. 399–410. ISBN 978-3-031-82957-4. [Google Scholar]
Formula | Calc. MW | m/z | RT [min] | DP | MS2 | Reference Ion | |
---|---|---|---|---|---|---|---|
PT 1 | C12H10O6 | 250.05 | 249.04 | 2.95 | 2 | No MS2 | [M-H]− |
PT 2 | C18H14O9 | 374.06 | 373.06 | 6.16 | 3 | No MS2 | [M-H]− |
PT 3 | C24H18O12 | 498.08 | 497.07 | 3.70 | 4 | No MS2 | [M-H]− |
PT 4 | C24H18O12 | 498.08 | 497.07 | 9.42 | 4 | No MS2 | [M-H]− |
PT 5 | C24H18O12 | 498.08 | 497.07 | 3.49 | 4 | No MS2 | [M-H]− |
PT 6 | C24H18O12 | 498.08 | 497.07 | 1.81 | 4 | No MS2 | [M-H]− |
PT 7 | C30H22O15 | 622.09 | 621.09 | 7.13 | 5 | No MS2 | [M-H]− |
PT 8 | C30H22O15 | 622.10 | 621.09 | 2.99 | 5 | No MS2 | [M-H]− |
PT 9 | C36H26O18 | 746.11 | 745.10 | 10.27 | 6 | No MS2 | [M-H]− |
PT 10 | C42H30O21 | 870.13 | 869.12 | 11.41 | 7 | DDA for preferred ion | [M-H]− |
Formula | Calc. MW | m/z | RT [min] | DP | MS2 | Reference Ion | |
---|---|---|---|---|---|---|---|
PT 1 | C12H10O6 | 250.05 | 249.04 | 1.42 | 2 | No MS2 | [M-H]− |
PT 2 | C18H10O9 | 370.03 | 369.02 | 13.45 | 3 | No MS2 | [M-H]− |
PT 3 | C18H14O9 | 374.06 | 373.06 | 1.41 | 3 | DDA for preferred ion | [M-H]− |
PT 4 | C18H14O9 | 374.06 | 373.06 | 2.19 | 3 | DDA for preferred ion | [M-H]− |
PT 5 | C18H14O9 | 374.06 | 373.06 | 6.15 | 3 | No MS2 | [M-H]− |
PT 6 | C24H18O12 | 498.08 | 497.07 | 9.26 | 4 | No MS2 | [M-H]− |
PT 7 | C24H18O12 | 498.08 | 497.07 | 2.01 | 4 | DDA for preferred ion | [M-H]− |
PT 8 | C24H18O12 | 498.08 | 497.07 | 1.78 | 4 | No MS2 | [M-H]− |
PT 9 | C24H18O12 | 498.08 | 497.07 | 1.33 | 4 | No MS2 | [M-H]− |
PT 10 | C60H42O30 | 1242.17 | 620.08 | 10.73 | 5 | No MS2 | [M-2H]2− |
PT 11 | C30H22O15 | 622.09 | 621.09 | 2.96 | 5 | DDA for preferred ion | [M-H]− |
PT 12 | C30H22O15 | 622.09 | 621.09 | 4.09 | 5 | No MS2 | [M-H]− |
PT 13 | C30H22O15 | 622.10 | 621.09 | 11.46 | 5 | No MS2 | [M-H]− |
PT 14 | C30H22O15 | 622.10 | 621.09 | 2.17 | 5 | No MS2 | [M-H]− |
PT 15 | C30H22O15 | 622.10 | 621.09 | 1.92 | 5 | No MS2 | [M-H]− |
PT 16 | C36H26O18 | 746.11 | 745.10 | 12.80 | 6 | No MS2 | [M-H]− |
PT 17 | C36H26O18 | 746.11 | 745.10 | 12.57 | 6 | No MS2 | [M-H]− |
PT 18 | C36H26O18 | 746.11 | 745.10 | 6.69 | 6 | DDA for preferred ion | [M-H]− |
PT 19 | C36H26O18 | 746.11 | 745.10 | 3.19 | 6 | No MS2 | [M-H]− |
PT 20 | C36H26O18 | 746.11 | 745.10 | 5.19 | 6 | No MS2 | [M-H]− |
PT 21 | C36H26O18 | 746.11 | 745.10 | 3.77 | 6 | No MS2 | [M-H]− |
PT 22 | C36H26O18 | 746.11 | 745.10 | 5.58 | 6 | No MS2 | [M-H]− |
PT 23 | C36H26O18 | 746.11 | 745.10 | 2.57 | 6 | No MS2 | [M-H]− |
PT 24 | C42H30O21 | 870.13 | 869.12 | 6.05 | 7 | No MS2 | [M-H]− |
PT 25 | C42H30O21 | 870.13 | 869.12 | 9.69 | 7 | DDA for preferred ion | [M-H]− |
PT 26 | C42H30O21 | 870.13 | 869.12 | 12.02 | 7 | No MS2 | [M-H]− |
PT 27 | C42H30O21 | 870.13 | 869.12 | 9.39 | 7 | DDA for preferred ion | [M-H]− |
PT 28 | C42H30O21 | 870.13 | 869.12 | 6.96 | 7 | No MS2 | [M-H]− |
PT 29 | C48H34O24 | 994.14 | 993.13 | 11.07 | 8 | DDA for preferred ion | [M-H]− |
PT 30 | C48H34O24 | 994.14 | 993.14 | 12.37 | 8 | DDA for preferred ion | [M-H]− |
PT 31 | C48H34O24 | 994.14 | 993.14 | 10.30 | 8 | No MS2 | [M-H]− |
PT 32 | C48H34O24 | 994.14 | 993.14 | 2.54 | 8 | No MS2 | [M-H]− |
PT 33 | C54H38O27 | 1118.16 | 1117.15 | 13.14 | 9 | No MS2 | [M-H]− |
Gene | Forward Primer Sequence (5′ → 3′) | Reverse Primer Sequence (5′ → 3′) | Accession Number |
---|---|---|---|
Reference genes | |||
act-1 | GTGTTCCCATCCATTGTC | GCTCATTGTAGAAGGTGTG | NM_073418.5 |
ama-1 | CTCCGTCGTTGACTGTAT | ATACCCATTCCTCGTCTTC | NM_068122.6 |
pmp-3 | ATACGAAGCCACGGATAG | CTGTGTCAATGTCGTGAAG | NM_001269679.1 |
Target genes | |||
daf-2 | GTGAGGACGAGCTACTATAC | TACGGGCTCACTTCATTC | AF012437 |
daf-16 | GAATGGATGGTCCAGAATG | GATTCCTTCCTGGCTTTG | AF032112.1 |
gcs-1 | GATTCCCAGGTCTCATTTC | GCAGGATGAGATTGTACG | NM_063526.6 |
gpx-5 | CGCTGGAGTCAATGTAAAG | GGGAAGGCAATGAGAGTA | NM_077214 |
gst-4 | GTGCCTTACGAGGATTATAG | GTGATAGACATTGACTGACC | NM_069447 |
mtl-1 | CAAGTGCGGAGACAAATG | AGTTCCCTGGTGTTGATG | NM_072295 |
pmk-1 | CATTGTTCCCTGGATCTG | CTTGAGGAGTTGCTTGAG | NM_068964 |
prdx-2 | GACACCAACCACCAAATC | CTTCTCGACGAACTGGAA | NM_001383831 |
skn-1 | GCAAGAGATGCGTGATTC | GTAGGCGTAGTTGGATGT | NM_171345.4 |
sod-3 | GTGGTGGACACATCAATC | GCAATATCCCAACCATCC | NM_078363 |
sod-4 | GGAGATACTGGAAATGGTTG | CACTTAATGAGGCAAGAGAG | NM_001268074.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlsberger, L.; Sandner, G.; Molčanová, L.; Rýpar, T.; Ladirat, S.; Weghuber, J. Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo. Mar. Drugs 2025, 23, 322. https://doi.org/10.3390/md23080322
Karlsberger L, Sandner G, Molčanová L, Rýpar T, Ladirat S, Weghuber J. Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo. Marine Drugs. 2025; 23(8):322. https://doi.org/10.3390/md23080322
Chicago/Turabian StyleKarlsberger, Lea, Georg Sandner, Lenka Molčanová, Tomáš Rýpar, Stéphanie Ladirat, and Julian Weghuber. 2025. "Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo" Marine Drugs 23, no. 8: 322. https://doi.org/10.3390/md23080322
APA StyleKarlsberger, L., Sandner, G., Molčanová, L., Rýpar, T., Ladirat, S., & Weghuber, J. (2025). Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo. Marine Drugs, 23(8), 322. https://doi.org/10.3390/md23080322