Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (466)

Search Parameters:
Keywords = CLC-5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1634 KB  
Proceeding Paper
Integrated Strategies for Structural, Thermal, and Fire Failure Mitigation in Lightweight TRC/CLCi Composite Facade Panels
by Pamela Voigt, Mario Stelzmann, Robert Böhm, Lukas Steffen, Hannes Franz Maria Peller, Matthias Tietze, Miguel Prieto, Jan Suchorzewski, Dionysios Kolaitis, Andrianos Koklas, Vasiliki Tsotoulidi, Maria Myrto Dardavila and Costas Charitidis
Eng. Proc. 2025, 119(1), 56; https://doi.org/10.3390/engproc2025119056 - 29 Jan 2026
Viewed by 129
Abstract
The thermally efficient and lightweight TRC/CLCi composite panels for functional and smart building envelopes, funded by the iclimabuilt project (Grant Agreement no. 952886), offer innovative solutions to sustainably address common failure risks in facade systems. This work specifically emphasizes strategies for mitigating structural, [...] Read more.
The thermally efficient and lightweight TRC/CLCi composite panels for functional and smart building envelopes, funded by the iclimabuilt project (Grant Agreement no. 952886), offer innovative solutions to sustainably address common failure risks in facade systems. This work specifically emphasizes strategies for mitigating structural, thermal, and fire-related failures through targeted material selection, advanced design methodologies, and rigorous validation protocols. To effectively mitigate structural failures, high-pressure concrete (HPC) reinforced with carbon fibers is utilized, significantly enhancing tensile strength, reducing susceptibility to cracking, and improving overall durability. To counteract thermal bridging—a critical failure mode compromising energy efficiency and structural integrity—the panels employ specially designed glass-fiber reinforced pins connecting HPC outer layers through the cellular lightweight concrete (CLC) insulation core that has a density of around 70 kg/m3 and a thermal conductivity in the range 35 mW/m∙K comparable to those of expanded polystyrene and Rockwool. These connectors ensure effective load transfer and maintain optimal thermal performance. A central focus of the failure mitigation strategy is robust fire behavior. The developed panels undergo rigorous standardized fire tests, achieving an exceptional reaction to fire classification of A2. This outcome confirms that HPC layers maintain structural stability and integrity even under prolonged fire exposure, effectively preventing catastrophic failures and ensuring occupant safety. In conclusion, this work highlights explicit failure mitigation strategies—reinforced concrete materials for structural stability, specialized glass-fiber connectors to prevent thermal bridging, rigorous fire behavior protocols, and comprehensive thermal performance validation—to produce a facade system that is robust, energy-efficient, fire-safe, and sustainable for modern buildings. Full article
(This article belongs to the Proceedings of The 8th International Conference of Engineering Against Failure)
Show Figures

Figure 1

18 pages, 8126 KB  
Article
Performance of CaMn0.625Ti0.125Fe0.125Mg0.125O3 Oxygen Carrier in the Chemical Looping Combustion of Biomass
by Yingjie Mi, Wen Luo, Jinchen Ma, Zhenyi Du and Haibo Zhao
Energies 2026, 19(3), 714; https://doi.org/10.3390/en19030714 - 29 Jan 2026
Viewed by 154
Abstract
Chemical looping combustion (CLC) has been recognized as a promising CO2 capture technology, in which oxygen carriers (OCs) transport lattice oxygen to the fuel instead of the air. This study aims to evaluate a newly developed perovskite OC for biomass CLC and [...] Read more.
Chemical looping combustion (CLC) has been recognized as a promising CO2 capture technology, in which oxygen carriers (OCs) transport lattice oxygen to the fuel instead of the air. This study aims to evaluate a newly developed perovskite OC for biomass CLC and to clarify the role of staged fuel conversion in improving gas–solid redox efficiency. This is the first application of perovskite OC CaMn0.625Ti0.125Fe0.125Mg0.125O3 in biomass CLC using a dual-stage fluidized bed. The perovskite OC was synthesized via a solid-phase synthesis method, and its performance in a dual-stage fluidized bed reactor was evaluated using pine wood chips and furfural residues as model solid fuels. The in situ conversion of volatile compounds and gasification products derived from the two biomass types was comprehensively studied. The effects of operational parameters, including temperature, OC-to-biomass ratio, and gas flow rate, on the combustion efficiency and CO2 yield were examined. Results showed that separated gasification–combustion enhanced the combustion efficiency and CO2 yield. At 950 °C, an OC-to-pine chip ratio of 100:1, and a gas flow rate of 0.7 L/min, the maximum combustion efficiency and CO2 yield of 79% and 82% were obtained, respectively. Moreover, under the optimal gasification conditions (gasification rate > 99%), increasing the fuel concentration resulted in an increase in the oxygen release from 0.21 g to 0.40 g. Concurrently, the corresponding total oxygen demand increased from 4.34% to 10.56%, indicating the suitability of CaMn0.625Ti0.125Fe0.125Mg0.125O3 in the CLC of biomass. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

45 pages, 17559 KB  
Article
The Use of GIS Techniques for Land Use in a South Carpathian River Basin—Case Study: Pesceana River Basin, Romania
by Daniela Mihaela Măceșeanu, Remus Crețan, Ionuț-Adrian Drăguleasa, Amalia Niță and Marius Făgăraș
Sustainability 2026, 18(2), 1134; https://doi.org/10.3390/su18021134 - 22 Jan 2026
Viewed by 280
Abstract
This study is essential for medium- and long-term land-use management, as land-use patterns directly influence local economic and social development. Geographic Information System (GIS) techniques are fundamental tools for analyzing a wide range of geomorphological processes, including relief fragmentation density, relief energy, soil [...] Read more.
This study is essential for medium- and long-term land-use management, as land-use patterns directly influence local economic and social development. Geographic Information System (GIS) techniques are fundamental tools for analyzing a wide range of geomorphological processes, including relief fragmentation density, relief energy, soil texture, slope gradient, and slope orientation. The present research focuses on the Pesceana river basin in the Southern Carpathians, Romania. It addresses three main objectives: (1) to analyze land-use dynamics derived from CORINE Land Cover (CLC) data between 1990 and 2018, along with the long-term distribution of the Normalized Difference Vegetation Index (NDVI) for the period 2000–2025; (2) to evaluate the basin’s natural potential byintegrating topographic data (contour lines and profiles) with relief fragmentation density, relief energy, vegetation cover, soil texture, slope gradient, aspect, the Stream Power Index (SPI), and the Topographic Wetness Index (TWI); and (3) to assess the spatial distribution of habitat types, characteristic plant associations, and soil properties obtained through field investigations. For the first two research objectives, ArcGIS v. 10.7.2 served as the main tool for geospatial processing. For the third, field data were essential for geolocating soil samples and defining vegetation types across the entire 247 km2 area. The spatiotemporal analysis from 1990 to 2018 reveals a landscape in which deciduous forests clearly dominate; they expanded from an initial area of 80 km2 in 1990 to over 90 km2 in 2012–2018. This increase, together with agricultural expansion, is reflected in the NDVI values after 2000, which show a sharp increase in vegetation density. Interestingly, other categories—such as water bodies, natural grasslands, and industrial areas—barely changed, each consistently representing less than 1 km2 throughout the study period. These findings emphasize the importance of land-use/land-cover (LULC) data within the applied GIS model, which enhances the spatial characterization of geomorphological processes—such as vegetation distribution, soil texture, slope morphology, and relief fragmentation density. This integration allows a realistic assessment of the physical–geographic, landscape, and pedological conditions of the river basin. Full article
(This article belongs to the Special Issue Agro-Ecosystem Approaches to Sustainable Land Use and Food Security)
Show Figures

Figure 1

20 pages, 12332 KB  
Article
NH4+-N Promotes Fluoride Transport and NO3-N Increases Fluoride Fixation in Roots of Camellia sinensis
by Anqi Xing, Chunju Peng, Yan Tang, Renyong Cao, Shifu Ma, Xuefeng Xu, Zichen Wu, Yi Sun, Chunyan Wang, Shujing Liu, Jing Zhuang, Xuan Chen, Xinghui Li and Yuhua Wang
Horticulturae 2026, 12(1), 94; https://doi.org/10.3390/horticulturae12010094 - 16 Jan 2026
Viewed by 207
Abstract
Tea plants (Camellia sinensis) uniquely hyperaccumulate fluoride (F) and concurrently exhibit a preference for ammonium nitrogen (NH4+-N) over nitrate nitrogen (NO3-N). However, the mechanistic basis for co-existence of NH4+-N preference and F [...] Read more.
Tea plants (Camellia sinensis) uniquely hyperaccumulate fluoride (F) and concurrently exhibit a preference for ammonium nitrogen (NH4+-N) over nitrate nitrogen (NO3-N). However, the mechanistic basis for co-existence of NH4+-N preference and F hyperaccumulation in C. sinensis remains unexplored. Here, we investigated F accumulation and translocation with varying N supplies (0 mM and 2.854 mM N with NH4+-N:NO3-N ratios of 3:1, 4:0 and 0:4) and F concentrations (0, 8 and 16 mg·L−1 NaF) to reveal the mechanism driving NH4+-N preference and F hyperaccumulation in C. sinensis. Results show that NH4+-N supply enhanced H+ efflux, mobilizing aluminum (Al) to form mobile Al-F complexes for translocation to shoots, thereby alleviating F toxicity in roots. This process was facilitated by transporters including CsCLCd, CsCLCe, CsCLCf2 and CsFEX. In contrast, NO3-N promoted root sequestration of F as immobile calcium (Ca)-F complexes, exacerbating damage. Under NO3-N supply, CsCLCb primarily mediated NO3 transport, while CsCLCc, CsCLCe, CsCLCf1, CsCLCf2 and CsFEX were involved in F transport. In leaves, CsCLCd, CsCLCe, CsCLCf1, CsCLCf2, CsCLCg and CsFEX mediated vacuolar sequestration under both N conditions. These findings elucidate that NH4+-N preference is mechanistically linked to F hyperaccumulation through an Al-assisted translocation pathway, which confers tolerance by exporting F from roots. Full article
(This article belongs to the Special Issue Sustainable Soil Management for Tea Plantations)
Show Figures

Figure 1

15 pages, 7343 KB  
Article
Preparation and High-Sensitivity Thermochromic Performance of MXene-Enhanced Cholesteric Liquid Crystal Microcapsule Textiles
by Xuzhi Sun, Yi Yang, Xiangwu Zhang, Maoli Yin and Mingfei Sheng
Polymers 2026, 18(2), 223; https://doi.org/10.3390/polym18020223 - 15 Jan 2026
Viewed by 335
Abstract
To mitigate the attenuation of color-change sensitivity in cholesteric liquid crystals (CLCs) post-microencapsulation, this study developed MXene-reinforced thermochromic textiles. Monolayer/few-layer MXene nanosheets were fabricated via an etching-intercalation-dispersion approach, while cholesteric liquid crystal microcapsules (CLCMs) were synthesized through a solvent evaporation method. Cotton fabrics [...] Read more.
To mitigate the attenuation of color-change sensitivity in cholesteric liquid crystals (CLCs) post-microencapsulation, this study developed MXene-reinforced thermochromic textiles. Monolayer/few-layer MXene nanosheets were fabricated via an etching-intercalation-dispersion approach, while cholesteric liquid crystal microcapsules (CLCMs) were synthesized through a solvent evaporation method. Cotton fabrics were pretreated with polydopamine (PDA), followed by the fabrication of poly(diallyldimethylammonium chloride) (PDAC)/MXene composite coatings via layer-by-layer (LbL) self-assembly and subsequent hydrophobic modification. Systematic characterizations (scanning electron microscopy, SEM; atomic force microscopy, AFM) and performance evaluations revealed that MXene nanosheets have an average thickness of 1.54 nm, while CLCMs display a uniform spherical morphology. The resultant textiles exhibit a reversible red-green-blue color transition over the temperature range of 26.5–29.5 °C, with sensitivity comparable to pristine CLCs and excellent hydrophobicity. This work overcomes the long-standing bottleneck of inadequate color-change sensitivity in conventional liquid crystal microcapsule textiles, offering a novel strategy for the advancement of smart wearable color-changing materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

30 pages, 10261 KB  
Article
Traditional Cultivation and Land-Use Change Under the Balaton Law: Impacts on Vineyards and Garden Landscapes
by Krisztina Filepné Kovács, Virág Kutnyánszky, Zhen Shi, Zsolt Miklós Szilvácsku, László Kollányi and Edina Klára Dancsokné Fóris
Land 2026, 15(1), 106; https://doi.org/10.3390/land15010106 - 6 Jan 2026
Viewed by 319
Abstract
The Balaton region is Hungary’s most important recreational area, known for Central Europe’s largest freshwater lake and its traditional vineyard and horticultural landscapes. Since 1990, vineyard and orchard abandonment and intensified shoreline urbanization have increasingly threatened both landscape character and ecological balance. This [...] Read more.
The Balaton region is Hungary’s most important recreational area, known for Central Europe’s largest freshwater lake and its traditional vineyard and horticultural landscapes. Since 1990, vineyard and orchard abandonment and intensified shoreline urbanization have increasingly threatened both landscape character and ecological balance. This study analyses land-use changes in the Balaton hinterland and evaluates the effectiveness of regional land-use regulation between 1990 and 2018, with a focus on the 2000 Balaton Law (BKÜRT), which sought to preserve traditional land uses by permitting construction only where at least 80% of vineyard parcels remained cultivated. Spatial–temporal analysis was based on CORINE Land Cover (CLC) data from 1990 to 2018, supplemented by change layers from the Copernicus Land Monitoring Service. The CORINE Land Cover classification is a three-level hierarchical system (5 Level-1 groups, 15 Level-2 classes, and 44 Level-3 classes) developed by the EEA to provide standardized, satellite-based land cover information across Europe. Land cover was aggregated into major categories (using Level-1 and Level-2 classes) relevant to the Hungarian landscape. To address CLC limitations related to representing vineyards as relatively homogeneous units despite substantial differences in the density and scale of built structures, detailed case studies were conducted in three C1 vineyard zones—Alsóörs, Paloznak, and Szentantalfa—using historical aerial photographs, Google Earth imagery, and the Hungarian Ecosystem Map (NÖSZTÉP). Despite the restrictive regulatory framework, the CLC database showed that the share of vineyards in the vineyard regulation zone (C-1, C-2) decreased between 1990 and 2018 from 45.4% to 35.8% (the share of gardens and fruit plantations had changed from 9.7% to 15.5%). In the whole Balaton region, there was an approximately 18% decline in vineyard areas. Considering the M-2 horticultural zone, the garden coverage increased from 18.9% in 1990 (17.7% in 2000) to 30.5% (share of vineyards changed from 54.3% (54.6% in 2000) to 38.8%). At the regional level, gardens and fruit plantations had a smaller decrease (3.2%). Although overall trends were more favorable than at the national level, regulatory measures proved insufficient to prevent the conversion of vineyards and orchards in sensitive areas, particularly on slopes overlooking the lake, in proximity to tourist hubs, and in areas exposed to strong development pressure. By 2018, the C1 zone had expanded spatially but became less targeted, as the proportion of vineyards within it decreased. Boundary refinements failed to substantially improve regulatory precision or effectiveness. The case studies reveal a gradient of regulatory strictness reflecting differing landscape protection priorities and stages of vineyard transformation, with Alsóörs responding to long-standing, partly irreversible changes while attempting to slow further landscape alteration. To counter ongoing negative trends, more targeted and enforceable regulations are required, including a clearer separation of cultivated and recreational land uses, a maximum building size of 80 m2 for recreational properties, and a reassessment of vineyard zone boundaries to better reflect active cultivation and protect sensitive landscapes. Full article
Show Figures

Figure 1

17 pages, 12824 KB  
Article
A Theoretical Study of the Reactive Mechanisms of Alkali Metal Doped Ni-Based Oxygen Carrier During Chemical Looping Combustion
by Minjun Wang, Xingyao Nie and Ming Xia
Catalysts 2026, 16(1), 14; https://doi.org/10.3390/catal16010014 - 24 Dec 2025
Viewed by 657
Abstract
Chemical looping combustion (CLC) is a promising technology for CO2 capture, with the performance of the system largely dependent on the oxygen carrier. Although Ni-based carriers have been extensively investigated, their practical application is still constrained by inadequate reactivity. This study investigated [...] Read more.
Chemical looping combustion (CLC) is a promising technology for CO2 capture, with the performance of the system largely dependent on the oxygen carrier. Although Ni-based carriers have been extensively investigated, their practical application is still constrained by inadequate reactivity. This study investigated the doping of alkali metals (Li, Na, K) into NiO to improve its performance in CLC. Through density functional theory calculations, the structural, electronic, and reactivity of doped NiO surfaces were systematically analyzed. Results reveal that doping induces lattice expansion and enhances CO adsorption, with adsorption energies strengthening to −0.53 eV for Li, −0.46 eV for Na, and −0.36 eV for K. Furthermore, alkali metal doping significantly reduces the energy barrier for CO2 formation from 2.12 eV on pure NiO to 0.73 eV, 0.80 eV, and 0.99 eV on Li-, Na-, and K-doped surfaces, respectively. Oxygen vacancy formation energy also decreases from 3.60 eV to as low as 2.90 eV for K-doping, indicating markedly improved oxygen activity. Electronic structure analysis confirms that doping facilitates electron transfer and stabilizes key reaction intermediates. In conclusion, alkali metal doping substantially enhances the redox activity of NiO, providing an effective strategy for developing high-performance oxygen carriers in CLC. Full article
(This article belongs to the Special Issue Catalysis and Technology for CO2 Capture, Conversion and Utilization)
Show Figures

Graphical abstract

22 pages, 6315 KB  
Article
Intensification of SUHI During Extreme Heat Events: An Eight-Year Summer Analysis for Lecce (2018–2025)
by Antonio Esposito, Riccardo Buccolieri, Jose Luis Santiago and Gianluca Pappaccogli
Climate 2026, 14(1), 2; https://doi.org/10.3390/cli14010002 - 22 Dec 2025
Viewed by 1174
Abstract
The effects of extreme heat events on Surface Urban Heat Island Intensity (SUHII) were investigated in Lecce (southern Italy) during the summer months (June–August) from 2018 to 2025. The analysis began with the identification of heatwave frequency, duration, and intensity using the Warm [...] Read more.
The effects of extreme heat events on Surface Urban Heat Island Intensity (SUHII) were investigated in Lecce (southern Italy) during the summer months (June–August) from 2018 to 2025. The analysis began with the identification of heatwave frequency, duration, and intensity using the Warm Spell Duration Index (WSDI), based on a homogenized long-term temperature record, which indicated a progressive increase in persistent extreme events in recent years. High-resolution ECOSTRESS land surface temperature (LST) data were then processed and combined with CORINE Land Cover (CLC) information to examine the thermal response of different urban fabrics, compact residential areas, continuous/discontinuous urban fabric, and industrial–commercial zones. SUHII was derived from each ECOSTRESS acquisition and evaluated across multiple diurnal intervals to assess temporal variability under both normal and WSDI conditions. The results show a consistent diurnal asymmetry: daytime SUHII becomes more negative during WSDI periods, reflecting enhanced rural warming under dry and highly irradiated conditions, despite overall higher absolute LST during heatwaves, whereas nighttime SUHII intensifies, particularly in dense urban areas where higher thermal inertia promotes persistent heat retention. Statistical analyses confirm significant differences between normal and extreme conditions across all classes and time intervals. These findings demonstrate that extreme heat events alter the urban–rural thermal contrast by amplifying nighttime heat accumulation and reinforcing daytime negative SUHII values. The integration of WSDI-derived heatwave characterization with multi-year ECOSTRESS observations highlights the increasing thermal vulnerability of compact urban environments under intensifying summer extremes. Full article
(This article belongs to the Section Sustainable Urban Futures in a Changing Climate)
Show Figures

Figure 1

12 pages, 1540 KB  
Article
Genomic Profiling and Mutation Analysis of Mycobacterium bovis BCG Strains Causing Clinical Disease
by Benjamin Moswane, Olusesan Adeyemi Adelabu, Ute Monika Hallbauer, Morne Du Plessis and Jolly Musoke
Microorganisms 2025, 13(12), 2853; https://doi.org/10.3390/microorganisms13122853 - 16 Dec 2025
Viewed by 437
Abstract
Tuberculosis remains one of the most prevalent infectious diseases, and the only currently available vaccine is the Mycobacterium bovis bacillus Calmette–Guèrin (BCG) vaccine. The uncontrolled passaging of the BCG strain led to genetically diverse BCG strains. Seven samples from clinical BCG-associated disease were [...] Read more.
Tuberculosis remains one of the most prevalent infectious diseases, and the only currently available vaccine is the Mycobacterium bovis bacillus Calmette–Guèrin (BCG) vaccine. The uncontrolled passaging of the BCG strain led to genetically diverse BCG strains. Seven samples from clinical BCG-associated disease were obtained from the National Tuberculosis Reference Laboratory. Whole-genome sequencing and bioinformatics analysis were performed using tools such as fastqc, Trimmomatic, and CLC Genomics Workbench 24.0.3 to obtain consensus sequences and analyse deletions between M. bovis AF2122/97, BCG Danish, and clinical samples. Snippy was used to generate the phylogenomic tree, Prokka for annotation, and an in-house script to detect potential drug resistance. Four deletions were identified between M. bovis wildtype and M. bovis BCG. The phylogenomic tree showed that of the seven strains analysed, one was phylogenetically close to M. tuberculosis H37Rv, and another to the Danish BCG vaccine. Other samples were distantly related to each other and to reference strains. Two of the samples showed possible resistance to ethambutol. This would imply original misdiagnosis of the disease and subsequent ineffective treatment. This study emphasises the importance of genomic testing for accurate diagnosis of BCG disease and underscores the need for phylogenomic surveillance of M. bovis BCG strains circulating in South Africa. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

35 pages, 3850 KB  
Review
Glial Ion Channels in Myelin Pathophysiology: Insights from Leukodystrophies
by Marcello Belfiore, Sergio Visentin and Elena Ambrosini
Life 2025, 15(12), 1922; https://doi.org/10.3390/life15121922 - 15 Dec 2025
Viewed by 845
Abstract
Leukodystrophies (LDs) constitute a heterogeneous group of genetic diseases in which mutations in glial cell genes lead to alterations in myelin formation and/or maintenance, ultimately causing white matter dysfunction. Increasing evidence on the genetic basis of LDs has revealed that proteins expressed not [...] Read more.
Leukodystrophies (LDs) constitute a heterogeneous group of genetic diseases in which mutations in glial cell genes lead to alterations in myelin formation and/or maintenance, ultimately causing white matter dysfunction. Increasing evidence on the genetic basis of LDs has revealed that proteins expressed not only by myelin-forming oligodendrocytes, but also by other glial cell types, play essential roles in myelination. By elucidating disease mechanisms, these studies have uncovered novel cellular and molecular contributors to myelin biogenesis and function, including ion channels. This is exemplified by the recent identification of mutations in the TMEM63A gene, which encodes the homonymous mechanosensitive channel, as the causative factor of the rare hypomyelinating LD HLD19 and by mutations in the chloride channel ClC-2 as responsible for the development of the vacuolating ClC2 LD. Together, this evidence has opened new perspectives on the crucial role of mechanosensitivity and ionic homeostasis for proper myelin development and structural integrity. In this review, we summarize recent advances on the role of glial ion channels in healthy white matter development and preservation, as well as their direct and indirect contributions to LD pathomechanisms. Finally, we discuss emerging therapeutic implications of these studies for LDs and other demyelinating conditions and emphasize the considerable potential of a cross-pathological, integrative approach to uncover shared and disease-specific mechanisms of demyelination. Full article
(This article belongs to the Special Issue Ion Channels and Neurological Disease: 2nd Edition)
Show Figures

Figure 1

19 pages, 464 KB  
Article
QSAR Modeling for Predicting IC50 and GI50 Values for Human Cell Lines Used in Toxicological Studies
by Alexey A. Lagunin, Elena Y. Lisitsa, Anastasia V. Rudik, Sergey M. Ivanov, Alexander V. Dmitriev, Elena S. Muraviova, Dmitry A. Filimonov and Vladimir V. Poroikov
Int. J. Mol. Sci. 2025, 26(24), 12063; https://doi.org/10.3390/ijms262412063 - 15 Dec 2025
Viewed by 882
Abstract
Assessing cytotoxicity towards human cells is a critical step in preclinical drug development. In preclinical toxicology, human cell lines allow for the analysis of both general and organ-specific toxicity, thus, helping reduce development time and costs. Predicting cytotoxic IC50 and GI50 [...] Read more.
Assessing cytotoxicity towards human cells is a critical step in preclinical drug development. In preclinical toxicology, human cell lines allow for the analysis of both general and organ-specific toxicity, thus, helping reduce development time and costs. Predicting cytotoxic IC50 and GI50 values facilitates the early evaluation of new pharmaceutical agents by assessing the possible therapeutic window. Ten non-tumor and 10 tumor cell lines commonly used in toxicology were selected to develop QSAR models using GUSAR software and ChEMBL data. GUSAR employs atom-centric electrotopological QNA and substructural MNA descriptors to encode molecular structure and utilizes the RBF–SCR algorithm to train QSAR models. The best-performing models (R2 > 0.5, RMSE < 0.8; mean R2 = 0.691, mean RMSE = 0.584) were selected using 5-fold cross-validation. These models were implemented in the freely available web application CLC-Pred 2.0 (Cell Line Cytotoxicity Predictor), initially developed for qualitative prediction of cytotoxicity in human cell lines. Full article
Show Figures

Graphical abstract

15 pages, 2714 KB  
Brief Report
Dominant Action of CLCN4 Neurodevelopmental Disease Variants in Heteromeric Endosomal ClC-3/ClC-4 Transporters
by Abraham Tettey-Matey, Alessandra Picollo, Francesca Sbrana, Maria Antonietta Coppola, Eugenia Rubino, Alice Giusto, Margherita Festa, Elena Angeli, Cristiana Picco, Raffaella Barbieri, Paola Gavazzo and Michael Pusch
Cells 2025, 14(24), 1973; https://doi.org/10.3390/cells14241973 - 11 Dec 2025
Viewed by 1517
Abstract
Variants in CLCN3 and CLCN4, encoding the neuronal endosomal Cl/H+ antiporters ClC-3 and ClC-4, are linked to neurodevelopmental disorders with broad phenotypic variability. Over sixty CLCN4 variants have been functionally characterized, showing gain- or loss-of-function (GoF or LoF) effects. [...] Read more.
Variants in CLCN3 and CLCN4, encoding the neuronal endosomal Cl/H+ antiporters ClC-3 and ClC-4, are linked to neurodevelopmental disorders with broad phenotypic variability. Over sixty CLCN4 variants have been functionally characterized, showing gain- or loss-of-function (GoF or LoF) effects. While ClC-3 can function as a homodimer, ClC-4 depends on heterodimerization with ClC-3 for efficient endosomal trafficking. CLCN4, located on the X chromosome, exhibits diverse pathogenic outcomes: complete LoF variants often cause non-syndromic presentations in hemizygous males and are asymptomatic in heterozygous females, whereas certain missense variants with partial or complete LoF produce severe syndromic phenotypes in both sexes. Here, we demonstrate dominant effects of three CLCN4 variants within ClC-3/ClC-4 heterodimers using two-electrode voltage-clamp recordings in Xenopus laevis oocytes and whole-cell patch-clamp recordings in mammalian cells co-expressing both proteins via a bicistronic IRES construct. Our findings provide the first evidence of dominant-negative CLCN4 effects within ClC-3/ClC-4 complexes and establish a platform for functional analysis of additional disease-associated variants. Full article
(This article belongs to the Section Cellular Neuroscience)
Show Figures

Figure 1

21 pages, 1203 KB  
Review
Salt Tolerance in Soybean (Glycine max L.): A Comprehensive Review of Molecular Mechanisms, Key Regulators, and Future Perspectives for Saline Soil Utilization
by Tingjia Dong, Lei Yan, Jiahui Wang, Yusheng Niu and Lu Wang
Plants 2025, 14(23), 3668; https://doi.org/10.3390/plants14233668 - 2 Dec 2025
Viewed by 1024
Abstract
Soil salinization poses a significant threat to global agricultural productivity. Among crops, soybean (Glycine max), an important source of oil and protein, is more susceptible to salt stress compared to other major crops such as wheat (Triticum aestivum) and [...] Read more.
Soil salinization poses a significant threat to global agricultural productivity. Among crops, soybean (Glycine max), an important source of oil and protein, is more susceptible to salt stress compared to other major crops such as wheat (Triticum aestivum) and rice (Oryza sativa). To better utilize saline land resources, understanding the mechanisms underlying salt tolerance in soybean is essential for developing new salt-tolerant soybean varieties that contribute to food security. This review synthesizes current knowledge on the molecular mechanisms of salt tolerance in soybean, with a focus on ion homeostasis, osmotic adjustment, oxidative balance restoration, structural adaptations, and transcriptional regulatory networks. Key findings highlight the critical roles of ion transporters—such as GmNHX1, GmSOS1, GmHKT1, and GmCLC1—in maintaining Na+/K+ and Cl balance; the accumulation of osmoprotectants like proline and LEA proteins to alleviate osmotic stress; and the activation of antioxidant systems—including SOD, CAT, and APX—to scavenge reactive oxygen species (ROS). Additionally, structural adaptations, such as salt gland-like features observed in wild soybean (Glycine soja), and transcriptional regulation via ABA-dependent and independent pathways (e.g., GmDREB, GmbZIP132, GmNAC) further enhance tolerance. Despite these advances, critical gaps remain regarding Cl transport mechanisms, rhizosphere microbial interactions, and the genetic basis of natural variation in salt tolerance. Future research should integrate genomic tools, omics-based breeding, genome editing techniques such as CRISPR-Cas9, microbial technologies, and traditional breeding methods to develop salt-tolerant soybean varieties, providing sustainable solutions for the utilization of saline–alkali soils and enhancing global food security. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 2100 KB  
Article
Novel Core–Shell Nanostructure of ε-Poly-L-lysine and Polyamide-6 Polymers for Reusable and Durable Antimicrobial Function
by Saloni Purandare, Rui Li, Chunhui Xiang and Guowen Song
Polymers 2025, 17(23), 3195; https://doi.org/10.3390/polym17233195 - 30 Nov 2025
Viewed by 524
Abstract
Antimicrobial function in protective and medical textiles is an essential safety feature since textiles can become breeding grounds for microorganisms. Ideally, the antimicrobial function in textiles should be non-toxic, stable, and durable. This study explores a core–shell nanofiber with a core of the [...] Read more.
Antimicrobial function in protective and medical textiles is an essential safety feature since textiles can become breeding grounds for microorganisms. Ideally, the antimicrobial function in textiles should be non-toxic, stable, and durable. This study explores a core–shell nanofiber with a core of the cationic biopolymer ε-poly-L-lysine (PL) and shell of structurally similar and biocompatible polyamide-6 (PA). The core–shell structure is expected to have a more stable antimicrobial function than its monolithic counterpart. Further, thermal crosslinking is expected to prevent rapid diffusion of the water-soluble PL. Therefore, this study establishes a comparison between a monolithic (control), a core–shell (CS), and a thermally crosslinked core–shell (CL-CS) nanofiber of PL and PA. Morphological analysis confirmed the successful generation of the core–shell nanofibers. All the samples exhibited hydrophilic behavior and antimicrobial function. However, the control sample showcased significantly reduced zones of inhibition in antimicrobial testing with 21 days of bacterial exposure (1.027 ± 0.072 cm2), as compared to 24 h bacterial exposure (1.347 ± 0.151 cm2). On the other hand, the zones of inhibition for 24 h vs. 21 days for CS (1.265 ± 0.042 cm2 vs. 1.052 ± 0.235 cm2) and CL-CS (1.128 ± 0.161 cm2 vs. 1.106 ± 0.047 cm2) showed no significant differences. Therefore, the core–shell structure allowed for sustainable and durable antimicrobial action. Lastly, the CL-CS sample exhibited reusable antimicrobial function owing to the core–shell structure paired with thermal crosslinking. This study showcases a fiber system with non-toxic, durable, and reusable antimicrobial function. This study builds grounds for the development and multifaceted holistic characterization of safe, stable, and scalable antimicrobial textiles. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Graphical abstract

22 pages, 826 KB  
Article
Computational Phenotypic Drug Discovery for Anticancer Chemotherapy: PTML Modeling of Multi-Cell Inhibitors of Colorectal Cancer Cell Lines
by Alejandro Speck-Planche and M. Natália D. S. Cordeiro
Int. J. Mol. Sci. 2025, 26(23), 11453; https://doi.org/10.3390/ijms262311453 - 26 Nov 2025
Viewed by 503
Abstract
Colorectal cancer is one of the most dangerous neoplastic diseases in terms of both mortality and incidence. Thus, anti-colorectal cancer agents are urgently needed. Computational approaches have great potential to accelerate the phenotypic discovery of versatile anticancer agents. Here, by combining perturbation-theory machine [...] Read more.
Colorectal cancer is one of the most dangerous neoplastic diseases in terms of both mortality and incidence. Thus, anti-colorectal cancer agents are urgently needed. Computational approaches have great potential to accelerate the phenotypic discovery of versatile anticancer agents. Here, by combining perturbation-theory machine learning (PTML) modeling with the fragment-based topological design (FBTD) approach, we provide key computational evidence on the computer-aided de novo design and prediction of new molecules virtually exhibiting multi-cell inhibitory activity against different colorectal cancer cell lines. The PTML model created in this study achieved sensitivity and specificity values exceeding 80% in training and test sets. The FBTD approach was employed to physicochemically and structurally interpret the PTML model. These interpretations enabled the rational design of six new drug-like molecules, which were predicted as active against multiple colorectal cancer cell lines by both our PTML model and a CLC-Pred 2.0 webserver, with the latter being a well-established virtual screening tool for early anticancer discovery. This work confirms the potential of the joint use of PTML and FBTD as a unified computational methodology for early phenotypic anticancer drug discovery. Full article
(This article belongs to the Special Issue In Silico Approaches to Drug Design and Discovery)
Show Figures

Figure 1

Back to TopTop