Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,143)

Search Parameters:
Keywords = C2H3NaO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6773 KiB  
Article
MoTiCo Conversion Coating on 7075 Aluminium Alloy Surface: Preparation, Corrosion Resistance Analysis, and Application in Outdoor Sports Equipment Trekking Poles
by Yiqun Wang, Feng Huang and Xuzheng Qian
Metals 2025, 15(8), 864; https://doi.org/10.3390/met15080864 (registering DOI) - 1 Aug 2025
Abstract
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF [...] Read more.
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF6). The influences of this system on the properties of the coating layer were systematically studied by adjusting the pH of the coating solution. The conversion temperature and pH were the pivotal parameters influencing the formation of the conversion coating. The pH substantially influenced the compactness of the coating layer, acting as a regulatory agent of the coating kinetics. When the conversion temperature and pH were set to 40 °C and 3.8, respectively, the prepared coating layer displayed optimal performance in terms of compactness and protective properties. Therefore, this parameter combination favours the synthesis of high-performance conversion coatings. Microscopy confirmed the formation of a continuous, dense composite oxide film structure under these conditions, effectively blocking erosion in corrosive media. Furthermore, the optimised process led to substantial enhancements in the environmental adaptabilities and service lives of the components of trekking poles, thus establishing a theoretical foundation and technical reference for use in the surface protection of outdoor equipment. Full article
Show Figures

Figure 1

12 pages, 4246 KiB  
Article
Theoretical Modeling of Pathways of Transformation of Fructose and Xylose to Levulinic and Formic Acids over Single Na Site in BEA Zeolite
by Izabela Czekaj and Weronika Grzesik
Catalysts 2025, 15(8), 735; https://doi.org/10.3390/catal15080735 (registering DOI) - 1 Aug 2025
Abstract
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary [...] Read more.
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary knowledge to better plan the structure of zeolite. In this article, we focus on the theoretical modeling of two carbohydrates, representing C5 and C6, namely xylose and fructose, into levulinic acid (LE) and formic acid (FA). The modeling was carried out with the participation of Na-BEA zeolite in a hierarchical form, due to the large size of the carbohydrates. The density functional theory (DFT) method (StoBe program) was used, employing non-local generalized gradient-corrected functions according to Perdew, Burke, and Ernzerhof (RPBE) to account for electron exchange and correlation and using the nudged elastic band (NEB) method to determine the structure and energy of the transition state. The modeling was performed using cluster representations of hierarchical Na-Al2Si12O39H23 and ideal Al2Si22O64H34 beta zeolite. However, to accommodate the size of the carbohydrate molecules in reaction paths, only hierarchical Na-Al2Si12O39H23 was used. Sodium ions were positioned above the aluminum centers within the zeolite framework. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Figure 1

19 pages, 5166 KiB  
Article
Investigation of a Volcanic Rock-Derived Coagulant for Water Purification: A Study of Its Preparation Process
by Lei Zhou, Zhangrui Yang, Xiaoyong Liu, Xiaoben Yang, Xuewen Wu, Yong Zhou and Guocheng Zhu
Water 2025, 17(15), 2279; https://doi.org/10.3390/w17152279 - 31 Jul 2025
Viewed by 23
Abstract
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. [...] Read more.
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. Further investigation into the influence of synthetic parameters, such as calcination temperature, reaction time, and alkali types, on the structure and performance of a volcanic rock-derived coagulant was conducted. Techniques including Scanning Electron Microscopy, Energy-Dispersive Spectroscopy, Fourier-Transform Infrared Spectroscopy, and X-Ray Diffraction were utilized to characterize it. Also, a ferron-complexation timed spectrophotometric method was used to study the distribution of aluminum species in the coagulant. Results indicated that the volcanic rock that was treated with acidic and alkaline solutions had the potential to form PSAC with Al-OH, Al-O-Si, Fe-OH, and Fe-O-Si bonds, which influenced the coagulation–flocculation efficiency. An acid leaching temperature of 90 °C, 8 mL of 2 mol/L NaOH, a reaction time of 0.5 h, and a reaction temperature of 60 °C were conducive to the preparation. A higher temperature could result in a higher proportion of Alb species, and, at 100 °C, the Ala, Alc, and Alb were 29%, 24%, and 47%, respectively, achieving a residual turbidity lower than 1 NTU at an appropriate dosage, as well as a reduction of over 0.1 to 0.018 in the level of UV254. The findings of this study provide a feasible method to prepare a flocculant using volcanic rock. Further application is expected to yield good results in wastewater/water treatment. Full article
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 221
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

11 pages, 4704 KiB  
Article
The Effect of Low-ΣCSL Grain Boundary Proportion on Molten Salt-Induced Hot Corrosion Behavior in Nickel-Based Alloy Welds
by Tingxi Chai, Youjun Yu, Hongtong Xu, Jing Han and Liqin Yan
Coatings 2025, 15(8), 882; https://doi.org/10.3390/coatings15080882 - 28 Jul 2025
Viewed by 230
Abstract
To enhance the molten salt corrosion resistance of Ni200 alloy plasma arc welds, the welds were subjected to tensile deformation followed by heat treatment. The grain boundary character distribution (GBCD) was analyzed using electron backscatter diffraction (EBSD) in conjunction with orientation imaging microscopy [...] Read more.
To enhance the molten salt corrosion resistance of Ni200 alloy plasma arc welds, the welds were subjected to tensile deformation followed by heat treatment. The grain boundary character distribution (GBCD) was analyzed using electron backscatter diffraction (EBSD) in conjunction with orientation imaging microscopy (OIM). A constant-temperature corrosion test at 900 °C was conducted to evaluate the impact of GBCD on the corrosion resistance of the welds. Results demonstrated that after processing with 6% tensile deformation, and annealing at 950 °C for 30 min, the fraction of low-ΣCSL grain boundaries increased from 1.2% in the as-welded condition to 57.3%, and large grain clusters exhibiting Σ3n orientation relationships were formed. During the heat treatment, an increased number of recrystallization nucleation sites led to a reduction in average grain size from 323.35 μm to 171.38 μm. When exposed to a high-temperature environment of 75% Na2SO4-25% NaCl mixed molten salt, the corrosion behavior was characterized by intergranular attack, with oxidation and sulfidation reactions resulting in the formation of NiO and Ni3S2. The corrosion resistance of Grain boundary engineering (GBE)-treated samples was significantly superior to that of Non-GBE samples, with respective corrosion rates of 0.3397 mg/cm2·h and 0.8484 mg/cm2·h. These findings indicate that grain boundary engineering can effectively modulate the grain boundary character distribution in Ni200 alloy welds, thereby enhancing their resistance to molten salt corrosion. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

16 pages, 1382 KiB  
Article
The Catalytic Consequence of Isolated Ni Single-Atoms in BEA Zeolite for Hydrogen Production and Olefin Conversion
by Yitong Zhao, Meng Liu, Yao Ning, Ying Zhang and Zhijie Wu
Catalysts 2025, 15(8), 703; https://doi.org/10.3390/catal15080703 - 24 Jul 2025
Viewed by 349
Abstract
In our previous work, we fabricated Ni single-atoms within Beta zeolite (Ni1@Beta-NO3) using NiNO3·6H2O as a metal precursor without any chelating agents, which exhibited exceptional performance in the selective hydrogenation of furfural. Owing to [...] Read more.
In our previous work, we fabricated Ni single-atoms within Beta zeolite (Ni1@Beta-NO3) using NiNO3·6H2O as a metal precursor without any chelating agents, which exhibited exceptional performance in the selective hydrogenation of furfural. Owing to the confinement effect, the as-encapsulated nickel species appears in the form of Ni0 and Niδ+, which implies its feasibility in metal catalysis and coordination catalysis. In the study reported herein, we further explored the hydrogen production and olefin oligomerization performance of Ni1@Beta-NO3. It was found that Ni1@Beta-NO3 demonstrated a high H2 generation turnover frequency (TOF) and low activation energy (Ea) in a sodium borohydride (NaBH4) hydrolysis reaction, with values of 331 min−1 and 30.1 kJ/mol, respectively. In ethylene dimerization, it exhibited a high butylene selectivity of 99.4% and a TOF as high as 5804 h−1. In propylene oligomerization, Ni1@Beta-NO3 demonstrated high selectivity (75.21%) of long-chain olefins (≥C6+), overcoming the problem of cracking reactions that occur during oligomerization using H-Beta. Additionally, as a comparison, the influence of the metal precursor (NiCl2) on the performance of the encapsulated Ni catalyst was also examined. This research expands the application scenarios of non-noble metal single-atom catalysts and provides significant assistance and potential for the production of H2 from hydrogen storage materials and the production of valuable chemicals. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Graphical abstract

17 pages, 4192 KiB  
Article
Surface Modification of Poly(butyl methacrylate) with Sulfomethylated Resorcinarenes for the Selective Extraction of Dichromate Ion in Aqueous Media
by Cielo Urquijo and Mauricio Maldonado
Analytica 2025, 6(3), 24; https://doi.org/10.3390/analytica6030024 - 17 Jul 2025
Viewed by 178
Abstract
The dichromate ion (Cr2O72−), a highly toxic chromium VI species, is widely used in industrial processes, generating serious environmental problems when released into water bodies. This investigation proposes the use of a functionalized polymer as an adsorbent material [...] Read more.
The dichromate ion (Cr2O72−), a highly toxic chromium VI species, is widely used in industrial processes, generating serious environmental problems when released into water bodies. This investigation proposes the use of a functionalized polymer as an adsorbent material for its removal in the aqueous phase. Poly(butyl methacrylate) (PBMA) was synthesized and modified by impregnation with resorcinarenes derived from long-chain aliphatic aldehydes. To improve the affinity for the dichromate, the resorcinarenes were functionalized with sulfomethyl groups by treatment with Na2SO3. The resulting matrices were characterized using IR-ATR, 1H-NMR, and 13C-NMR, and their adsorbent performance was evaluated via UV-Vis spectroscopy in batch extraction assays. The results showed that the functionalized polymer exhibited a higher adsorption capacity than the base polymer, reaching up to 81.1% removal at pH 5.0 in one hour. These results highlight the potential of PBMA as an effective support and raise a promising research perspective for functionalized resorcinarenes in the development of new materials for the treatment of contaminated water. Full article
Show Figures

Figure 1

21 pages, 5158 KiB  
Article
Genesis of the Erentaolegai Silver Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusion and H-O-S Isotopes
by Yushan Zuo, Xintong Dong, Zhengxi Gao, Liwen Wu, Zhao Liu, Jiaqi Xu, Shanming Zhang and Wentian Mi
Minerals 2025, 15(7), 748; https://doi.org/10.3390/min15070748 - 17 Jul 2025
Viewed by 282
Abstract
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization [...] Read more.
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization process of the deposit is divided into three stages: Stage I: Pyrite–Quartz Stage; Stage II: Sulfide–Quartz Stage; Stage III: Quartz–Manganese Carbonate Stage. This paper discusses the ore-forming fluids, ore-forming materials, and deposit genesis of the Erentaolegai silver deposits using fluid inclusions microthermometry, laser Raman spectroscopy, and H-O-S isotope analyses. Fluid inclusion microthermometry and laser Raman spectroscopy analyses indicate that the Erentaolegai silver deposit contains exclusively fluid-rich two-phase fluid inclusions, all of which belong to the H2O-NaCl system. Homogenization temperatures of fluid inclusions in the three stages (from early to late) ranged from 257 to 311 °C, 228 to 280 °C, and 194 to 238 °C, corresponding to salinities of 1.91 to 7.86 wt%, 2.07 to 5.41 wt%, and 0.70–3.55 wt% NaCl equivalent, densities of 0.75 to 0.83 g/cm−3, 0.80 to 0.86 g/cm−3 and 0.85 to 0.89 g/cm−3. The mineralization pressure ranged from 12.2 to 29.5 MPa, and the mineralization depth was 0.41 to 0.98 km, indicating low-pressure and shallow-depth mineralization conditions. H-O isotope results indicate that the ore-forming fluid is a mixture of magmatic fluids and meteoric water, with meteoric contribution dominating in the late stage. The δ34S values of metallic sulfides ranged from −1.8 to +4.0‰, indicating that the metallogenic material of the Erentaolegai silver deposit was dominated by a deep magmatic source. This study concludes that meteoric water mixing and subsequent fluid cooling served as the primary mechanism for silver mineral precipitation. The Erentaolegai silver deposit is classified as a low-sulfidation epithermal silver deposit. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

18 pages, 3981 KiB  
Article
Copolymerization Behavior of Acrylamide-Based Polymers in Ionic Liquid Media
by Gaoshen Su, Jingyi Cui, Chaoyang Li, Ping Chen, Yong Li, Wenxue Jiang, Huan Yang, Xiaorong Yu and Liangliang Wang
Polymers 2025, 17(14), 1963; https://doi.org/10.3390/polym17141963 - 17 Jul 2025
Viewed by 330
Abstract
To examine how reaction media influence the copolymerization processes of acrylamide-based copolymers, [BMIM]Oac and water were utilized as the reaction media. Four copolymers P(AM-SSS) (H2O), P(AM-UA) (H2O), P(AM-SSS) (ILs), and P(AM-UA) (ILs) were synthesized using the soluble monomer sodium [...] Read more.
To examine how reaction media influence the copolymerization processes of acrylamide-based copolymers, [BMIM]Oac and water were utilized as the reaction media. Four copolymers P(AM-SSS) (H2O), P(AM-UA) (H2O), P(AM-SSS) (ILs), and P(AM-UA) (ILs) were synthesized using the soluble monomer sodium p-styrene sulfonate (SSS), the insoluble monomer 10-undecylenoic acid (UA), and acrylamide (AM). The properties of the copolymers were characterized using infrared spectroscopy and 1H NMR, and the copolymerization rates of the monomers and the segment sequences of the copolymers were calculated. The results indicated that copolymerization of SSS in ionic liquids could reduce the length of the continuous units of AM in the copolymer’s molecular chain from 231.2866 to 91.1179, with a more uniform distribution within the molecular chain. The thermal stability and micro-morphology of the copolymers were tested using a synchronous thermal analyzer and scanning electron microscopy, and the resistance of the copolymer solutions to temperature, salt, and shear were evaluated. Comparisons revealed that the three-dimensional spatial structure formed by the copolymers in ionic liquids is robust and loose. When AM and SSS polymerize in [BMIM]Oac, the resulting copolymer exhibits a higher viscosity retention rate in temperature and shear resistance tests, with a thermal decomposition temperature reaching 260 °C. Conversely, when AM and UA polymerize in [BMIM]Oac, the copolymer demonstrates good salt resistance, maintaining a viscosity retention rate of 259.04% at a Na+ concentration of 200,000 mg/L. Therefore, the ionic liquid [BMIM]Oac can enhance the various application performances of copolymers formed by monomers with different solubilities and AM. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

20 pages, 2609 KiB  
Article
Priming ‘Santa Isabel’ Pea (Pisum sativum L.) Seeds with NaCl and H2O2 as a Strategy to Promote Germination
by Javier Giovanni Álvarez-Herrera, Julián Stiven Lozano and Oscar Humberto Alvarado-Sanabria
Seeds 2025, 4(3), 34; https://doi.org/10.3390/seeds4030034 - 17 Jul 2025
Viewed by 228
Abstract
Peas possess significant nutritional properties due to their high protein levels, carbohydrates, fiber, and vitamins. Increased climate variability can lead to water stress in crops like peas. Therefore, priming plants through seed priming is a technique that has proven effective as a pre-conditioning [...] Read more.
Peas possess significant nutritional properties due to their high protein levels, carbohydrates, fiber, and vitamins. Increased climate variability can lead to water stress in crops like peas. Therefore, priming plants through seed priming is a technique that has proven effective as a pre-conditioning method for plants to cope with more severe future stresses. Different doses and soaking times of ‘Santa Isabel’ pea seeds in NaCl and H2O2 were evaluated to enhance and promote germination. Two experiments were conducted under controlled conditions (average temperature 15.8 °C) through a completely randomized design with a 4 × 3 factorial arrangement, comprising 12 treatments in each trial. In the first trial, NaCl doses (0, 50, 100, or 150 mM) and the soaking time of the seeds in NaCl (12, 24, or 36 h) were examined. In the second trial, H2O2 doses (0, 20, 40, or 60 mM) were tested with the same imbibition times. The 50 mM NaCl dose at 24 h demonstrated the best values for germination rate index, mean germination time, germination rate (GR), and germination potential (GP). Seed imbibition for 24 h in NaCl, as well as in H2O2, is the ideal time to achieve the best GR and GP. The dry mass of leaf and stipule recorded the highest values with a 60 mM dose of H2O2 and 24 h of imbibition. An application of 150 mM NaCl resulted in the highest values of germinated seed dry mass, while causing lower dry mass in roots, stems, leaves, and stipules; however, it maintained similar total dry mass values. Full article
Show Figures

Figure 1

20 pages, 4234 KiB  
Article
Study on the Flocculation Characteristics of Protein in Modified Chitosan Membrane and Mung Bean Vermicelli Wastewater
by Zhisheng Liu, Guang Li, Xiaoyu Zhang, Wenjing Li, Tianyi Yang, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 831; https://doi.org/10.3390/coatings15070831 - 16 Jul 2025
Viewed by 297
Abstract
This study addresses the challenge of chitosan (CS) being difficult to dissolve in water due to its highly ordered crystalline structure. Chitosan is modified with chloroacetic acid to reduce its crystallinity and enhance its water solubility. Through single-factor experiments, the optimal conditions for [...] Read more.
This study addresses the challenge of chitosan (CS) being difficult to dissolve in water due to its highly ordered crystalline structure. Chitosan is modified with chloroacetic acid to reduce its crystallinity and enhance its water solubility. Through single-factor experiments, the optimal conditions for preparing carboxymethyl chitosan film (CMCS) were determined: under conditions of 50 °C, a cellulose substrate (CS) concentration of 18.75 g/L, a NaOH concentration of 112.5 g/L, and a chloroacetic acid concentration of 18.75 g/L, the reaction proceeded for 5 h. Under these conditions, the resulting carboxymethyl chitosan film exhibited the best flocculation effect, forming chitosan films in water that had flocculation activity toward mung bean starch protein wastewater. The successful introduction of carboxyl groups at the N and O positions of the chitosan molecular chain, which reduced the crystallinity of chitosan and enhanced its water solubility, was confirmed through analysis using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The prepared carboxymethyl chitosan film (CMCS) was applied in the flocculation recovery of protein. Through single-factor and response surface experiments, the optimal process conditions for flocculating and recovering protein with CMCS were determined: a CMCS dosage of 1.1 g/L, a reaction time of 39.6 min, a reaction temperature of 42.7 °C, and a pH of 5.2. Under these conditions, the protein recovery rate reached 56.97%. The composition and amino acid profile of the flocculated product were analyzed, revealing that the mung bean protein flocculated product contained 62.33% crude protein. The total essential amino acids (EAAs) accounted for 52.91%, non-essential amino acids (NEAAs) for 47.09%, hydrophobic amino acids for 39.56%, and hydrophilic amino acids for 12.67%. The ratio of aromatic to branched-chain amino acids was 0.31, and the ratio of basic to acidic amino acids was 1.68. These findings indicate that the recovered product has high surface activity and good protein stability, foaming ability, and emulsifying properties. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

20 pages, 9353 KiB  
Article
Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes
by Xiangwen Li, Zhijie Liu, Lingan Bai, Jian Wang, Shiming Liu and Guan Wang
Minerals 2025, 15(7), 721; https://doi.org/10.3390/min15070721 - 10 Jul 2025
Viewed by 241
Abstract
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have [...] Read more.
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have been disputed, especially regarding the classification of these deposits as either epithermal or orogenic gold systems. Based on detailed field geological investigations and previous research, we conducted systematic research on the Shabaosi, Sanshierzhan, Laogou, and Balifang gold deposits using fluid inclusion and H-O-S-Pb isotope data, with the aim of constraining the fluid properties, sources, and mineralization processes. Fluid inclusion analyses reveal diverse types, including vapor-rich, vapor–liquid, CO2-bearing, CO2-rich, and pure CO2. Additionally, only a very limited number of daughter mineral-bearing fluid inclusions have been observed exclusively in the Laogou gold deposit. During the early stages, the peak temperature primarily ranged from 240 °C to 280 °C, with salinity concentrations between 6 and 8 wt% NaCl equiv., representing a medium–low temperature, low salinity, and a heterogeneous CO2-CH4-H2O-NaCl system. With the influx of meteoric water, the fluids evolved gradually into a simple NaCl-H2O system with low temperatures (160–200 °C) and salinities (4–6 wt%). The main mineralization stage exhibited peak temperatures of 220–260 °C and salinities of 5–8 wt% NaCl equiv., corresponding to an estimated formation depth of 1.4–3.3 km. The δDV-SMOW values (−138.3‰ to −97.0‰) and δ18OV-SMOW values (−7.1‰ to 16.2‰) indicate that the magmatic–hydrothermal fluids were progressively diluted by meteoric water during mineralization. The sulfur isotopic compositions (δ34S = −0.9‰ to 1.8‰) and lead isotopic ratios (208Pb/204Pb = 38.398–38.579, 207Pb/204Pb = 15.571–15.636, and 206Pb/204Pb = 18.386–18.477) demonstrate that the gold predominantly originated from deep magmatic systems, with potential crustal contamination. Comparative analyses indicate that the Shabaosi gold field should be classified as a epizonal orogenic gold system, which shows distinct differences from epithermal gold deposits and corresponds to the extensional tectonic setting during the late-stage evolution of the Mongol–Okhotsk orogenic belt. Full article
Show Figures

Figure 1

27 pages, 7247 KiB  
Article
Layered Perovskite La2Ti2O7 Obtained by Sol–Gel Method with Photocatalytic Activity
by Alexandra Ilie, Luminița Predoană, Crina Anastasescu, Silviu Preda, Ioana Silvia Hosu, Ruxandra M. Costescu, Daniela C. Culiță, Veronica Brătan, Ioan Balint and Maria Zaharescu
Appl. Sci. 2025, 15(14), 7665; https://doi.org/10.3390/app15147665 - 8 Jul 2025
Viewed by 295
Abstract
This paper presents the synthesis of La2Ti2O7 nanoparticles by the sol–gel method starting from lanthanum nitrate and titanium alkoxide (noted as LTA). Subsequently, the lanthanum titanium oxide nanoparticles are modified with noble metals (platinum) using the chemical impregnation [...] Read more.
This paper presents the synthesis of La2Ti2O7 nanoparticles by the sol–gel method starting from lanthanum nitrate and titanium alkoxide (noted as LTA). Subsequently, the lanthanum titanium oxide nanoparticles are modified with noble metals (platinum) using the chemical impregnation method, followed by a reduction process with NaBH4. The comparative analysis of the structure and surface characteristics of the nanopowders subjected to thermal treatment at 900 °C is conducted using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), ultraviolet-visible (UV–Vis) spectroscopy, as well as specific surface area and porosity measurements. The photocatalytic activity is evaluated in the oxidative photodegradation of ethanol (CH3CH2OH) under simulated solar irradiation. The modified sample shows higher specific surfaces areas and improved photocatalytic properties, proving the better conversion of CH3CH2OH than the pure sample. The highest conversion of ethanol (29.75%) is obtained in the case of LTA-Pt after 3 h of simulated solar light irradiation. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

24 pages, 12008 KiB  
Article
Electrochemical Behavior of the Ni3Al Intermetallic Alloy in Nitrate Salts
by Daniel Lopez-Dominguez, Nestor Belisario Gomez-Guzman, Cinthya Dinorah Arrieta-Gonzalez, Jonathan de la Vega Olivas, Jose Gonzalo Gonzalez-Rodriguez, Jesus Porcayo-Calderon and Jose Guadalupe Chacon-Nava
Metals 2025, 15(7), 764; https://doi.org/10.3390/met15070764 - 7 Jul 2025
Viewed by 266
Abstract
In this paper, the electrochemical performance of the NiAl intermetallic immersed in the 60% NaNO3-40% KNO3 (wt%) eutectic mixture, also known as Solar Salt, is reported. Mass loss measurements and electrochemical tests evaluate its behavior at different temperatures (300, 400, [...] Read more.
In this paper, the electrochemical performance of the NiAl intermetallic immersed in the 60% NaNO3-40% KNO3 (wt%) eutectic mixture, also known as Solar Salt, is reported. Mass loss measurements and electrochemical tests evaluate its behavior at different temperatures (300, 400, and 500 °C). Mass loss measurements are performed over 1000 h, and electrochemical tests over 100 h. The mass loss results show that the Ni3Al intermetallic exhibits excellent corrosion resistance under the test conditions. Electrochemical measurements confirm the excellent performance of the Ni3Al intermetallic in molten solar salt in the test temperature range. Experimental observations show that increasing temperature decreases the corrosion resistance of the intermetallic and favors the formation of protective layers of the Al2O3 and NaAlO2 types. Full article
(This article belongs to the Special Issue Properties, Microstructure and Forming of Intermetallics)
Show Figures

Figure 1

15 pages, 2361 KiB  
Article
Synergistic Leaching of Low-Grade Tungsten–Molybdenum Ore via a Novel KMnO4-Na2CO3-NaHCO3 Composite System Guided by Process Mineralogy
by Jian Kang, Linlin Tong, Qin Zhang, Han Zhao, Xinyao Wang, Bin Xiong and Hongying Yang
Minerals 2025, 15(7), 712; https://doi.org/10.3390/min15070712 - 3 Jul 2025
Viewed by 364
Abstract
The mineral processing of a low-grade tungsten-molybdenum ore (LGTMO) was investigated to assess the potential of recovering molybdenum (Mo) and tungsten (W). Techniques such as Polarizing Microscope (PM), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Mineral Liberation Analysis (MLA), and Advanced Mineral Identification and [...] Read more.
The mineral processing of a low-grade tungsten-molybdenum ore (LGTMO) was investigated to assess the potential of recovering molybdenum (Mo) and tungsten (W). Techniques such as Polarizing Microscope (PM), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Mineral Liberation Analysis (MLA), and Advanced Mineral Identification and Characterization System (AMICS) were employed. The recoverable metals in the ore are Mo (0.158% ± 0.03%) and W (0.076% ± 0.02%). Mo exists in two forms: 63.30% as molybdenite and 36.7% as powellite (CaMoxW1−xO4). W is present as 75.26% scheelite and 24.74% powellite. The complete dissociation rates of molybdenite and scheelite-powellite are 27.14% and 88.87%, respectively. Particles of scheelite-powellite with a diameter less than 10 µm account for 34.61%, while molybdenite particles with a diameter below 10 µm make up 72.73%. Scheelite-powellite is mainly associated with olivine and dolomite, while molybdenite is mainly associated with pyroxene, calcite, and hornblende. Based on the process mineralogy, the mineralogical factors influencing the flotation recovery of molybdenite and scheelite-powellite were analyzed. Finally, a complete hydrometallurgical leaching test was carried out. The optimal experimental conditions are as follows: liquid-solid ratio of 6 mL/g, KMnO4 concentration of 0.015 mol/L, Na2CO3 concentration of 0.12 mol/L, NaHCO3 concentration of 0.024 mol/L, leaching time of 4 h, and leaching temperature of 85 °C. Under these conditions, the leaching efficiencies of Mo and W reach 79.23% and 41.41%, respectively. This study presents a novel approach for the recovery of refractory W and Mo resources in LGTMO while simultaneously providing a theoretical basis for the high-efficiency utilization of these resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop