Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes
Abstract
1. Introduction
2. Regional Geology
3. Deposit Geology
4. Samples and Methods
5. Results
5.1. Fluid Inclusions
5.1.1. FI Descriptions
- (1)
- LV-type FIs: These FIs have a gas proportion of <50 vol.% at room temperature and are widely developed in all the gold deposits and mineralization stages, accounting for 58.7% of the total number of FIs (n = 954). These FIs range from 5 to 20 μm in size with gas/liquid ratios of 15%–25%. These FIs are mostly elliptical and also elongated and irregular in shape (Figure 3a). At room temperature, they are gas–liquid FIs, and upon heating, they homogenize to a liquid phase. These FIs commonly coexist with other FI types.
- (2)
- FV-type FIs: These FIs are vapor-rich FIs with >50 vol.% gas at room temperature. They are relatively uncommon and only occur in the no. I ore body of the Laogou gold deposit (stages I and II; n = 32), accounting for 2.4% of the studied inclusions. These FIs are generally 6–12 μm in size (maximum 20 μm), and the gas/liquid ratio is generally 55%–90%. The FIs are mostly elliptical and less commonly elongated and irregular in shape. The inclusions are gas–liquid at room temperature and homogenize to a liquid phase when heated.
- (3)
- HC-type FIs: These FIs are common in stage I of each deposit and also in stage II of the Laogou and Balifang gold deposits (n = 127), accounting for 13.3% of all inclusions. This type consists mainly of gas-phase CO2, liquid-phase CO2, and a brine–liquid phase, homogenizing to liquid upon heating. The FIs are generally 6–15 μm in size and ellipsoidal, elongated, or irregular in shape (Figure 3b,c). CO2 occupies 30–45 vol.%, with CO2 gas accounting for 25–40 vol.% of the total CO2 phase.
- (4)
- FC-type FIs: Predominant in stage I of all deposits, sporadically in stage II at Laogou and Balifang (n = 158), representing 16.6% of inclusions. They comprise gas-phase CO2, liquid-phase CO2, and a brine–liquid phase, homogenizing to liquid when heated. The FIs measure 7–10 μm, primarily ellipsoidal (rarely elongated/irregular). CO2 constitutes 60–90 vol.%, with CO2 gas comprising 20–40 vol.% (max. 70 vol.%) of the CO2 phase.
- (5)
- CC-type FIs: Developed in stage I of the Balifang, Laogou, and Shabaosi deposits (n = 83; 8.7% of FIs), these pure CO2 three-phase inclusions (CC-type) contain gas- and liquid-phase CO2 (Figure 3c), homogenizing to liquid upon heating. The FIs range from 6 to 15 μm, mostly elliptical (some elongated). CO2 gas represents 20–30 vol.% of the total CO2.
- (6)
- SL-type FIs: Exclusively found in stage I of the Laogou gold deposit (n = 3). At room temperature, this type of FI consists of gas, liquid, and solid daughter minerals. The gas/liquid ratio is 15%–20%, and the proportion of solid daughter minerals is generally 15–20 vol.%. The FIs are mostly 10–12 μm in size and sub-ellipsoidal in shape. The solid daughter minerals are generally colorless, exhibiting sub-cubic crystal forms, and are therefore presumed to be NaCl [23]. In the quartz grains, these FIs are randomly and sporadically distributed or associated with vapor–liquid FIs.
5.1.2. FI Microthermometry
5.1.3. Raman Spectroscopy
5.2. Isotope Analysis
5.2.1. Hydrogen and Oxygen Isotopes
5.2.2. Sulfur Isotopes
5.2.3. Lead Isotopes
6. Discussion
6.1. Source and Evolution of Ore-Forming Fluid
6.2. Sources of Mineralization
6.3. Ore Genesis
6.3.1. Relationship Between Regional Tectonic Setting and Mineralization
6.3.2. Ore Genesis
- (1)
- Comparative analysis of ore-hosting wall rocks and ore-controlling structures
- (2)
- Comparative analysis of mineral assemblages, wall rock alteration, and trace elements
- (3)
- Differences in fluid system evolution
- (4)
- Physicochemical conditions of mineralization
- (5)
- Distinctive material sources
7. Conclusions
- (1)
- Fluid inclusion analyses reveal diverse types, including vapor-rich, liquid-vapor, CO2-bearing, CO2-rich, pure CO2, and minor solid-bearing inclusions. The ore-forming fluids initially represented a medium-low temperature, low-salinity, heterogeneous CO2-CH4-H2O-NaCl system of predominantly magmatic origin. During mineralization, progressive meteoric water influx transformed the fluids into a simpler NaCl-H2O system dominated by meteoric components in the late stage.
- (2)
- The main mineralization stage exhibited peak temperatures of 220–260 °C and salinities of 5–8 wt.% NaCl eq., corresponding to a formation depth of 1.4–3.3 km.
- (3)
- H-O-S-Pb isotopes indicate that Au was derived primarily from magmatic sources, with minor upper-crustal contributions.
- (4)
- Comparative analyses indicate that the Shabaosi gold field should be classified as an epizonal orogenic gold system, which shows distinct differences from epithermal gold deposits and corresponds to the extensional tectonic setting during the late-stage evolution of the Mongol–Okhotsk orogenic belt.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Dong, S.Y.; Zhang, Y.M.; Yong, H.H.; Zhang, J.; Lu, Y.L. Petrogenesis, tectonic setting and metallogenic potential of the Late Paleozoic and Late Mesozoic granitoids in the Central Great Xing’an Range, NE China. J. Geochem. Explor. 2025, 274, 107714. [Google Scholar] [CrossRef]
- Wang, K.; Lin, S.Y.; Wang, Y.H.; Zhang, F.F.; Gu, W.X. Genesis of the early mesozoic granitoids at the Hardat Tolgoi Ag-Pb-Zn deposit in East Ujimqin Banner, Inner Mongolia, NE China: Insights from whole-rock geochemistry, zircon U-Pb-Hf isotopes, and Pb-Si systematics. Ore Geol. Rev. 2021, 139, 104530. [Google Scholar] [CrossRef]
- Duan, M.X.; Ren, Y.S.; Xue, C.J.; Yang, Q.; Hao, Y.J.; Liu, T. Provenance Tracing and Age Analysis of Lead–Zinc Mineralization in Qiyimuchang, Inner Mongolia, NE China. Minerals 2022, 12, 1146. [Google Scholar] [CrossRef]
- Wu, G.; Wang, G.R.; Liu, J.; Zhou, Z.H.; Li, T.G.; Wu, H. Metallogenic Series and Ore–forming Pedigree of Main Ore Deposits in Northerm Great Xing’an Range. Miner. Depos. 2014, 33, 1127–1150, (In Chinese with English Abstract). [Google Scholar]
- Deng, C.Z.; Sun, D.Y.; Han, J.S.; Chen, H.Y.; Li, G.H.; Xiao, B.; Li, R.C.; Feng, Y.Z.; Li, C.L.; Lu, S. Late-stage southwards subduction of the Mongol-Okhotsk oceanic slab and implications for porphyry Cu-Mo mineralization: Constraints from igneous rocks associated with the Fukeshan deposit, NE China. Lithos 2019, 326–327, 341–357. [Google Scholar] [CrossRef]
- Sun, Y.G.; Li, B.L.; Ding, Q.F.; Qu, Y.; Wang, C.K.; Wang, L.L.; Xu, Q.L. Mineralization age and hydrothermal evolution of the Fukeshan Cu (Mo) deposit in the northern Great Xing’an Range, northeast China: Evidence from fluid inclusions, H-O-S-Pb isotopess, and Re-Os geochronology. Minerals 2020, 10, 591. [Google Scholar] [CrossRef]
- Wu, G.; Li, Z.Q.; Mi, M.; Liu, J.; Zhu, M.T. Characteristics of ore forming fluid and genesis of the shabaosi gold deposit in the northern daxingg’an mountain. Miner. Petrol. 2008, 28, 31–38, (In Chinese with English Abstract). [Google Scholar]
- Li, J.Y.; Liu, J.F.; Qu, J.F.; Zheng, R.G.; Zhao, S.; Zhang, J.; Sun, L.X.; Li, Y.F.; Yang, X.P.; Wang, L.J.; et al. Major geological features and crustal tectonic framework of Northeast China. Acta Petrol. Sin. 2019, 35, 2989–3016, (In Chinese with English Abstract). [Google Scholar]
- Chen, L.; Liang, C.Y.; Liu, Y.J.; Zheng, C.Q.; Zhang, Q.; Song, Z.W.; Li, D.X.; Qu, S.Y.; Liu, X.J. Tectonic evolution of Mohe area, North-east China: Evidence from the Early Ordovician to Early Cretaceous magmatism and tectonism. Geol. J. 2021, 56, 5478–5505. [Google Scholar] [CrossRef]
- Li, X.W. Metallogenic Regularities of Gold Deposits in Upper Heilongjiang Metallogenic Belt and Its Prospecting. Ph.D. Thesis, Jilin University, Changchun, China, 2015. (In Chinese). [Google Scholar]
- Li, X.W.; Yang, Y.C.; Wang, X.Z.; Liu, Z.J.; Gong, W.G. Discussion on geology characters and metallogenic tectonic Environment about Baoxinggou gold deposit in Tahe, Heilongjiang Province. J. Jilin Univ. 2012, 42, 1700–1710, (In Chinese with English Abstract). [Google Scholar]
- Li, R.H.; Zhang, H.; Sun, F.Y.; Wu, G.; Zhang, Y.T.; Wang, S. Geochronology and geochemistry of the Ershiyizhan intrusive rocks in the northern Great Hinggan Range, and its prospecting implication. Acta Petrol. Sin. 2018, 34, 1725–1740, (In Chinese with English Abstract). [Google Scholar]
- Wu, G.; Sun, F.Y.; Zhu, Q.; Li, Z.T.; Ding, Q.F.; Li, G.Y.; Pang, Q.B.; Wang, H.B. Geological characteristics and genesis of gold deposits in Upper Heilongjiang Basin. Miner. Depos. 2006, 25, 215–230, (In Chinese with English Abstract). [Google Scholar]
- Liu, J.; Wu, G.; Qiu, H.N.; Li, Y. 40Ar/39Ar dating, fluid inclusions and S-Pb isotope systematics of the Shabaosi gold deposit, Heilongjiang Province, China. Geol. J. 2014, 50, 592–606. [Google Scholar] [CrossRef]
- Zhang, G.B.; Yang, Y.C.; Wang, X.Z.; Zhang, Z.G.; Ye, S.Q.; Li, Q.L.; Li, X.W.; Li, H.Y.; Wang, Q.S. Geocheminstry and Ore Genesis of Balifang Gold deposit in Mohe, heilongiang Province. J. Jilin Univ. 2013, 43, 2812–2827, (In Chinese with English Abstract). [Google Scholar]
- Qi, J.Z.; Li, L.; Guo, X.D. Geological characteristics of the Shabaosi altered sand stone type gold deposit in north dahinggan mountains. Miner. Depos. 2000, 19, 116–124, (In Chinese with English Abstract). [Google Scholar]
- Li, X.W.; Deng, C.Z.; Sun, D.Y.; Liang, S.S.; Zhang, L.D.; Liu, W.P.; Yang, B.Z.; Zhang, X.M.; Ni, X.R. Genesis of the sediment-hosted Sanshierzhan Au deposit, NE China: Evidence from pyrite geochemistry and S-Hg isotopes. Ore Geol. Rev. 2025, 184, 106719. [Google Scholar] [CrossRef]
- Wang, Y.C.; Tan, W.; Zhao, Y.Y.; Liu, J.L.; He, L.; Chen, H.; Huang, J.H.; Gong, X. Geochemical Characteristics of Pyrite from the Shabaosi Gold Deposit in the Upper Heilongjiang Basin and Its Mineralization Significance. Acta Geosci. Sin. 2023, 45, 320–336, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.Y.; Liang, H.J.; Jin, T.H.; Yang, J.O.; Huai, B.F. Mohe nappe structure Heilongjiang and its control to gold mineralization. Geotect. Metallog. 2008, 32, 218–225, (In Chinese with English Abstract). [Google Scholar]
- Liang, C.Y.; Liu, Y.J.; Zheng, C.Q.; Li, W.M.; Neubauer, F.; Zhang, Q.; Zhang, D. Deformation patterns and timing of the thrust-nappe structures in the Mohe Formation in Mohe Basin, Northeast China: Implication of the closure timing of Mongol–Okhotsk Ocean. Geol. J. 2019, 54, 746–769. [Google Scholar] [CrossRef]
- Li, X.W.; Zhang, Z.G.; Wang, K.Y.; Sun, J.P.; Yan, J.B.; Yang, H. Characteristics of ore-forming fluid and genesis of Baoxinggou gold deposit in the north part of Great Xing’an range. J. Jilin Univ. 2018, 48, 1071–1084, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.H.; Zhao, Y.Y.; Cheng, X.D. Geology, fluid inclusion, 40Ar-39Ar geochronology, and isotope constraints on the ore genesis of the Ershiyizhan Cu–Au deposit, Heilongjiang Province, China. Ore Geol. Rev. 2024, 168, 106058. [Google Scholar] [CrossRef]
- Zhang, W.H.; Chen, Z.Y.; Zhang, E.S. Fluid Inclusion Geology; China University of Geoscience Press: Wuhan, China, 1993; pp. 1–240. ISBN 7-5625-0885-2. [Google Scholar]
- Liu, B.; Shen, K. Thermodynamics of Fluid Inclusion; Geological Publishing House: Beijing, China, 1999; pp. 1–282. ISBN 7-116-02677-0. [Google Scholar]
- Shao, J.L. Prospecting Mineralogy of Gold Deposit; China University of Geosciences Press: Beijing, China, 1990; (In Chinese with English Abstract). [Google Scholar]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Li, H.Z.; Yang, Q.; Zhang, L.G.; Ren, Y.S.; Li, M.T.; Li, C.; Wang, B.; Chen, S.T.; Peng, X.L. Ore-Forming Fluid Evolution and Ore Genesis of the Cuyu Gold Deposit in Central Jilin Province, NE China: Constraints from Geology, Fluid Inclusions, and H-O-S-Pb Isotope Studies. Minerals 2025, 15, 535. [Google Scholar] [CrossRef]
- Drummond, S.E.; Ohmoto, H. Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol. 1985, 80, 126–147. [Google Scholar] [CrossRef]
- Shi, K.T.; Wang, K.Y.; Wang, R.; Ma, X.L.; Sun, L.X.; He, Y.G. Geological, fluid inclusion, and O-C-S–Pb-He-Ar isotopic constraints on the genesis of the Honghuagou lode gold deposit, northern North China Craton. Geochemistry 2021, 81, 125807. [Google Scholar] [CrossRef]
- Sun, Q.; Ren, Y.S.; Yang, Q.; Duan, M.X.; Hao, Y.J. Ore Genesis and Metallogenic Age of Luoguhe Poly Metallic Deposit in Mohe Area, Heilongjiang Province. J. Mineral. Petrol. 2015, 35, 20–28, (In Chinese with English Abstract). [Google Scholar]
- Yang, H.; Wang, K.; Ye, B. Genesis of the Xiangluwanzi Gold Deposit, Northeastern China: Insights from Fluid Inclusions and C-H-O Isotopes. Minerals 2025, 15, 250. [Google Scholar] [CrossRef]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Song, B.J.; Wang, X.Y.; Ma, J. Characteristics of geological, genesis and structural background of gold deposits in the North Daxing’anling, Northeast China. Miner. Petrol. 2014, 35, 15–24, (In Chinese with English Abstract). [Google Scholar]
- Pokrovski, G.S.; Akinfev, N.N.; Borisova, A.Y.; Zotov, A.V.; Kouzmanov, K. Gold speciation and transport in geological fluids: Insights from experiments and physicalchemical modelling. Geol. Soc. Lond. Spec. Publ. 2014, 402, 9–70. [Google Scholar] [CrossRef]
- Harris, A.C.; Golding, S.D. New evidence of magmatic-fluid-related phyllic alteration: Implications for the genesis of porphyry Cu deposits. Geology 2002, 30, 335–338. [Google Scholar] [CrossRef]
- Chen, Y.J.; Ni, P.; Fan, H.R.; Pirajno, F.; Lai, Y.; Su, W.C.; Zhang, H. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrol. Sin. 2007, 23, 2085–2108, (In Chinese with English Abstract). [Google Scholar]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, A.; Gonzalez-Urien, E. Exploration for epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 245–277. [Google Scholar] [CrossRef]
- Martín-Izard, A.; Gumiel, P.; Arias, M.; Cepedal, A.; Fuertes-Fuente, M.; Reguilón, R. Genesis and evolution of the structurally controlled vein mineralization (Sb-Hg) in the escarlati deposit (León, Spain): Evidence from fault population analysis methods, fluid-inclusion research and stable isotope data. J. Geochem. Explor. 2009, 100, 51–66. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yang, L.Q.; Guo, L.N.; Marsh, E.; Wang, J.P.; Liu, Y.; Zhang, C.; Li, R.H.; Zhang, X.L.; Zhao, H. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China: A fluid inclusion study. Ore Geol. Rev. 2015, 65, 701–717. [Google Scholar] [CrossRef]
- Chaussidon, M.; Lorand, J.P. Sulphur isotope composition of orogenic spinel Herzolite Massifs from Ariege (North-Eastern Pyrenees, France):An Ion microprobe study. Geochim. Cosmochim. Acta 1990, 54, 2835–2846, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–286. ISBN 978-3-642-01094-7. [Google Scholar]
- Ohmoto, H.; Goldhaber, B. Sulphur and Carbon Isotopes. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1997; pp. 517–600. [Google Scholar]
- Quan, H.; Graham, I.; Worland, R.; Adler, L.; Dietz, C.; Madayag, E.; Wang, H.; French, D. Interpreting the Complexity of Sulfur, Carbon, and Oxygen Isotopes from Sulffdes and Carbonates in a Precious Metal Epithermal Field: Insights from the Permian Drake Epithermal Au-Ag Field of Northern New South Wales, Australia. Minerals 2025, 15, 134. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, K.Y.; Zhang, X.B.; Sun, Q.F.; Bai, W.Q.; Ma, C.; Xiao, Y.C. Fluid evolution and ore genesis of the Songjianghe Au deposit in Eastern Jilin Province, NE China: Constraints from fluid inclusions and H-O-S-Pb isotopes systematics. Minerals 2023, 13, 652. [Google Scholar] [CrossRef]
- Dubinina, E.O.; Chugaev, A.V.; Ikonnikova, T.A.; Avdeenko, A.S.; Yakushev, A. Sources and fluid regime of quartz-carbonate veins at the Sukhoi Log gold deposit, Baikal-Patom Highland. Petrology 2014, 22, 329–358. [Google Scholar] [CrossRef]
- Chugaev, A.V.; Znamenskii, S.E. Lead isotope characteristics of the Mindyak gold deposit, Southern Urals: Evidence for the source of metals. Geol. Ore Deposits 2018, 60, 52–61. [Google Scholar] [CrossRef]
- Chen, L.; Liang, C.Y.; Neubauer, F.; Liu, Y.J.; Zhang, Q.; Song, Z.W. Sedimentary processes and deformation styles of the Mesozoic sedimentary succession in the northern margin of the Mohe basin, NE China: Constraints on the final closure of the Mongol–Okhotsk Ocean. J. Asian Earth Sci. 2022, 232, 105052. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, C.; Deng, J.F.; Liu, J.X.; Duan, P.X.; Zhang, Y.; Zhao, H.D.; Tian, S.P. Igneous records of transformation from ocean to continent of Mongolia–Okhotsk Ocean: Evidence from granitoids of Woduhe area, Heilongjiang Province, China. Geol. J. 2023, 58, 3694–3719. [Google Scholar] [CrossRef]
- Chen, L.; Liang, C.Y.; Neubauer, F.; Liu, Y.J.; Yin, J.Z.; Gao, X.R.; Zhao, J.Q. Nature and multi-stage evolution of the Mongol-Okhotsk Ocean: New insights from the sedimentary record in the Mohe Basin. Earth-Sci. Rev. 2024, 254, 104794. [Google Scholar] [CrossRef]
- Badhe, K.; Ni, P.; Wang, G.G.; Liu, Z.; Li, W.S.; Ding, J.Y.; Pan, J.Y. Fluid inclusion and pyrite geochemistry of the Jiapigou gold deposit, North China Craton: Implication for origin of orogenic gold deposit? Ore Geol. Rev. 2024, 174, 106281. [Google Scholar] [CrossRef]
- Michael, M.F. Case Histories of Orogenic Gold Deposits. Minerals 2023, 13, 369. [Google Scholar] [CrossRef]
- Yao, F.L.; Sun, F.Y. Ore Deposit Geology Tutorial; Geological Publishing House: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Wang, Q.F.; Deng, J.; Zhao, H.S.; Yang, L.; Ma, Q.Y.; Li, H.J. Review on orogenic gold deposits. Earth Sci. 2019, 44, 2155–2186, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.J. Orogenic-type deposits and their metallogenic model and exploration potential. Geol. China 2006, 33, 1181–1196, (In Chinese with English Abstract). [Google Scholar]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Hedenquist, J.W. Volcanic-related hydrothermal systems in the Circum-Pacific Basin and their potential for mineralisation. Min. Geol. 1987, 37, 347–364. [Google Scholar]
- Wang, X.Z.; Liu, H.L.; Liu, Z.T.; Tang, P.F.; Wang, X.Y. Characteristics of ore minerals and gold-bearing minerals in the Shabaosi gold deposit, Heilongjiang Province. Petrol. Geochem. 2015, 34, 101–109, (In Chinese with English Abstract). [Google Scholar]
- Cooke, D.R.; McPhail, D.C. Epithermal Au-Ag-Te Mineralization, Acupan, Baguio District, Philippines: Numerical Simulations of Mineral Deposition. Econ. Geol. 2001, 96, 109–131. [Google Scholar] [CrossRef]
- Heinrich, C.A. Fluid-fluid interactions in magmatic-hydrothermal ore formation. Rev. Mineral. Geochem. 2007, 65, 363–387. [Google Scholar] [CrossRef]
- Lu, H.Z.; Chi, G.X.; Zhu, X.Q.; Guha, J.; Archambault, G.; Wang, Z.G. Geological characteristics and ore-forming fluids of orogenic gold deposits. Geotecton. Metallog. 2018, 42, 244–265, (In Chinese with English Abstract). [Google Scholar]
- Qi, J.P.; Chen, Y.J.; Pirajno, F. Geological characteristics and tectonic setting of the epithermal deposits in Northeast China. J. Mineral. Petrol. 2005, 25, 47–59, (In Chinese with English Abstract). [Google Scholar]
- Qiu, Z.J.; Fan, H.R.; Cong, P.Z.; Liu, X.; Yang, K.F. Recent progress in the study of ore-forming processes of orogenic gold deposits. Min. Depos. 2015, 34, 21–28, (In Chinese with English Abstract). [Google Scholar]
- Xu, Z.K.; Sun, J.G.; Liu, Y.; Xu, Z.T.; Zhang, X.W.; Pan, Y.D.; Liu, Y.M.; Li, X.P. Timing and ore genesis of the Ciweigou low-sulfidation epithermal gold deposit in the Yanbian Cu-Au district, NE China. Ore Geol. Rev. 2022, 149, 105067. [Google Scholar] [CrossRef]
- Shapovalova, M.; Shaparenko, E.; Tolstykh, N. Geochemistry and Fluid Inclusion of Epithermal Gold-Silver Deposits in Kamchatka, Russia. Minerals 2025, 15, 2. [Google Scholar] [CrossRef]
Deposit | Host Rock | Magmatism | Structure | Wall Rock Alteration | Ore Type | Metallic Minerals | Gangue Minerals | Grade (g/t) | Reserves (kg) |
---|---|---|---|---|---|---|---|---|---|
Shabaosi | Sandstone (J3K1e), Marble | Diorite, Granodiorite Porphyry | SN-trending, basement structure | Silicification, Carbonatization, Sericitization | Disseminated fine-grained | Pyrite, Arsenopyrite; minor Sphalerite, Galena, Chalcopyrite | Quartz, Feldspar, Kaolinite, Mica | 3.20 | 31,001 |
Sanshierzhan | Sandstone (J3K1e), Marble | Diorite, Granite Porphyry | NE-trending, basement structure | Silicification, Kaolinization, Chloritization, Carbonatization | Disseminated fine-grained | Pyrite, Arsenopyrite; minor Sphalerite, Chalcopyrite | Quartz, Kaolinite, Graphite | I: 2.44 II: 1.64 III: 1.31 | 6606 |
Laogou | Sandstone (J3K1e) | Diorite Dikes, Diabase Porphyrite | NE-trending, ductile shear zone | Silicification, Sericitization, Carbonatization | Sparse vein-disseminated to quartz vein-type | Pyrite; minor Pyrrhotite, Stibnite | Quartz, Calcite, Chlorite, Kaolinite | I: 2.67 | 677 |
Balifang | Sandstone (J3K1m) | Diorite, Monzonite Porphyry | NE-trending, ductile shear zone | Silicification, Chloritization, Carbonatization | Vein-disseminated to quartz vein-type | Pyrite, Arsenopyrite; minor Sphalerite, Galena | Quartz, Calcite, Chlorite, Kaolinite | II: 1.62 III: 2.20–8.80 | 494 |
Deposit | Stage | FI Type | Size (μm) | Gas–Liquid Ratio | Number | Tm (Ice) (°C) | Th (°C) | Salinity (NaCl wt.%) | Density (g/cm−3) | Pressure (MPa) |
---|---|---|---|---|---|---|---|---|---|---|
Shabaosi | I | CC | 7~10 | 100 | 10 | / | / | / | / | / |
FC | 8~10 | 60~90 | 6 | 7.8~−8.1 * | 315.4~331.2 | 3.76~4.69 | 0.56~0.67 | 24.51~26.87 | ||
HC | 9~18 | 35~40 | 3 | 6.8~8.5 * | 296.7~323.7 | 3.00~6.12 | 0.56~0.67 | 23.99~28.65 | ||
LV | 7~10 | 15~20 | 43 | −5.7~−1.8 | 165.6~269.8 | 3.05~8.81 | 0.82~0.94 | 12.54~25.24 | ||
II | LV | 6~10 | 10~20 | 156 | −5.4~−1.9 | 187.6~315.7 | 3.21~8.40 | 0.77~0.92 | 14.66~30.41 | |
III | LV | 7~10 | 15~20 | 10 | −3.3~−1.8 | 165.6~182.5 | 3.05~5.4 | 0.92~0.94 | 12.54~15.28 | |
Sanshierzhan | I | FC | 7~12 | 65~90 | 7 | 6.4~7.3 * | 238.6~316.6 | 5.23~6.81 | 0.63~0.77 | 21.71~26.95 |
HC | 7~13 | 30~40 | 10 | 6.6~7.5 * | 275.2~326.8 | 4.87~6.49 | 0.64~0.69 | 22.91~29.28 | ||
LV | 5~8 | 15~20 | 15 | −4.9~−3.2 | 247.6~296.7 | 5.25~8.67 | 0.79~0.85 | 21.52~28.19 | ||
II | LV | 6~10 | 15~20 | 10 | −5.6~−3.1 | 201.7~236.5 | 5.09~7.01 | 0.86~0.90 | 16.89~21.09 | |
Laogou | I | CC | 7~10 | 100 | 6 | / | / | / | / | / |
FC | 6~22 | 70~90 | 17 | 6.9~7.6 * | 278.6~357.6 | 4.69~5.94 | 0.64~0.70 | 23.72~30.44 | ||
HC | 7~18 | 15~50 | 12 | 6.5~7.1 | 292.3~354.2 | 5.59~6.13 | 0.65~0.71 | 26.19~30.82 | ||
SL | 10~12 | 15~20 | 3 | 148.0~167.9 ** | 271.6~315.6 | 29.58~30.39 | 1.14~1.15 | 41.78~49.02 | ||
FV | 5~20 | 55~90 | 17 | −2.7~−1.9 | 332.8~396.6 | 3.21~5.85 | 0.55~0.68 | 25.51~32.72 | ||
LV | 5~18 | 15~50 | 36 | −6.5~−3.1 | 224.6~402.3 | 5.09~9.86 | 0.60~0.89 | 18.92~40.03 | ||
II | CC | 5~7 | 100 | 3 | / | / | / | / | / | |
FC | 5~12 | 55~95 | 15 | 6.9~7.9 * | 268.2~375.8 | 4.14~5.94 | 0.61~0.75 | 23.04~32.57 | ||
HC | 5~15 | 35~50 | 15 | 6.8~7.6 * | 316.5~362.3 | 4.69~6.12 | 0.61~0.69 | 26.47~30.56 | ||
FV | 5~12 | 55~70 | 6 | −3.2~−2.7 | 251.6~329.6 | 4.48~5.25 | 0.70~0.83 | 20.38~27.72 | ||
LV | 5~20 | 5~40 | 49 | −6.1~−2.8 | 203.4~323.8 | 4.63~9.34 | 0.74~0.92 | 16.62~30.82 | ||
Balifang | I | CC | 5~15 | 100 | 57 | / | / | / | / | / |
FC | 5~18 | 50~95 | 93 | 6.2~8.6 * | 232.7~343.8 | 2.81~7.14 | 0.62~0.85 | 17.33~28.73 | ||
HC | 5~22 | 10~50 | 87 | 6.0~9.1 * | 238.7~351.8 | 1.83~7.48 | 0.58~0.86 | 19.36~29.86 | ||
LV | 5~15 | 15~20 | 165 | −5.7~−2.0 | 201.4~291.2 | 3.37~8.81 | 0.81~0.92 | 16.32~28.49 | ||
II | CC | 7~15 | 100 | 7 | / | / | / | / | / | |
FC | 6~15 | 60~95 | 20 | 6.4~7.7 * | 256.9~343.8 | 2.81~7.14 | 0.68~0.84 | 22.45~28.73 | ||
HC | 5~20 | 25~50 | 21 | 6.0~8.0 * | 266.8~327.6 | 3.95~7.48 | 0.70~0.84 | 22.94~29.86 | ||
LV | 5~15 | 15~25 | 51 | −5.3~−2.4 | 185.9~279.5 | 4.01~8.27 | 0.81~0.92 | 14.93~25.98 | ||
III | LV | 5~12 | 10~30 | 25 | −4.0~−2.7 | 155.9~225.9 | 4.48~6.44 | 0.88~0.95 | 12.63~20.90 |
Number | Deposit | Sample | Stage | δ18O (‰) | δ18OH2O (‰) | δD (‰) | Th (°C) | Notes |
---|---|---|---|---|---|---|---|---|
1 | Shabaosi | SBS–1 | I–II | 15.7 | 4.70 | −117.8 | 210.7 | [31] |
2 | SBS–2 | I–II | 14.7 | 4.60 | −138.3 | 226.8 | ||
3 | SBS–3 | I–II | 16.2 | 5.00 | −126.1 | 208.3 | ||
4 | SBS–4 | I–II | 15.5 | 5.60 | −132.2 | 230.2 | ||
5 | SBS–5 | I–II | 14.8 | 5.30 | −132.1 | 238.9 | ||
6 | WJDL008 | II | 8.5 | −1.00 | −137.3 | 238.9 | ||
7 | WJDL009 | II | 7.1 | −2.40 | −132.5 | 238.9 | ||
8 | Sanshierzhan | WJDL027 | II | 10.8 | 0.35 | −132.8 | 221.0 | |
9 | Balifang | WJDL032 | I | 13.0 | 4.79 | −130.3 | 266.5 | |
10 | WJDL040 | I | 8.9 | 0.69 | −128.1 | 266.5 | ||
11 | WJDL041 | I | 10.7 | 2.49 | −124.4 | 266.5 | ||
12 | WJDL042 | I | 10.3 | 2.09 | −133.8 | 266.5 | ||
13 | WJDL043 | I | 12.0 | 3.79 | −126.2 | 266.5 | ||
14 | WJDL047 | I | 12.3 | 4.09 | −118.8 | 266.5 | ||
15 | WJDL050 | I | 12.4 | 4.19 | −130.9 | 266.5 | ||
16 | WJDL045 | II | 12.6 | 1.95 | −112.1 | 237.5 | ||
17 | WJDL046 | II | 11.0 | 0.35 | −135.0 | 237.5 | ||
18 | Laogou | Hj1L1-2 | II | 5.6 | −1.3 | −97.0 | 300.5 | [13] |
19 | Hj1L1-3 | II | 9.3 | 1.8 | −120.0 | 285.0 | ||
20 | Hj1L1-5 | II | 10.6 | 3.5 | −135.0 | 295.2 | ||
21 | Hj1L1-10 | I | 12.1 | 5.2 | −119.0 | 299.2 |
Serial Number | Sample | Ore Body | Stage | δ34SV–CDT (‰) | Mean | Notes |
---|---|---|---|---|---|---|
1 | WJDL010 | II–1 | I | 1.6 | 0.78 | This study |
2 | WJDL009 | II–1 | II | −0.9 | ||
3 | WJDL021 | II–2 | II | 0.5 | ||
4 | WJDL022 | II–1 | II | 1.8 | ||
5 | WJDL023 | III–1 | II | 0.9 |
Number | Sample | Ore Body | Stage | 208Pb/204Pb | 207Pb/204Pb | 206Pb/204Pb |
---|---|---|---|---|---|---|
1 | WJDL010 | II–1 | I | 38.566 | 15.634 | 18.386 |
2 | WJDL009 | II–1 | II | 38.579 | 15.636 | 18.387 |
3 | WJDL021 | II–2 | II | 38.398 | 15.571 | 18.477 |
4 | WJDL022 | II–2 | II | 38.433 | 15.594 | 18.441 |
5 | WJDL023 | III–1 | II | 38.546 | 15.614 | 18.408 |
Feature Category | Epithermal Gold Deposits | Orogenic Gold Deposits | Shabaosi Gold Field |
---|---|---|---|
Tectonic Setting | Continental arc/back-arc extensional setting [54] | Early orogenic compression transitioning to late-stage extension [55,56,57] | Southeastern margin of Mongol–Okhotsk orogenic belt (late orogenic extension) |
Host Rocks | Continental volcanic sequences [54] | Metamorphic rocks/shear zones (no strict lithological control) [58] | Upper Jurassic–Lower Cretaceous clastic rocks |
Mineralization Age | Predominantly Mesozoic–Cenozoic (some Late Paleozoic) | Synchronous with orogenic events [56] | Early Cretaceous (121.0 ± 1.0–141.1 ± 0.9 Ma) |
Ore-Controlling Structures | Volcanic edifices/tensile fractures | High-angle strike-slip/thrust faults with brittle–ductile deformation [37,55] | Secondary tensile faults of Mohe nappe structure + basement structures |
Associated Intrusions | Volcanic–subvolcanic rocks | No direct magmatic association [58] | Early Cretaceous intermediate-felsic dikes |
Alteration Types | Low-sulfidation: adularia–sericite; high-sulfidation: alunite–kaolinite; propylitic halo [59] | Silicification, sericitization, chloritization, carbonatization [58] | Silicification, carbonatization, chloritization, kaolinization, sericitization |
Ore Minerals | Pyrite, galena, sphalerite, chalcopyrite | Pyrite, arsenopyrite (dominant) + base metal sulfides [55,56] | Pyrite, arsenopyrite (main) + minor Sb-Cu sulfides [60] |
Trace Elements | As-Sb-Hg-Tl enrichment [61] | Au-As-Sb-Te-W-Bi enrichment [56] | Au-As-Sb-Bi-Te enrichment (pyrite shows Au-Te correlation) [60] |
Fluid Inclusion Types | Dominantly LV-type (rare daughter minerals) [37] | Early: CC-FC-HC-LV types; Late: LV-only [37] | Early: CC-FC-HC-LV (rare daughter minerals); late: LV-only |
Fluid Characteristics | Magmatic–meteoric mixing → meteoric-dominated (H2O-NaCl) [37,61] | CO2-CH4-rich metamorphic → meteoric (H2O-NaCl) [37]; possible magmatic input [62] | Early CO2-CH4-rich → late H2O-NaCl (metamorphic affinity in early stage) |
Homogenization T (°C) | 50–200 °C (up to 320 °C) [37] | Shallow: 150–300 °C; Mid: 300–475 °C; Deep: >475 °C [55,63] | Early: 240–280 °C; Main: 220–260 °C; Late: 160–200 °C |
Mineralization Depth (km) | <1.5 (max 2) km | Shallow: <6 km; Mid: 6–12 km; Deep: >12 km [58] | 1.4–3.3 km (avg. >1.5 km) |
Material Sources | Magmatic/host rock-derived (δ34S: +1.0‰ to +4.6‰) [64] | Variable sulfur sources (δ34S: −20‰ to +25‰) [65] | Magmatic-dominated + minor strata (δ34S: −8.3‰ to +9.6‰) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, Z.; Bai, L.; Wang, J.; Liu, S.; Wang, G. Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes. Minerals 2025, 15, 721. https://doi.org/10.3390/min15070721
Li X, Liu Z, Bai L, Wang J, Liu S, Wang G. Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes. Minerals. 2025; 15(7):721. https://doi.org/10.3390/min15070721
Chicago/Turabian StyleLi, Xiangwen, Zhijie Liu, Lingan Bai, Jian Wang, Shiming Liu, and Guan Wang. 2025. "Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes" Minerals 15, no. 7: 721. https://doi.org/10.3390/min15070721
APA StyleLi, X., Liu, Z., Bai, L., Wang, J., Liu, S., & Wang, G. (2025). Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes. Minerals, 15(7), 721. https://doi.org/10.3390/min15070721