Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,627)

Search Parameters:
Keywords = C-peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 253 KB  
Study Protocol
Novel Biomarkers for Prognostic Assessment of Patients with Acute Exacerbation of COPD in the Emergency Department—Tools to Enhance the Quality of Care in Critical Patient Management
by Raluca Mihaela Tat, Sonia Luka, Eugenia Maria Lupan-Mureșan, George Teo Voicescu, Luca David, Adela Golea and Ștefan Cristian Vesa
Diagnostics 2026, 16(1), 122; https://doi.org/10.3390/diagnostics16010122 (registering DOI) - 1 Jan 2026
Abstract
Background/Objectives: Chronic obstructive pulmonary disease (COPD) remains a major global health problem, affecting over 300 million people worldwide. Its high morbidity and mortality rates impose substantial psychosocial and financial burdens on patients and healthcare systems. In the emergency setting, managing acute exacerbations [...] Read more.
Background/Objectives: Chronic obstructive pulmonary disease (COPD) remains a major global health problem, affecting over 300 million people worldwide. Its high morbidity and mortality rates impose substantial psychosocial and financial burdens on patients and healthcare systems. In the emergency setting, managing acute exacerbations of COPD (AECOPD) poses a major clinical challenge, as these patients often present with multi-organ dysfunction secondary to hypoxia and hypercapnia. Identifying reliable prognostic biomarkers could improve early risk stratification, guide therapeutic decisions, and enhance patient outcomes. Methods: This multicenter, prospective, observational study aims to evaluate the prognostic significance of several novel biomarkers—resistin, club cell secretory protein 16 (CC16), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), S100β protein—alongside conventional markers such as N-terminal-pro–B-type-Natriuretic-Peptide (NT-proBNP), D-dimer, high-sensitivity troponin I (hs-cTnI), C-reactive protein (CRP), and procalcitonin in patients with AECOPD admitted to the Emergency Department (ED). Blood samples will be collected at admission. The novel biomarkers (resistin, CC16, IL-6, TNF-α, S100β) will be measured using standardized ELISA kits, while conventional biomarkers (NT-proBNP, troponin I, CRP, procalcitonin) will be analyzed using routine automated clinical laboratory methods. Correlations between biomarker levels, clinical and imaging data, severity scores (GCS, SOFA, CFS, Ottawa COPD Risk Scale, DECAF, BAP-65), and short-term outcomes (hospital discharge status and 28-day survival) will be assessed. The study has received approval from the Ethics Committee of the “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, and all participating hospitals. Written informed consent will be obtained from all participants or their legal representatives. Results: This study protocol does not report results, as data collection and analysis are ongoing. Conclusions /Expected Impact: By identifying novel biomarkers with prognostic and pathophysiological relevance, this research aims to inform the development of early risk stratification tools and support future evidence-based approaches to the management of critically ill COPD patients in the ED. Full article
(This article belongs to the Special Issue Recent Advances in Clinical Biochemical Testing)
21 pages, 3711 KB  
Article
Phosvitin-Derived Peptide Pt5-1c Is a Pro-Angiogenic Agent Capable of Enhancing Wound Healing
by Cuiling Xuan, Mei Li, Peng Zhang, Yunchao Wang, Hongyan Li, Zhiqin Gao, Shicui Zhang and Fei Wu
Biomolecules 2026, 16(1), 65; https://doi.org/10.3390/biom16010065 - 31 Dec 2025
Abstract
Antimicrobial peptides (AMPs) have been shown to have pro-angiogenic activity, capable of enhancing neovascularization and facilitating the healing of chronic wounds. However, information as such remains rather limited. Here we clearly showed that the fish phosvitin-derived AMP Pt5-1c was able to enhance angiogenesis [...] Read more.
Antimicrobial peptides (AMPs) have been shown to have pro-angiogenic activity, capable of enhancing neovascularization and facilitating the healing of chronic wounds. However, information as such remains rather limited. Here we clearly showed that the fish phosvitin-derived AMP Pt5-1c was able to enhance angiogenesis in both murine full-thickness wound models and zebrafish with vascular defects models. We also showed that Pt5-1c was able to promote endothelial cell motility, adhesion, survival, filopodia protrusion, and induce endothelial tube formation. In addition, we found that Pt5-1c could upregulate production of proangiogenic factors including VEGF, PDGF, FGF and EGF. It was revealed that Pt5-1c promoted endothelial cell motility, growth and survival via activation both PI3K/AKT/mTOR and p38 MAPK pathways as well as HIF-1-VEGF axis. It is apparent that Pt5-1c is a novel candidate of pro-angiogenic agents for vascular regenerative therapy. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

21 pages, 3976 KB  
Article
Application of Cannabidiol Nanoemulsion for Skin Protection Against Particulate Matter: Evidence from an Ex Vivo Human Model
by Orathai Loruthai, Sornkanok Vimolmangkang and Wannita Klinngam
Colloids Interfaces 2026, 10(1), 6; https://doi.org/10.3390/colloids10010006 - 30 Dec 2025
Abstract
Nanoemulsions (NEs) offer a promising strategy for delivering lipophilic cannabidiol (CBD) to protect skin from particulate matter (PM)-induced damage. In this study, CBD-loaded oil-in-water NEs based on Brij® O10 (polyoxyethylene (10) oleyl ether) and olive oil were prepared by the phase inversion [...] Read more.
Nanoemulsions (NEs) offer a promising strategy for delivering lipophilic cannabidiol (CBD) to protect skin from particulate matter (PM)-induced damage. In this study, CBD-loaded oil-in-water NEs based on Brij® O10 (polyoxyethylene (10) oleyl ether) and olive oil were prepared by the phase inversion temperature (PIT) method and characterized. A 20% w/w Brij® O10 formulation (B20) remained clear and stable for 30 days. CBD solubility was markedly enhanced in Brij® O10 micelles and further increased in NEs, exceeding theoretical predictions and indicating synergistic solubilization in the oil–surfactant system. CBD incorporation lowered the PIT and induced nonlinear changes in droplet size with oil content. All formulations exhibited nanoscale droplets by dynamic light scattering and transmission electron microscopy, moderately low zeta potentials consistent with nonionic steric stabilization, and maintained physical stability despite increased turbidity at higher oil levels. In a full-thickness human ex vivo skin model exposed to PM, both blank and CBD-loaded NEs reduced interleukin-6 (IL-6) and matrix metalloproteinase-1 (MMP-1) in PM-exposed skin, with CBD-loaded NEs providing additional reductions and uniquely restoring procollagen type I C-peptide (PIP) relative to their blanks. Overall, PIT-based CBD NEs enhance CBD solubilization and protect human ex vivo skin from PM-induced inflammation and extracellular matrix degradation. Full article
(This article belongs to the Section Application of Colloids and Interfacial Aspects)
Show Figures

Figure 1

23 pages, 2535 KB  
Article
Corundum Particles as Trypsin Carrier for Efficient Protein Digestion
by Sarah Döring, Birte S. Wulfes, Aleksandra Atanasova, Carsten Jaeger, Leopold Walzel, Georg Tscheuschner, Sabine Flemig, Kornelia Gawlitza, Ines Feldmann, Zoltán Konthur and Michael G. Weller
BioTech 2026, 15(1), 2; https://doi.org/10.3390/biotech15010002 - 30 Dec 2025
Abstract
Reusable enzyme carriers are valuable for proteomic workflows, yet many supports are expensive or lack robustness. This study describes the covalent immobilization of recombinant trypsin on micrometer-sized corundum particles and assesses their performance in protein digestion and antibody analysis. The corundum surface was [...] Read more.
Reusable enzyme carriers are valuable for proteomic workflows, yet many supports are expensive or lack robustness. This study describes the covalent immobilization of recombinant trypsin on micrometer-sized corundum particles and assesses their performance in protein digestion and antibody analysis. The corundum surface was cleaned with potassium hydroxide, silanized with 3-aminopropyltriethoxysilane and activated with glutaraldehyde. Recombinant trypsin was then attached, and the resulting imines were reduced with sodium cyanoborohydride. Aromatic amino acid analysis (AAAA) estimated an enzyme loading of approximately 1 µg/mg. Non-specific adsorption of human plasma proteins was suppressed by blocking residual aldehydes with a Tris-glycine-lysine buffer. Compared with free trypsin, immobilization shifted the temperature optimum from 50 to 60 °C and greatly improved stability in 1 M guanidinium hydrochloride. Activity remained above 80% across several reuse cycles, and storage at 4 °C preserved functionality for weeks. When applied to digesting the NISTmAb, immobilized trypsin provided peptide yields and sequence coverage comparable to soluble enzyme and outperformed it at elevated temperatures. MALDI-TOF MS analysis of Herceptin digests yielded fingerprint spectra that correctly identified the antibody and achieved >60% sequence coverage. The combination of low cost, robustness and analytical performance makes corundum-immobilized trypsin an attractive option for research and routine proteomic workflows. Full article
Show Figures

Figure 1

13 pages, 891 KB  
Article
Genome Mining and Heterologous Reconstitution of a PKS-NRPS Gene Cluster from Aspergillus flavipes LY1-5 Affords Structurally Novel Tetronates
by Quan Dai, Yiqiao Li, Shuzhe Lv, Shuang Zhao, Liyuan Han, Jiaxin Xu, Hui Shuai, Youming Zhang and Fu Yan
J. Fungi 2026, 12(1), 28; https://doi.org/10.3390/jof12010028 - 29 Dec 2025
Viewed by 88
Abstract
Heterologous expression of silent biosynthetic gene clusters represents a key strategy for the discovery of structurally novel natural products. In this study, we obtained ten new tetronate natural products, designated as talactones A–J (110), through heterologous expression of a [...] Read more.
Heterologous expression of silent biosynthetic gene clusters represents a key strategy for the discovery of structurally novel natural products. In this study, we obtained ten new tetronate natural products, designated as talactones A–J (110), through heterologous expression of a polyketide synthase–nonribosomal peptide synthetase (PKS-NRPS) gene cluster (tho) from the fungus Aspergillus flavipes LY1-5 in A. nidulans A1145. Their structures were elucidated by comprehensive HR-ESI-MS and NMR analyses. Notably, talactone A (1) contains a rare 1,4-thiazepane scaffold, whereas talactones B (2) and C (3) feature a novel 2,3-dihydrofuro [3,4-b]pyridine-4,5(1H,7H)-dione skeleton. Biosynthetic investigations indicate that the 1,4-thiazepane ring in 1 arises from a non-enzymatic reaction between a tetronate acid and cysteine, while 2 and 3 are derived from 5 and 6, respectively, via spontaneous intramolecular cyclization under acidic conditions. Antibacterial activity assays revealed that compounds 13, 9, and 10 exhibit moderate antibacterial effects. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics, 2nd Edition)
Show Figures

Figure 1

17 pages, 492 KB  
Article
Validation of an Integrated Clinical Biomarker Diagnostic Model for Acute Pancreatitis: Incorporating Trypsinogen-Activating Peptide and Trypsin-2 in a Romanian Population Study
by Alina Calin Frij, Cristian Velicescu, Andrei Andone, Roxana Covali, Alin Ciubotaru, Roxana Grigorovici, Cristina Popa, Daniela Cosntantinescu, Mariana Pavel-Tanasa and Alexandru Grigorovici
J. Clin. Med. 2026, 15(1), 268; https://doi.org/10.3390/jcm15010268 - 29 Dec 2025
Viewed by 73
Abstract
Introduction: Severe acute pancreatitis (SAP) is a critical condition that affects 20–30% of people with acute pancreatitis (AP). Prompt detection and accurate classification are crucial to direct prompt interventions, increase resource allocation, and improve patient outcomes. Current scoring systems, while beneficial, frequently [...] Read more.
Introduction: Severe acute pancreatitis (SAP) is a critical condition that affects 20–30% of people with acute pancreatitis (AP). Prompt detection and accurate classification are crucial to direct prompt interventions, increase resource allocation, and improve patient outcomes. Current scoring systems, while beneficial, frequently face challenges related to speed, complexity, and early predictive accuracy. Method: We developed and validated an effective six-parameter risk assessment scale for AP, incorporating pancreatic-specific biomarkers (trypsinogen-activating peptide [TAP], trypsin-2), systemic inflammation markers (C-reactive protein), pancreatic enzyme concentrations, blood glucose, and patient age. The study cohort included 104 patient samples. Reliability was assessed using Cronbach’s alpha and Spearman–Brown coefficients, factorial validity was determined by principal component analysis, and predictive validity was analyzed using logistic regression and receiver operating characteristic (ROC) analysis. Biotemporal changes at 24 and 48 h were assessed to classify risk scoring. Results: The scale demonstrated satisfactory internal consistency (Cronbach’s alpha = 0.72) and a distinct structure with two factors representing local pancreatic damage and systemic inflammation, explaining 65% of the variability. Logistic regression established predictive validity for serious outcomes, with TAP and trypsin-2 showing significant correlations. ROC analysis demonstrated remarkable discriminative capacity (AUC = 0.85), showing a sensitivity of 82.4% and a specificity of 76.8%. Assessment of temporal biomarkers showed a reduction in TAP, signifying resolution of the initial enzymatic activation, while trypsin-2 levels continued to increase, indicating persistent damage to the pancreatic tissue. Patients were classified into low-, moderate- and high-risk groups, facilitating practical clinical decision-making. Discussion and Conclusions: This six-parameter risk score provides a rapid, biologically based, and clinically useful method for early detection of patients at risk for SAP. Combining indicators of local pancreatic involvement with systemic inflammation allows for prompt triage, improves the allocation of intensive therapy, and supports informed prognostic conversations. Full article
Show Figures

Figure 1

18 pages, 3266 KB  
Article
Application and Effect of Micropeptide miPEP164c on Flavonoid Pathways and Phenolic Profiles in Grapevine “Vinhão” Cultivar
by Mariana Vale, Arnaud Lanoue, Cécile Abdallah, Hernâni Gerós and Artur Conde
Agronomy 2026, 16(1), 97; https://doi.org/10.3390/agronomy16010097 - 29 Dec 2025
Viewed by 68
Abstract
Climate change increasingly challenges viticulture, demanding innovative and sustainable strategies to preserve grapevine productivity and grape quality. MicroRNA-encoded peptides (miPEPs) have emerged as natural regulators of gene expression, providing a novel mechanism for fine-tuning plant metabolism. Here, we evaluated whether exogenous application of [...] Read more.
Climate change increasingly challenges viticulture, demanding innovative and sustainable strategies to preserve grapevine productivity and grape quality. MicroRNA-encoded peptides (miPEPs) have emerged as natural regulators of gene expression, providing a novel mechanism for fine-tuning plant metabolism. Here, we evaluated whether exogenous application of miPEP164c, previously shown to repress VviMYBPA1 in vitro, can modulate flavonoid pathways in field-grown grapevines (Vitis vinifera L. cv. Vinhão). Grape clusters were sprayed with 1 µM miPEP164c before and during véraison, and molecular, biochemical, and metabolomic analyses were performed at harvest. miPEP164c treatment significantly upregulated pre-miR164c transcripts, leading to post-transcriptional silencing of VviMYBPA1 and strong downregulation of the proanthocyanidin-related genes VviLAR1, VviLAR2, and VviANR. Correspondingly, LAR and ANR activities were reduced by up to 75%, and total proanthocyanidin content decreased by nearly 30%. Metabolomic profiling showed reduced flavan-3-ols and moderate shifts in phenolic acids and stilbenoids, while anthocyanins increased slightly. Overall, miPEP164c reprogrammed flavonoid metabolism under vineyard conditions, selectively lowering tannin biosynthesis without affecting other key phenolics. These findings establish miPEPs as promising biostimulants for precise modulation of grape berry composition, offering new tools for urgently needed sustainable and precision viticulture and improved wine quality under climate change and the increasing environmental challenges it poses. Full article
Show Figures

Figure 1

19 pages, 1902 KB  
Article
Modulation of Mast Cell Activation via MRGPRX2 by Natural Oat Extract
by Susanne Kaesler, Désirée Argiriu, Shyami M. Kandage, Karla Schönfeldt, Shalva Lekiashvili, Ceren N. Dengiz, Neslim Ercan, Caterina Iuliano, Martina Herrmann, Maria Reichenbach, Dominik Cichowski, Magda Babina, Miriam Hils, Martin Köberle and Tilo Biedermann
Int. J. Mol. Sci. 2026, 27(1), 334; https://doi.org/10.3390/ijms27010334 - 28 Dec 2025
Viewed by 144
Abstract
The Mas-related G protein-coupled receptor (MRGPR) X2 is expressed on skin mast cells and can be stimulated by an unusually broad spectrum of ligands, including specific drugs and even endogenous peptides. MRGPRX2 activation can induce mast cell degranulation and consequently mediator release, leading [...] Read more.
The Mas-related G protein-coupled receptor (MRGPR) X2 is expressed on skin mast cells and can be stimulated by an unusually broad spectrum of ligands, including specific drugs and even endogenous peptides. MRGPRX2 activation can induce mast cell degranulation and consequently mediator release, leading to inflammatory and hypersensitivity reactions. In addition, MRGPRX2 mediates pain and itching sensations, leading to increased efforts to identify MRGPRX2 inhibitors, including plant-derived compounds. Components within oat extracts have been shown to mediate anti-inflammatory and itch-relieving properties, but a possible inhibitory effect on MRGPRX2 activation has not yet been investigated. We aimed to fill this gap and explored whether an oat kernel extract can modulate MRGPRX2 activation. For this purpose, we established a mast cell model with the human LAD2 cell line and used it to investigate the consequences of exposure to oat extract. While we did not observe any influence on cell viability, we analyzed the impact of oat extract on MRGPRX2-mediated mast cell activation and degranulation initiated by the three confirmed MRGPRX2 ligands c48/80, substance P, and cortistatin 14. Exposure to oat extract resulted in a significant reduction in mast cell degranulation for all three ligands, as assessed by the release of β-hexosaminidase, tryptase, cell surface expression of CD63 and CD107a, and phosphorylation of ERK. All results were confirmed with primary human mast cells. Thus, we demonstrated for the first time that oat extract leads to a significant reduction in MRGPRX2 activation, pointing to a previously unrecognized capacity of natural compounds to modulate this pathway. Full article
(This article belongs to the Special Issue Mast Cells in Human Health and Diseases—3rd Edition)
Show Figures

Figure 1

14 pages, 3105 KB  
Article
Proteinaceous Toxins in the Mucus and Proboscis of the Ribbon Worm Cephalothrix cf. simula (Palaeonemertea: Nemertea)
by Vasiliy G. Kuznetsov, Daria I. Melnikova, Sergey V. Shabelnikov and Timur Yu. Magarlamov
Toxins 2026, 18(1), 17; https://doi.org/10.3390/toxins18010017 - 27 Dec 2025
Viewed by 101
Abstract
Cephalothrix cf. simula is a highly toxic ribbon worm of the class Palaeonemertea, known for its high concentrations of tetrodotoxin. Recent transcriptomic and proteomic studies across Nemertea have revealed that species from all classes possess a diverse array of protein and peptide toxins, [...] Read more.
Cephalothrix cf. simula is a highly toxic ribbon worm of the class Palaeonemertea, known for its high concentrations of tetrodotoxin. Recent transcriptomic and proteomic studies across Nemertea have revealed that species from all classes possess a diverse array of protein and peptide toxins, which are associated with unicellular glands of the proboscis and the integument epithelium. Previous studies have identified a large number of putative toxins in the transcriptome of C. cf. simula; however, corresponding proteomic data have so far been lacking. This study presents the first comprehensive analysis of the mucus and proboscis proteome of C. cf. simula using high-performance liquid chromatography–tandem mass spectrometry. We identified three putative toxins in the proboscis and three in the mucus. Additionally, four cysteine-rich peptides with putative toxic activity were identified in the mucus and one in the proboscis. The expression of the corresponding genes in both tissues was quantified using quantitative real-time PCR. The toxin compositions of the proboscis and mucus showed clear signs of functional specialization, with no overlapping toxins and tissue-specific patterns of gene expression. Feeding experiments combined with transmission electron microscopy confirmed the involvement of specialized proboscis structures, pseudocnidae, in delivering toxins into the prey. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

20 pages, 3176 KB  
Article
Multilevel Screening Platform Utilizing Cellular and Zebrafish Models to Identify Short Peptides with High Improvement of Motor Neuron Growth
by Bing-Chang Lee, Chun-Cheng Wang, Shan-Pin Chen and Huai-Jen Tsai
Int. J. Mol. Sci. 2026, 27(1), 281; https://doi.org/10.3390/ijms27010281 - 26 Dec 2025
Viewed by 122
Abstract
Zebrafish is emerging as a model animal for phenotype-based drug screening. Drugs screened from the zebrafish platform have advanced into clinical trials, underscoring their translational potential. Amyotrophic lateral sclerosis is a progressive motor neurons (MN) degenerative disease with few approved drugs. Previously, supplementation [...] Read more.
Zebrafish is emerging as a model animal for phenotype-based drug screening. Drugs screened from the zebrafish platform have advanced into clinical trials, underscoring their translational potential. Amyotrophic lateral sclerosis is a progressive motor neurons (MN) degenerative disease with few approved drugs. Previously, supplementation with exogenous recombinant phosphoglycerate kinase 1 (Pgk1) was found to improve MN growth through its interaction with receptor Eno2. To bypass the high complexity and cost of full-length Pgk1 production, a short segment within Pgk1 (M08) was predicted as the key motif interacting with Eno2, and a zebrafish phenotypic screening platform was established to find the most neurotrophic compound(s) among M08 and its mutants. We first found that M08-injected zebrafish embryos significantly increased branched caudal primary MNs (CaPMNs). However, compared to M08 (59.20 ± 1.80%), M039, among 17 mutants further screened, showed even more improvement of branched CaPMNs, up to 74.54 ± 3.73%. Next, when we administered the M039 peptide to C9ORF72-knockdown ALS-like zebrafish embryos, it improved axonal growth and swimming ability. Then, we employed a cellular model as a secondary screen, and M039 exhibited improved neurite outgrowth of MN (NOMN) and reduced p-Cofilin in NSC34 neural cells grown in ALS-like condition. Therefore, by using a zebrafish MN phenotype as a primary screening platform, we identified a mutated short peptide M039 having the most pronounced positive effect on improving neurite growth among all 17 mutants in comparison to parental M08, demonstrating the feasibility of zebrafish screening as a cost-effective strategy for finding promising neuroprotective short peptides that serve as neurotherapeutic potentials. Full article
(This article belongs to the Special Issue Zebrafish: A Model Organism for Human Health and Disease: 2nd Edition)
Show Figures

Figure 1

32 pages, 3556 KB  
Article
Development and Immunogenicity Assessment of a Multi-Epitope Antigen Against Zika Virus: An In Silico and In Vivo Approach
by Lígia Rosa Sales Leal, Matheus Gardini Amâncio Marques de Sena, Maria da Conceição Viana Invenção, Ingrid Andrêssa de Moura, André Luiz Santos de Jesus, Georon Ferreira de Sousa, Bárbara Rafaela da Silva Barros, Cristiane Moutinho Lagos de Melo, Lindomar José Pena, Francesca Paolini, Aldo Venuti, Anna Jéssica Duarte Silva and Antonio Carlos de Freitas
Vaccines 2026, 14(1), 31; https://doi.org/10.3390/vaccines14010031 - 26 Dec 2025
Viewed by 217
Abstract
Background/Objectives: The Zika virus (ZIKV) represents an ongoing threat to public health due to its neurological and congenital complications. Even after 10 years since the first major outbreak, correlated with an increase in congenital ZIKV syndrome, there is still no vaccine or treatment [...] Read more.
Background/Objectives: The Zika virus (ZIKV) represents an ongoing threat to public health due to its neurological and congenital complications. Even after 10 years since the first major outbreak, correlated with an increase in congenital ZIKV syndrome, there is still no vaccine or treatment for this infection. Among the various existing platforms, DNA vaccines combined with the use of immunoinformatics tools allow for the efficient selection of immunogenic epitopes and immunostimulatory molecules with greater flexibility, in addition to being simple to manufacture and having a higher cost–benefit ratio in production. Methods: In this work, we conducted an integrated approach, combining in silico analyses and in vivo experimental validations, for the development of multi-epitope DNA vaccines against ZIKV. The computational analyses confirmed structural stability, adequate solubility, absence of toxicity, and immune induction potential for constructs based on epitopes from the Envelope (E) and NS1 proteins. Therefore, we evaluated DNA constructs containing the ENV + NS1 epitopes, both with and without fusion to the ssPGIP signal peptide, in BALB/c mice. Results: Both vaccines increased the population of CD4+ and CD8+ T lymphocytes, in addition to the production of IgG antibodies associated with the Th1 profile. The fusion with ssPGIP broadened the response, stimulating the release of Th1, Th2, and Th17 cytokines, as well as enhancing antibody formation. In contrast, its absence was associated with a slight increase in CD4+ and CD8+ T cells, accompanied by restricted cytokine production. Conclusions: These results indicate that epitope-targeted techniques offer a viable and safe method for inducing robust immune responses, demonstrating that combining immunoinformatics methods with early preclinical testing is an effective strategy for ZIKV vaccine development. Furthermore, although the present study focused on initial immunogenic characterization, future studies involving viral challenge in a suitable animal model will be essential to conclusively determine the protective efficacy of these vaccine candidates. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery—2nd Edition)
Show Figures

Figure 1

10 pages, 2267 KB  
Communication
Structural Insights into the Staphylococcus aureus DltC-Mediated D-Alanine Transfer
by Hanul Jeon, Hyebin Lee, Chiman Song and In-Gyun Lee
Biomolecules 2026, 16(1), 44; https://doi.org/10.3390/biom16010044 - 26 Dec 2025
Viewed by 164
Abstract
Staphylococcus aureus (S. aureus) is a major Gram-positive pathogen, and treatment of S. aureus infections is often challenging due to widespread antibiotic resistance. In Gram-positive bacteria such as S. aureus, D-alanylation of teichoic acids (TA) reduces the net negative charge [...] Read more.
Staphylococcus aureus (S. aureus) is a major Gram-positive pathogen, and treatment of S. aureus infections is often challenging due to widespread antibiotic resistance. In Gram-positive bacteria such as S. aureus, D-alanylation of teichoic acids (TA) reduces the net negative charge of the cell envelope and contributes to resistance to diverse antibiotics, particularly cationic antimicrobial peptides. D-alanylation is mediated by the dltABCD operon, which encodes four proteins (DltA, DltB, DltC, and DltD), all of which is essential for the multistep transfer of D-alanine to teichoic acids. Here, we present the first crystal structure of the S. aureus D-alanyl carrier protein DltC and analyze its interaction with DltA using AlphaFold3 and all-atom molecular dynamics simulations. We further show that single substitutions of SaDltA-SaDltC interface residues abolish SaDltC mediated enhancement of SaDltA catalysis. Together, these findings define a catalytically critical S. aureus DltA-DltC interface and provide a structural insight for targeting the D-alanylation pathway as a potential anti-Staphylococcus strategy. Full article
(This article belongs to the Special Issue Structural Biology of Protein)
Show Figures

Figure 1

17 pages, 2799 KB  
Article
Inhibition of TRPC3-Nox2 Complex Formation Ameliorates Skeletal Muscle Atrophy
by Yuri Kato, Di Wu, Tomoya Ito, Yara Atef, Koichi Ayukawa, Xinya Mi, Kazuhiro Nishiyama, Akiyuki Nishimura and Motohiro Nishida
Antioxidants 2026, 15(1), 38; https://doi.org/10.3390/antiox15010038 - 26 Dec 2025
Viewed by 212
Abstract
Skeletal muscle atrophy underlies sarcopenia, frailty, and muscular dystrophies, but the molecular mechanisms linking oxidative stress to muscle degeneration remain incompletely understood. We previously identified protein complex formation between transient receptor potential canonical 3 (TRPC3) and NADPH oxidase 2 (Nox2) as a key [...] Read more.
Skeletal muscle atrophy underlies sarcopenia, frailty, and muscular dystrophies, but the molecular mechanisms linking oxidative stress to muscle degeneration remain incompletely understood. We previously identified protein complex formation between transient receptor potential canonical 3 (TRPC3) and NADPH oxidase 2 (Nox2) as a key driver of anthracycline-induced myocardial atrophy. Here, we investigated whether this complex also contributes to skeletal muscle wasting. In skeletal muscle from sciatic nerve transection model mice and Duchenne muscular dystrophy (mdx) mice, TRPC3-Nox2 complex formation was enhanced. TRPC3 deletion significantly attenuated denervation-induced soleus atrophy and reduced reactive oxygen species (ROS) production. TRPC3-Nox2 complex formation was upregulated in the soleus muscle (SM) of mdx mice. Pharmacological disruption of the TRPC3-Nox2 interaction improved muscle size and strength and reduced plasma creatine kinase in mdx mice. A recombinant adeno-associated virus (AAV) encoding a TRPC3 C-terminal peptide was used to suppress TRPC3-Nox2 complex formation in vivo. AAV-mediated expression of TRPC3 C-terminal peptide mitigated muscle wasting (CSA) in mdx mice, while muscle strength and plasma CK were not significantly improved. Thus, TRPC3-Nox2 complex formation may be a pivotal driver of oxidative stress-mediated skeletal muscle atrophy. Targeting this protein–protein interaction represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD) and other intractable muscle-wasting disorders. Full article
Show Figures

Figure 1

16 pages, 1286 KB  
Article
GLP-1 Receptor Agonists and SGLT2 Inhibitors in Stable Kidney Transplantation: Clinical Outcomes from a Cohort of Patients with Post-Transplant Diabetes Mellitus
by Ricardo E. T. Navarrete, Joana Freitas, Isabel Fonseca, Ana Cunha, Joao Roberto Sa and La Salete Martins
J. Clin. Med. 2026, 15(1), 181; https://doi.org/10.3390/jcm15010181 - 26 Dec 2025
Viewed by 167
Abstract
Background: Despite the lack of formal indication for glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium–glucose cotransporter-2 inhibitors (SGLT2i) in post-transplant diabetes mellitus (PTDM), their use in clinical practice is growing. While robust evidence supporting their use in kidney transplant recipients (KTRs) remains [...] Read more.
Background: Despite the lack of formal indication for glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium–glucose cotransporter-2 inhibitors (SGLT2i) in post-transplant diabetes mellitus (PTDM), their use in clinical practice is growing. While robust evidence supporting their use in kidney transplant recipients (KTRs) remains limited, PTDM remains a major driver of adverse outcomes, including cardiovascular morbidity, accelerated graft dysfunction, graft loss, and reduced survival. Methods: This retrospective cohort study analyzed adult KTRs with PTDM treated with SGLT2is and/or GLP-1 RAs between 2013 and 2024. Metabolic, kidney, and safety parameters were assessed from baseline to follow-up. Results: After a median treatment duration of 1.8 years, glycated hemoglobin (HbA1c) changed from 7.22% to 7.01% (p = 0.558), whereas fasting plasma glucose increased from 112.62 mg/dL to 125.01 mg/dL (p = 0.03). Body mass index decreased from 27.27 kg/m2 to 25.95 kg/m2 (p < 0.001). The lipid profile improved, with reductions in total cholesterol (p < 0.01) and low-density lipoprotein cholesterol (LDL-c, p = 0.02). Kidney function remained stable throughout the observation period, and adverse events were infrequent. Conclusions: In KTRs with PTDM, GLP-1 RAs and SGLT2is were associated with significant improvements in weight and lipid metabolism, alongside stable kidney function and a favorable safety profile. These findings support the consideration of these agents in the management of PTDM. Prospective studies are warranted to confirm these results. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Graphical abstract

12 pages, 512 KB  
Article
Effects of Dichrostachys glomerata and Cissus quadrangularis Extracts on GLP-1 Secretion and DPP-4 Activity in Overweight and Obese Individuals: A Randomized Controlled Trial
by Janvier Youovop, Guy Takuissu, Régine Minoue, Felix Nwang, Maryam Adegboyega, Crista Arrey, Inelle Makamwe and Julius Oben
Medicina 2026, 62(1), 41; https://doi.org/10.3390/medicina62010041 - 25 Dec 2025
Viewed by 188
Abstract
Background and Objectives: Dichrostachys glomerata and Cissus quadrangularis, two species traditionally used in Cameroon, are recognized for their weight-reducing potential. This study examined the effects of standardized extracts of these botanicals on glucagon-like peptide-1 (GLP-1), dipeptidyl peptidase-4 (DPP-4), and key metabolic [...] Read more.
Background and Objectives: Dichrostachys glomerata and Cissus quadrangularis, two species traditionally used in Cameroon, are recognized for their weight-reducing potential. This study examined the effects of standardized extracts of these botanicals on glucagon-like peptide-1 (GLP-1), dipeptidyl peptidase-4 (DPP-4), and key metabolic outcomes in individuals with excess body weight. Materials and Methods: In this 16-week, randomized, double-blind, placebo-controlled trial, 248 adults (126 women and 122 men; mean age 41.3 ± 0.3 years; BMI 25–34.9 kg/m2) were assigned to receive 400 mg D. glomerata extract (DGE), 300 mg C. quadrangularis extract (CQE), semaglutide (dose-escalated from 3 mg to 14 mg), or placebo, administered once daily. These are all standard clinical regimens. Primary assessments included changes in GLP-1 levels and DPP-4 activity. Secondary evaluations included body composition, caloric intake, satiety response, fasting glucose levels, and lipid profiles. Results: Participants receiving DGE or CQE displayed notable elevations in circulating GLP-1 (+38.6 pg/mL and +42.2 pg/mL, respectively; p < 0.01) and significant reductions in DPP-4 activity (−15.3% and −17.8%; p < 0.01) compared with placebo. Both extracts produced substantial improvements in body weight (−5.2% and −5.8%), body fat (−10.3% and −10.9%), energy intake (−16.2% and −17.5%), and satiety (+25.6% and +27.4%) (p < 0.01). Significant changes in fasting glucose and serum lipid levels were also observed (p < 0.05). These responses are comparable to those of semaglutide. Moreover, GLP-1 increments showed strong negative correlations with body fat percentage (r = −0.91 to −0.92; p < 0.001) and DPP-4 activity (r = −0.97 to −0.98; p < 0.001). Conclusions: Supplementation with D. glomerata and C. quadrangularis extracts enhanced GLP-1 secretion and reduced DPP-4 activity, yielding significant benefits for body composition and metabolic parameters. These findings indicate that both botanicals are promising natural agents for managing obesity through incretin-based mechanisms. Full article
Show Figures

Figure 1

Back to TopTop