You are currently viewing a new version of our website. To view the old version click .
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

26 December 2025

Multilevel Screening Platform Utilizing Cellular and Zebrafish Models to Identify Short Peptides with High Improvement of Motor Neuron Growth

,
,
and
1
Department of Life Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
2
Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci.2026, 27(1), 281;https://doi.org/10.3390/ijms27010281 
(registering DOI)
This article belongs to the Special Issue Zebrafish: A Model Organism for Human Health and Disease: 2nd Edition

Abstract

Zebrafish is emerging as a model animal for phenotype-based drug screening. Drugs screened from the zebrafish platform have advanced into clinical trials, underscoring their translational potential. Amyotrophic lateral sclerosis is a progressive motor neurons (MN) degenerative disease with few approved drugs. Previously, supplementation with exogenous recombinant phosphoglycerate kinase 1 (Pgk1) was found to improve MN growth through its interaction with receptor Eno2. To bypass the high complexity and cost of full-length Pgk1 production, a short segment within Pgk1 (M08) was predicted as the key motif interacting with Eno2, and a zebrafish phenotypic screening platform was established to find the most neurotrophic compound(s) among M08 and its mutants. We first found that M08-injected zebrafish embryos significantly increased branched caudal primary MNs (CaPMNs). However, compared to M08 (59.20 ± 1.80%), M039, among 17 mutants further screened, showed even more improvement of branched CaPMNs, up to 74.54 ± 3.73%. Next, when we administered the M039 peptide to C9ORF72-knockdown ALS-like zebrafish embryos, it improved axonal growth and swimming ability. Then, we employed a cellular model as a secondary screen, and M039 exhibited improved neurite outgrowth of MN (NOMN) and reduced p-Cofilin in NSC34 neural cells grown in ALS-like condition. Therefore, by using a zebrafish MN phenotype as a primary screening platform, we identified a mutated short peptide M039 having the most pronounced positive effect on improving neurite growth among all 17 mutants in comparison to parental M08, demonstrating the feasibility of zebrafish screening as a cost-effective strategy for finding promising neuroprotective short peptides that serve as neurotherapeutic potentials.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.