Structural Insights into the Staphylococcus aureus DltC-Mediated D-Alanine Transfer
Abstract
1. Introduction
2. Materials and Methods
2.1. Gene Cloning and Protein Expression, and Purification
2.2. Crystallization and Determination of Crystal Structure
2.3. Molecular Dynamics
2.4. Pyrophosphatedetection Assay
3. Results
3.1. Crystal Structures of Wild-Type and Ser36Ala Mutant S. aureus DltC
3.2. AF3 Prediction- and MD Simulation-Based Architecture of the SaDltA-SaDltC Interface
3.3. Mutations of SaDltA-SaDltC Interface Residues Abolish SaDltC-Mediated Enhancement of SaDltA Catalysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowy, F.D. Staphylococcus aureus Infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Nikolopoulos, N.; Matos, R.C.; Courtin, P.; Ayala, I.; Akherraz, H.; Simorre, J.-P.; Chapot-Chartier, M.-P.; Leulier, F.; Ravaud, S.; Grangeasse, C. Dltc Acts as an Interaction Hub for Acps, Dlta and Dltb in the Teichoic Acid D-Alanylation Pathway of Lactiplantibacillus plantarum. Sci. Rep. 2022, 12, 13133. [Google Scholar]
- Coupri, D.; Verneuil, N.; Hartke, A.; Liebaut, A.; Lequeux, T.; Pfund, E.; Budin-Verneuil, A. Inhibition of D-Alanylation of Teichoic Acids Overcomes Resistance of Methicillin-Resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2021, 76, 2778–2786. [Google Scholar] [CrossRef]
- Peschel, A.; Otto, M.; Jack, R.W.; Kalbacher, H.; Jung, G.; Gotz, F. Inactivation of the Dlt Operon in Staphylococcus aureus Confers Sensitivity to Defensins, Protegrins, and Other Antimicrobial Peptides. J. Biol. Chem. 1999, 274, 8405–8410. [Google Scholar] [CrossRef]
- Neuhaus, F.C.; Baddiley, J. A Continuum of Anionic Charge: Structures and Functions of D-Alanyl-Teichoic Acids in Gram-Positive Bacteria. Microbiol. Mol. Biol. Rev. 2003, 67, 686–723. [Google Scholar] [CrossRef]
- Perego, M.; Glaser, P.; Minutello, A.; Strauch, M.A.; Leopold, K.; Fischer, W. Incorporation of D-Alanine into Lipoteichoic Acid and Wall Teichoic Acid in Bacillus subtilis: Identification of Genes and Regulation (∗). J. Biol. Chem. 1995, 270, 15598–15606. [Google Scholar] [CrossRef]
- Kovács, M.; Halfmann, A.; Fedtke, I.; Heintz, M.; Peschel, A.; Vollmer, W.; Hakenbeck, R.; Brückner, R. A Functional Dlt Operon, Encoding Proteins Required for Incorporation of D-Alanine in Teichoic Acids in Gram-Positive Bacteria, Confers Resistance to Cationic Antimicrobial Peptides in Streptococcus pneumoniae. J. Bacteriol. 2006, 188, 5797–5805. [Google Scholar] [CrossRef]
- McBride, S.M.; Sonenshein, A.L. The Dlt Operon Confers Resistance to Cationic Antimicrobial Peptides in Clostridium difficile. Microbiology 2011, 157, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Mechler, L.; Bonetti, E.-J.; Reichert, S.; Flötenmeyer, M.; Schrenzel, J.; Bertram, R.; François, P.; Götz, F. Daptomycin Tolerance in the Staphylococcus aureus Pita6 Mutant Is Due to Upregulation of the Dlt Operon. Antimicrob. Agents Chemother. 2016, 60, 2684–2691. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.; Rybtke, M.; Givskov, M.; Høiby, N.; Twetman, S.; Tolker-Nielsen, T. The Dlt Genes Play a Role in Antimicrobial Tolerance of Streptococcus mutans Biofilms. Int. J. Antimicrob. Agents 2016, 48, 298–304. [Google Scholar] [CrossRef]
- Mishra, N.N.; Bayer, A.S.; Weidenmaier, C.; Grau, T.; Wanner, S.; Stefani, S.; Cafiso, V.; Bertuccio, T.; Yeaman, M.R.; Nast, C.C. Phenotypic and Genotypic Characterization of Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus Strains: Relative Roles of Mprf and Dlt Operons. PLoS ONE 2014, 9, e107426. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Z. Structural Insights into the Transporting and Catalyzing Mechanism of Dltb in Lta D-Alanylation. Nat. Commun. 2024, 15, 3404. [Google Scholar] [CrossRef]
- Yonus, H.; Neumann, P.; Zimmermann, S.; May, J.J.; Marahiel, M.A.; Stubbs, M.T. Crystal Structure of Dlta: Implications for the Reaction Mechanism of Non-Ribosomal Peptide Synthetase Adenylation Domains. J. Biol. Chem. 2008, 283, 32484–32491. [Google Scholar] [PubMed]
- Du, L.; Luo, Y. Thiolation-Enhanced Substrate Recognition by D-Alanyl Carrier Protein Ligase Dlta from Bacillus cereus. F1000Research 2014, 3, 106. [Google Scholar] [PubMed]
- Otwinowski, Z.; Minor, W. Processing of X-Ray Diffraction Data Collected in Oscillation Mode. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1997; Volume 276, pp. 307–326. [Google Scholar]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J. Accurate Structure Prediction of Biomolecular Interactions with Alphafold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved Side-Chain Torsion Potentials for the Amber Ff99sb Protein Force Field. Proteins Struct. Funct. Bioinform. 2010, 78, 1950–1958. [Google Scholar]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N Log (N) Method for Ewald Sums in Large Systems. J. Chem. Phys 1993, 98, 10089. [Google Scholar]
- Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. Lincs: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [PubMed]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Zimmermann, S.; Pfennig, S.; Neumann, P.; Yonus, H.; Weininger, U.; Kovermann, M.; Balbach, J.; Stubbs, M.T. High-Resolution Structures of the D-Alanyl Carrier Protein (Dcp) Dltc from Bacillus subtilis Reveal Equivalent Conformations of Apo-and Holo-Forms. FEBS Lett. 2015, 589, 2283–2289. [Google Scholar] [CrossRef]
- Ma, D.; Wang, Z.; Merrikh, C.N.; Lang, K.S.; Lu, P.; Li, X.; Merrikh, H.; Rao, Z.; Xu, W. Crystal Structure of a Membrane-Bound O-Acyltransferase. Nature 2018, 562, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-G.; Song, C.; Yang, S.; Jeon, H.; Park, J.; Yoon, H.-J.; Im, H.; Kang, S.-M.; Eun, H.-J.; Lee, B.-J. Structural and Functional Analysis of the D-Alanyl Carrier Protein Ligase Dlta from Staphylococcus aureus Mu50. Acta Crystallogr. Sect. D Struct. Biol. 2022, 78, 424–434. [Google Scholar] [CrossRef]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. Plip: Fully Automated Protein–Ligand Interaction Profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef]
- Nandhini, P.; Kumar, P.; Mickymaray, S.; Alothaim, A.S.; Somasundaram, J.; Rajan, M. Recent Developments in Methicillin-Resistant Staphylococcus aureus (Mrsa) Treatment: A Review. Antibiotics 2022, 11, 606. [Google Scholar] [CrossRef]
- Leparfait, D.; Mahé, A.; Feng, X.; Coupri, D.; Le Cavelier, F.; Verneuil, N.; Pfund, E.; Budin-Verneuil, A.; Lequeux, T. Synthesis of New DltA Inhibitors and Their Application as Adjuvant Antibiotics to Re-Sensitize Methicillin-Resistant Staphylococcus aureus. Molecules 2025, 30, 2569. [Google Scholar] [CrossRef]




| Data Collection | SaDltCWT | SaDltCS36A |
|---|---|---|
| Wavelength (Å) | 0.97927 | 0.97935 |
| Space group | P 21 | P 21 21 2 |
| Cell dimensions | ||
| a, b, c (Å) | 33.14 63.97 77.14 | 32.73 157.96 27.80 |
| α, β, γ (°) | 90.00 93.95 90.00 | 90.00 90.00 90.00 |
| Resolution (Å) | 32.97–2.28 (2.34–2.28) a | 50.00–2.09 (2.14–2.09) |
| Rmeas | 0.109 (0.517) | 0.216 (1.11) |
| Rpim | 0.041 (0.196) | 0.062 (0.333) |
| I/σ(I) | 26.6 (6.77) | 18 (3.8) |
| No. reflections | 222,784 (14,764) | 222,344 (9149) |
| No. unique reflections | 14,689 (1453) | 8957 (891) |
| Completeness (%) | 99.7 (98.6) | 99.9 (99.9) |
| Redundancy | 7.2 (6.8) | 12.1 (10.2) |
| Wilson B-factor (Å2) | 29.53 | 26.60 |
| CC1/2 | 0.996 (0.944) | 0.997 (0.858) |
| Refinement | ||
| Resolution (Å) | 32.97–2.28 (2.36–2.28) | 32.05–2.09 (2.17–2.10) |
| Rwork/Rfree (%) | 20.0 (20.3)/25.8 (25.5) | 21.3 (23.5)/25.9 (26.7) |
| No. atoms | ||
| Protein | 2544 | 2573 |
| Ligand/Ion | - | 1 |
| Water | 76 | 67 |
| B-factors (Å2) | ||
| Protein | 36.4 | 36.13 |
| Ligand/Ion | - | 40.2 |
| Water | 37.1 | 39.3 |
| R.m.s. deviations | ||
| Bond lengths (Å) | 0.008 | 0.007 |
| Bond angles (°) | 0.95 | 0.85 |
| Ramachandran (%) | ||
| Favored | 100.00 | |
| Outliers | 1.39 | 0.00 |
| PDB code | 9XGL | 9XGM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jeon, H.; Lee, H.; Song, C.; Lee, I.-G. Structural Insights into the Staphylococcus aureus DltC-Mediated D-Alanine Transfer. Biomolecules 2026, 16, 44. https://doi.org/10.3390/biom16010044
Jeon H, Lee H, Song C, Lee I-G. Structural Insights into the Staphylococcus aureus DltC-Mediated D-Alanine Transfer. Biomolecules. 2026; 16(1):44. https://doi.org/10.3390/biom16010044
Chicago/Turabian StyleJeon, Hanul, Hyebin Lee, Chiman Song, and In-Gyun Lee. 2026. "Structural Insights into the Staphylococcus aureus DltC-Mediated D-Alanine Transfer" Biomolecules 16, no. 1: 44. https://doi.org/10.3390/biom16010044
APA StyleJeon, H., Lee, H., Song, C., & Lee, I.-G. (2026). Structural Insights into the Staphylococcus aureus DltC-Mediated D-Alanine Transfer. Biomolecules, 16(1), 44. https://doi.org/10.3390/biom16010044

