Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = Antiprotozoal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1045 KiB  
Proceeding Paper
Surveillance of Antimicrobial Use in Animal Production: A Cross-Sectional Study of Kaduna Metropolis, Nigeria
by Aliyu Abdulkadir, Marvelous Oluwashina Ajayi and Halima Abubakar Kusfa
Med. Sci. Forum 2025, 35(1), 4; https://doi.org/10.3390/msf2025035004 - 4 Aug 2025
Abstract
Measuring antimicrobial use (AMU) in animal production can provide useful data for monitoring AMU over time, which will promote antimicrobial resistance (AMR) reduction. This study involved the daily collation and validation of active primary drug sales and prescription data from veterinary outlets and [...] Read more.
Measuring antimicrobial use (AMU) in animal production can provide useful data for monitoring AMU over time, which will promote antimicrobial resistance (AMR) reduction. This study involved the daily collation and validation of active primary drug sales and prescription data from veterinary outlets and clinics of the Kaduna metropolis. In total, 83.7% of the identified antimicrobials were in the form of oral medication, and most were registered antibiotics (52.8%). Parenteral and topical forms were also identified, with 94% also being antibiotics. The estimated AMU was 282 mg/kg population correction unit (PCU). Poultry represented the most significant population, constituting 99% (31,502,004) of the study population. The class-specific AMU was antibiotics, with 274 mg/kg PCU. The antiprotozoal AMU was 418 mg/kg PCU. The anthelminthic AMU was the highest at 576 mg/kg PCU. This study has provided useful and practical information on the trends in antimicrobial use in animals, with poultry being the most important animal population involved in AMU and oxytetracycline being the most abused antibiotic in animal production. Antimicrobial stewardship (AMS) should be targeted at poultry populations, with an emphasis on reducing antibiotic use/consumption. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

25 pages, 947 KiB  
Article
Synthetic Analogs of the Alkaloid Cassiarin A with Enhanced Antimalarial Activity
by Thomas Klaßmüller, Timo Reiß, Florian Lengauer, Che Julius Ngwa, Karin Bartel, Gabriele Pradel and Franz Bracher
Pharmaceuticals 2025, 18(7), 1018; https://doi.org/10.3390/ph18071018 - 9 Jul 2025
Viewed by 352
Abstract
Background: Among the alkaloids from Cassia siamea, cassiarin A has outstanding antiprotozoal activity, but structure–activity relationships for this chemotype were only poorly understood until now. Methods: We worked out efficient approaches to hitherto underexplored analogs (12 examples) on three synthesis routes which [...] Read more.
Background: Among the alkaloids from Cassia siamea, cassiarin A has outstanding antiprotozoal activity, but structure–activity relationships for this chemotype were only poorly understood until now. Methods: We worked out efficient approaches to hitherto underexplored analogs (12 examples) on three synthesis routes which mainly comprised variations in the methyl groups at C-2 and C-5. The new compounds were tested for antiprotozoal and cytotoxic activities. Results: Introduction of a (substituted) benzene ring at C-2 led to a significant enhancement of activity against Plasmodium falciparum, while modifications of the methyl group at C-5 and the phenolic group had detrimental effects. Two of the 2-phenyl analogs further showed a resistance index comparable to the one of the reference drug chloroquine. Although the novel derivatives did not show hemolytic effects, investigation on human endothelial (HUVEC) cells at relevant concentrations indicated strong cytotoxic effects on human cells. Conclusions: Systematic structure modifications of cassiarin A led to a significant enhancement of antiplasmodial activity, but the observed strong cytotoxicity to human cells renders this library of cassiarin A derivatives inadequate for drug development. Full article
(This article belongs to the Special Issue Natural Products-Assisted Organic Synthesis in Medicinal Chemistry)
Show Figures

Graphical abstract

16 pages, 1564 KiB  
Article
Antiprotozoal Effects of Pediococcus acidilactici-Derived Postbiotic on Blastocystis Subtypes ST1/ST3
by Selahattin Aydemir, Yunus Emre Arvas, Mehmet Emin Aydemir, Fethi Barlık, Esra Gürbüz, Yener Yazgan and Abdurrahman Ekici
Pathogens 2025, 14(7), 664; https://doi.org/10.3390/pathogens14070664 - 5 Jul 2025
Viewed by 539
Abstract
Blastocystis, a common intestinal protozoan in humans, is associated with gastrointestinal disorders, irritable bowel syndrome, urticaria, and colorectal cancer. Its genetic diversity and potential for treatment resistance make it a focus of ongoing research. This study evaluated the in vitro antiprotozoal activity [...] Read more.
Blastocystis, a common intestinal protozoan in humans, is associated with gastrointestinal disorders, irritable bowel syndrome, urticaria, and colorectal cancer. Its genetic diversity and potential for treatment resistance make it a focus of ongoing research. This study evaluated the in vitro antiprotozoal activity of a postbiotic derived from Pediococcus acidilactici as a natural alternative treatment. P. acidilactici cultures were grown in MRS broth under anaerobic conditions, and the postbiotic was collected and characterized for pH, yield, organic acid composition, and phenolic compound content. Human isolates of Blastocystis subtypes ST1 and ST3 were cultured in Jones’ medium and exposed to varying postbiotic concentrations for 72 h. Viability was assessed microscopically. The cytotoxic effect of the postbiotic-derived P. acidilactici was evaluated by investigating its impact on the viability of HT-29 cells using the Cell Counting Kit 8. The postbiotic showed a 7% yield and a pH of 4.52 ± 0.11. It contained seven different organic acids, predominantly lactic acid, and eleven phenolic compounds, with naringin as the most abundant. At 4.38 mg/mL, the postbiotic achieved over 94% inhibition and 100% inhibition at 8.75 mg/mL and above. A pH analysis confirmed that the inhibition was independent of the culture medium acidity. Cell viability was not affected at the postbiotic concentration showing 100% antiprotozoal activity (8.75 mg/mL). These findings suggest that the P. acidilactici postbiotic is effective on a mixed culture of ST1 and ST3 subtypes and holds promise as a safe, natural antiprotozoal agent. Further in vivo studies are needed to confirm this. Full article
Show Figures

Figure 1

14 pages, 3094 KiB  
Article
Evaluation of the Antileishmanial Activity of Some Benzimidazole Derivatives Using In Vitro and In Silico Techniques
by Mustafa Eser, İbrahim Çavuş, Aybüke Züleyha Kaya, Asaf Evrim Evren and Leyla Yurttaş
Vet. Sci. 2025, 12(6), 550; https://doi.org/10.3390/vetsci12060550 - 5 Jun 2025
Viewed by 561
Abstract
Benzimidazole derivatives are well known for their anthelmintic activity. Investigating the potential efficacy of new derivatives of this class against various parasites is essential to identify novel drug candidates. For this purpose, an in-house molecular database was screened, and four benzimidazole-based molecules were [...] Read more.
Benzimidazole derivatives are well known for their anthelmintic activity. Investigating the potential efficacy of new derivatives of this class against various parasites is essential to identify novel drug candidates. For this purpose, an in-house molecular database was screened, and four benzimidazole-based molecules were chosen to evaluate antiprotozoal activity. The compounds (K1K4) had been previously synthesized through a four-step procedure. The potential in vitro cytotoxic properties of the compounds were assessed against the Leishmania (L.) major strain and L929 mouse fibroblast cells. The tests indicated that K1 (3-Cl phenyl) demonstrated an antileishmanial effect (IC50 = 0.6787 µg/mL) and cytotoxicity at elevated concentrations (CC50 = 250 µg/mL) in healthy cells. These findings were comparable to those of AmpB. The antileishmanial activity values were determined as follows: K2; 8.89 µg/mL, K3; 45.11 µg/mL, K4; and 69.19 µg/mL. The CC50 values were determined as follows: K2, 63 µg/mL; K3; 0.56 µg/mL; and K4, 292 µg/mL. Molecular docking and dynamic simulations were conducted to elucidate the potential mechanisms of action of the test substances. In silico investigations indicated interactions between the compounds and the active site of pteridine reductase 1 (PTR1), which is a biosynthetic enzyme essential for parasite proliferation. N-alkyl benzimidazole-based compounds exhibit potential inhibitory activity against L. (L.) major promastigotes. Therefore, these findings suggest that in vivo evaluation is warranted, and structural modifications may lead to the identification of more effective antileishmanial agents. Full article
Show Figures

Figure 1

18 pages, 1649 KiB  
Article
Antiprotozoal Activity and Cytotoxicity Screening of Lippia adoensis (Hochst.) Extracts: Growth Inhibition of Plasmodium, Leishmania, and Trypanosoma Parasites
by Eugenie Aimée Madiesse Kemgne, Mariscal Brice Tchatat Tali, Darline Dize, Cyrille Armel Njanpa Ngansop, Boniface Pone Kamdem and Fabrice Fekam Boyom
J. Oman Med. Assoc. 2025, 2(1), 6; https://doi.org/10.3390/joma2010006 - 13 May 2025
Viewed by 466
Abstract
The serendipitous discovery of antiparasitic drugs, such as quinine and artemisinin, of plant origin reveals that searching new chemical pharmacophores from medicinal plants is valuable. The present study sought to explore the antiplasmodial, antileishmanial, and antitrypanosomal activities of Lippia adoensis extracts. Crude extracts [...] Read more.
The serendipitous discovery of antiparasitic drugs, such as quinine and artemisinin, of plant origin reveals that searching new chemical pharmacophores from medicinal plants is valuable. The present study sought to explore the antiplasmodial, antileishmanial, and antitrypanosomal activities of Lippia adoensis extracts. Crude extracts of L. adoensis leaves and twigs, which were obtained by extraction using 70% ethanol in water, were assayed for antiplasmodial activity against P. falciparum 3D7 and Dd2 through the SYBR green I-based fluorescence assay; and for antileishmanial, antitrypanosomal, and cytotoxic effects on Leishmania donovani, Trypanosoma brucei brucei, and Vero cells, respectively, using resazurin colorimetric assays. In vitro phytochemical analysis of L. adoensis extracts was performed using standard methods. Moreover, liquid chromatography–mass spectrometry (LC-MS) feature-based detection and molecular networking flow on Global Natural Product Social (GNPS) were also used for the phytochemical screening of L. adoensis extracts. Crude extracts from L. adoensis inhibited the growth of P. falciparum (3D7 and Dd2) (IC50s; (3D7): 10.00 and 97.46 μg/mL; (Dd2): 29.48 and 26.96 μg/mL), L. donovani (IC50s: 22.87–10.52 μg/mL), and T. brucei brucei (IC50s: 2.30–55.06 μg/mL). The extracts were found to be non-cytotoxic to Vero cells, thus yielding median cytotoxic concentrations (CC50s) above 100 μg/mL. In vitro phytochemical analysis of the crude extracts revealed the presence of alkaloids, terpenoids, phenolic compounds, and carbohydrates. The LC-MS tandem molecular networking flow predicted that the extracts contained valsafungin A and bacillamidin in the first cluster, and fatty acids, ketone, and aldehyde derivatives in the second cluster. Overall, the present study demonstrated the antiparasitic effects of L. adoensis extracts, thus justifying the use of this plant in the traditional treatment of fever and malaria conditions. Nevertheless, detailed metabolomic studies and antiparasitic mechanisms of action of the extracts are expected to unveil the potential antiparasitic hit compounds. Full article
Show Figures

Graphical abstract

13 pages, 3458 KiB  
Article
Antiprotozoal Activity and Selectivity Index of Organic Salts of Albendazole and Mebendazole
by Miriam Guadalupe Barón-Pichardo, Janeth Gómez-García, David Durán-Martínez, Oscar Torres-Angeles, Jesús Rivera-Islas and Blanca Estela Duque-Montaño
Microbiol. Res. 2025, 16(4), 77; https://doi.org/10.3390/microbiolres16040077 - 27 Mar 2025
Viewed by 704
Abstract
Infections from the protozoa Entamoeba histolytica (E. histolytica), Giardia lamblia (G. lamblia), and Trichomonas vaginalis (T. vaginalis) pose a public health issue, with albendazole and mebendazole serving as the second-line medications for treating these parasitic infections. However, [...] Read more.
Infections from the protozoa Entamoeba histolytica (E. histolytica), Giardia lamblia (G. lamblia), and Trichomonas vaginalis (T. vaginalis) pose a public health issue, with albendazole and mebendazole serving as the second-line medications for treating these parasitic infections. However, the low aqueous solubility of these compounds has led to the exploration of new strategies to enhance their solubility, with the formation of salts being a commonly employed strategy. The sulfonates A1, A2, and A3 of albendazole, along with M1, M2, and M3 of mebendazole, were synthesized. The antiparasitic activity in vitro was assessed against the trophozoites of E. histolytica, G. lamblia, and T. vaginalis. The salts A2, A3, M2, and M3 demonstrated a greater antiparasitic effect (IC50 37.95–125.53 µM) compared to the positive controls albendazole and mebendazole. The salts A1, A3, M2, and M3 do not exhibit cytotoxic effects at concentrations of 500 µM on the Vero cell line. Taken together, these findings indicate that the formation of these new solid saline phases enhances the antiparasitic effects in vitro, which is crucial in the current search for improved, safe, and effective antiparasitic agents. Full article
Show Figures

Figure 1

18 pages, 1387 KiB  
Article
Comparative Research of Antioxidant, Antimicrobial, Antiprotozoal and Cytotoxic Activities of Edible Suillus sp. Fruiting Body Extracts
by Asta Judžentienė and Jonas Šarlauskas
Foods 2025, 14(7), 1130; https://doi.org/10.3390/foods14071130 - 25 Mar 2025
Viewed by 586
Abstract
The aim of this study was to evaluate bioactive properties of Basidiomycota fungi, mainly Suillus sp. Wide spectrum of activities were revealed for S. variegatus, S. luteus, S. bovinus and S. granulatus; and obtained results were compared with other common fungi. Total Phenolic Content (TPC) [...] Read more.
The aim of this study was to evaluate bioactive properties of Basidiomycota fungi, mainly Suillus sp. Wide spectrum of activities were revealed for S. variegatus, S. luteus, S. bovinus and S. granulatus; and obtained results were compared with other common fungi. Total Phenolic Content (TPC) varied from 245.32 ± 5.45 to 580.77 ± 13.10 (mg (GAE) per 100 g of dry weight) in methanolic extracts of S. bovinus and S. granulatus fruiting bodies, respectively. In ethyl acetate extracts, the highest TPC were obtained for S. variegatus (310 ± 9.68, mg (GAE)/100 g, dry matter), and the lowest means for S. luteus (105 ± 3.55, mg (GAE)/100 g dry weight). The ethyl acetate extracts of the tested Suillus species exhibited a stronger antioxidant activity (AA) to scavenge DPPH and ABTS•+ than the methanolic ones, and the highest effects were determined for S. luteus (EC50, 0.15 ± 0.05 and 0.23 ± 0.05%, respectively). In the case of methanolic extracts, the highest AA were evaluated for S. granulatus. (EC50 for DPPH and ABTS•+, 0.81 ± 0.30 and 0.95 ± 0.22%, respectively). The ABTS•+ scavenging potential varied from 0.25 ± 0.05 to 0.74 ± 0.10 (mmol/L, TROLOX equivalent, for S. granulatus and S. variegatus fruiting body extracts, respectively) in the ethyl acetate extracts. S. granulatus extracts demonstrated the widest range of antimicrobial effects against both gram-positive and gram-negative bacteria (from 11.7 ± 1.3 to 28.5 ± 3.3 mm against Pseudomonas aeruginosa and Bacillus mycoides, respectively); and against two fungal strains (up to 13.6 ± 0.4 mm on Meyerozyma guilliermondii) in agar disc diffusion tests. Our study revealed that methanolic extracts of the most tested Suillus sp. were not active enough against the tested parasites: Trypanosoma cruzi, Trypanosoma brucei, Leishmania infantum and Plasmodium falciparum. Only S. variegatus extracts showed good antiprotozoal effects against P. falciparum (12.70 µg/mL). Cytotoxic activity was observed on human diploid lung cells MRC-5 SV2 by S. granulatus extracts (64.45 µg/mL). For comparative purposes, extracts of other common Lithuanian fungi, such as Xerocomus sp. (X. badius, X. chrysenteron and X. subtomentosus), Tylopilus felleus, Phallus impudicus and Pycnoporus cinnabarinus were investigated for their activity. The P. cinnabarinus extracts demonstrated the highest and broadest overall effects: 1.32 µg/mL against T. brucei, 1.46 µg/mL against P. falciparum, 3.93 µg/mL against T. cruzi and 21.53 µg/mL against L. infantum. Additionally, this extract exhibited strong cytotoxicity on MRC-5 cells (13.05 µg/mL). The investigation of bioactive fungal metabolites is important for the development of a new generation of antioxidants, antimicrobials, antiparasitic and anticancer agents. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

13 pages, 1734 KiB  
Review
Trifluralin Toxicology Revisited: Microtubule Inhibition, Mitochondrial Damage, and Anti-Protozoan Potential
by Darío Lirussi
Future Pharmacol. 2025, 5(2), 14; https://doi.org/10.3390/futurepharmacol5020014 - 23 Mar 2025
Viewed by 594
Abstract
The aim of this review is to evaluate the therapeutic possibilities of trifluralin and other 2,6-dinitroaniline herbicides by assessing different aspects of trifluralin’s toxicology (including its mitochondrial toxicity), pharmacokinetics, and environmental fate. The particular features of TFL have triggered a wide range of [...] Read more.
The aim of this review is to evaluate the therapeutic possibilities of trifluralin and other 2,6-dinitroaniline herbicides by assessing different aspects of trifluralin’s toxicology (including its mitochondrial toxicity), pharmacokinetics, and environmental fate. The particular features of TFL have triggered a wide range of policies about its properties. Is has been banned in some countries and, at the same time, has been proposed as a drug for the cure of parasitic disease by some scientific research articles. The use of this pre-emergence herbicide to control broadleaf weeds and annual grasses is assumed to rely only on its microtubule depolarization or cytoskeleton disassembly abilities (on-target effect), a fact that justifies its inhibition of a wide range of microorganisms (mostly protozoans), sharing a relatively high degree of conservation in tubulin protein sequences with weeds and grasses. Recent studies have confirmed that TFL also affects mitochondrial function (off-target effect), a hypothesis previously suggested in earlier works. Here, we account for the main issues in TFL toxicology, other potential uses of the herbicide outside crops, and its feasibility for use as an antiprotozoal drug. Full article
Show Figures

Figure 1

23 pages, 2217 KiB  
Article
Antiprotozoal Aminosteroids from Pachysandra terminalis
by Lizanne Schäfer, Monica Cal, Marcel Kaiser, Pascal Mäser and Thomas J. Schmidt
Molecules 2025, 30(5), 1093; https://doi.org/10.3390/molecules30051093 - 27 Feb 2025
Viewed by 875
Abstract
Trypanosoma brucei rhodesiense (Tbr) and Plasmodium falciparum (Pf) are protozoan parasites that cause severe diseases, namely, Human African Trypanosomiasis (HAT) and Malaria. Due to limited treatment options, there is an urgent need for new antiprotozoal drugs. Pachysandra terminalis ( [...] Read more.
Trypanosoma brucei rhodesiense (Tbr) and Plasmodium falciparum (Pf) are protozoan parasites that cause severe diseases, namely, Human African Trypanosomiasis (HAT) and Malaria. Due to limited treatment options, there is an urgent need for new antiprotozoal drugs. Pachysandra terminalis (P. terminalis), a plant belonging to the family Buxaceae, is known as a rich source of aminosteroid alkaloids, and a previous study of our working group already showed that the alkaloid-enriched fraction of P. terminalis aerial parts showed promising activity against protozoan parasites. In the present study, the alkaloid-enriched fraction obtained from a 75% ethanol extract of aerial parts was separated to isolate a chemically diverse array of Pachysandra alkaloids for assessment of their antiprotozoal activity and later structure–activity studies. This work yielded a new megastigmane alkaloid (1), 7 new aminosteroids (2, 7, 16, 17, 18, 19, 20), along with 10 known aminosteroids (35, 8, 1015) and 2 artifacts (6, 9) that were formed during the isolation process. The structures were elucidated by UHPLC/+ESI-QqTOF-MS/MS, as well as extensive 1- and 2D-NMR measurements. The extract and its fractions, as well as the isolated compounds, were tested in vitro against Tbr and Pf, as well as cytotoxicity against mammalian cells (L6 cell line). The activity (IC50 values) of the isolated alkaloids ranged between 0.11 and 26 µM (Tbr) and 0.39 and 80 µM (Pf). 3α,4α-diapachysanaximine A (7) showed the highest activity against Tbr (IC50 = 0.11 µM) with a selectivity index (SI) of 133 and was also quite active against Pf with IC50 = 0.63 µM (SI = 23). This compound is, therefore, a promising new antiprotozoal target for further investigations. Full article
Show Figures

Figure 1

23 pages, 10783 KiB  
Article
Pharmacomodulation of the Redox-Active Lead Plasmodione: Synthesis of Substituted 2-Benzylnaphthoquinone Derivatives, Antiplasmodial Activities, and Physicochemical Properties
by Armin Presser, Gregor Blaser, Eva-Maria Pferschy-Wenzig, Marcel Kaiser, Pascal Mäser and Wolfgang Schuehly
Int. J. Mol. Sci. 2025, 26(5), 2114; https://doi.org/10.3390/ijms26052114 - 27 Feb 2025
Cited by 1 | Viewed by 780
Abstract
Malaria remains a major global health problem that has been exacerbated by the impact of the COVID-19 pandemic on health systems. To combat this, the World Health Organization (WHO) has set a target of driving forward research into innovative treatment methods such as [...] Read more.
Malaria remains a major global health problem that has been exacerbated by the impact of the COVID-19 pandemic on health systems. To combat this, the World Health Organization (WHO) has set a target of driving forward research into innovative treatment methods such as new drugs and vaccines. Quinones, particularly 1,4-naphthoquinones, have been identified as promising candidates for the development of antiprotozoal drugs. Herein, we report several methods for the preparation of 2-benzyl-1,4-naphthoquinones. In particular, the silver-catalyzed Kochi–Anderson radical decarboxylation is well suited for the preparation of these compounds. The antiprotozoal activity of all synthesized compounds was evaluated against Plasmodium falciparum NF54 and Trypanosoma brucei rhodesiense STIB900. Cytotoxicity towards L6 cells was also determined, and the respective selectivity indices (SI) were calculated. The synthesized compounds exhibited good antiplasmodial activity against the P. falciparum (NF54) strain, particularly (2-fluoro-5-trifluoromethylbenzyl)-menadione 2e, which showed strong efficacy and high selectivity (IC50 = 0.006 µM, SI = 7495). In addition, these compounds also displayed favorable physicochemical properties, suggesting that the benzylnaphthoquinone scaffold may be a viable option for new antiplasmodial drugs. Full article
(This article belongs to the Special Issue Advanced Synthetic Methodologies in Drug Development)
Show Figures

Graphical abstract

22 pages, 3779 KiB  
Article
Insights into the Role of Proteolytic and Adhesive Domains of Snake Venom Metalloproteinases from Bothrops spp. in the Control of Toxoplasma gondii Infection
by Samuel C. Teixeira, Thales A. M. Fernandes, Guilherme de Souza, Luana C. Luz, Marina Paschoalino, Joed P. de L. Junior, Alessandra M. Rosini, Aryani F. F. Martínez, Vitor de Freitas, Daiana S. Lopes, Patrícia B. Clissa, Vinícius C. de Souza, Milton Y. Nishiyama-Jr., Bellisa F. Barbosa, Eloisa A. V. Ferro and Veridiana de M. R. Ávila
Toxins 2025, 17(2), 95; https://doi.org/10.3390/toxins17020095 - 18 Feb 2025
Viewed by 1274
Abstract
Toxoplasmosis is an alarming public health problem that affects more than one-third of the world’s population. In our work, we investigated the antiparasitic effects of catalytically active [BpMP-I and Jararhagin (Jar)] and catalytically inactive [Jararhagin-C (Jar-C)] snake venom metalloproteinases (SVMPs) in human HeLa [...] Read more.
Toxoplasmosis is an alarming public health problem that affects more than one-third of the world’s population. In our work, we investigated the antiparasitic effects of catalytically active [BpMP-I and Jararhagin (Jar)] and catalytically inactive [Jararhagin-C (Jar-C)] snake venom metalloproteinases (SVMPs) in human HeLa cells. These toxins impaired the parasite invasion and intracellular growth, and modulated IL-6, IL-8, and MIF cytokines that control the cell susceptibility and response against T. gondii. Furthermore, we verified that the antiprotozoal activities are not restricted to the presence of the proteolytic domain, and the adhesive domains participate in the control of T. gondii infection. Also, by analyzing the structures of Jar and Jar-C through molecular modeling and dynamics, we observed that the adhesive domains in Jar-C are more exposed due to the absence of the proteolytic domain, which could favor the interaction with different targets. Our investigation on the role of SVMP domains in combating T. gondii infection highlights their potential application as biotechnological tools for creating more effective treatments for toxoplasmosis. Full article
(This article belongs to the Special Issue Animals Venom in Drug Discovery: A Valuable Therapeutic Tool)
Show Figures

Figure 1

24 pages, 342 KiB  
Review
Lipid Nanoparticles Carrying Essential Oils for Multiple Applications as Antimicrobials
by Elenice Francisco da Silva, Fernanda Aparecida Longato dos Santos, Henrique Machado Pires, Luciana Machado Bastos and Lígia Nunes de Morais Ribeiro
Pharmaceutics 2025, 17(2), 178; https://doi.org/10.3390/pharmaceutics17020178 - 31 Jan 2025
Cited by 4 | Viewed by 1606
Abstract
Lipid nanoparticles (LNPs) are versatile delivery systems with high interest because they allow the release of hydrophobic and hydrophilic molecules, such as essential oils (EOs) and plant extracts. This review covers published works between 2019 and 2024 that have reported the use of [...] Read more.
Lipid nanoparticles (LNPs) are versatile delivery systems with high interest because they allow the release of hydrophobic and hydrophilic molecules, such as essential oils (EOs) and plant extracts. This review covers published works between 2019 and 2024 that have reported the use of essential EO-based LNPs with antimicrobial properties and applications in human and animal health, as well as biopesticides. In the human healthcare field, reports have addressed the effect of encapsulating EOs in lipid nanosystems with antiviral, antibacterial, antiprotozoal and antifungal activities. In animal care, this still needs to be more deeply explored while looking for more sustainable alternatives against different types of parasites that affect animal health. Overall, the antibacterial activities of LNPs carrying EOs are described as alternatives to the use of synthetic antibiotics. In the field of agriculture, studies showed that these approaches in the control of phytopathogens and other pests that affect food production. There is a growing demand for innovative and more sustainable technologies. However, there are still some challenges to be overcome in order to allow these innovations to reach the market. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

35 pages, 9810 KiB  
Review
2-Guanidinobenzimidazole as Ligand in Supramolecular, Coordination and Organometallic Chemistry
by Itzia I. Padilla-Martínez, Alejandro Cruz and Efrén V. García-Báez
Int. J. Mol. Sci. 2025, 26(3), 1063; https://doi.org/10.3390/ijms26031063 - 26 Jan 2025
Viewed by 1151
Abstract
The benzimidazole core (BI) plays a central role in biologically active molecules. The BI nucleus is widely used as a building block to generate a variety of bioactive heterocyclic compounds to be used as antihelmintics, antiprotozoal, antimalarials, anti-inflammatories, antivirals, antimicrobials, antiparasitics, and antimycobacterials. [...] Read more.
The benzimidazole core (BI) plays a central role in biologically active molecules. The BI nucleus is widely used as a building block to generate a variety of bioactive heterocyclic compounds to be used as antihelmintics, antiprotozoal, antimalarials, anti-inflammatories, antivirals, antimicrobials, antiparasitics, and antimycobacterials. A versatile BI derivative is the 2-guanidinobenzimidazole (2GBI), which, together with its derivatives, is a very interesting poly-functional planar molecule having a delocalised 10 π electrons system conjugated with the guanidine group. The 2GBI molecule has five nitrogen atoms containing five labile N–H bonds, which interact with the out-ward-facing channel entrance, forming a labile complex with the biological receptor sites. In this work, 2GBI and their derivatives were analyzed as ligands to form host–guest, coordination and organometallic complexes. Synthesis methodology, metal geometries, hydrogen bonding (HB) interactions, and the biological activities of the complexes were discussed. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

48 pages, 6035 KiB  
Review
Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy
by Alessandro Giraudo, Cristiano Bolchi, Marco Pallavicini, Roberto Di Santo, Roberta Costi and Francesco Saccoliti
Pharmaceuticals 2025, 18(1), 28; https://doi.org/10.3390/ph18010028 - 28 Dec 2024
Cited by 1 | Viewed by 3300
Abstract
Plasmodium, Leishmania, and Trypanosoma parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The [...] Read more.
Plasmodium, Leishmania, and Trypanosoma parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite’s diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities. However, via this approach, no information on biological target(s) and mechanisms of action of compounds are provided. Among the target deconvolution strategies useful to fill this gap, photoaffinity labeling (PAL) has emerged as one of most suited to enable investigation in a complex cellular environment. More recently, PAL has been exploited to unravel the molecular basis of bioactive compounds’ function in live parasites, allowing elucidation of the mechanism of action of both approved drugs and new chemical entities. Besides highlighting new potential drug targets, PAL can provide valuable information on efficacy and liabilities of small molecules at the molecular level, which could be exploited to greatly facilitate the rational optimization of compounds in terms of potency and safety. In this review, we will report the most recent studies that have leveraged PAL to disclose the biological targets and mechanism of action of phenotypically active compounds targeting kinetoplastid diseases (i.e., human African trypanosomiasis, leishmaniasis, and Chagas disease) and malaria. Moreover, we will comment on potential perspectives that this innovative approach can provide in aiding the discovery and development of new antiprotozoal drugs. Full article
(This article belongs to the Special Issue Recent Advancements in the Development of Antiprotozoal Agents)
Show Figures

Graphical abstract

24 pages, 7028 KiB  
Article
Natural Product Identification and Molecular Docking Studies of Leishmania Major Pteridine Reductase Inhibitors
by Moses N. Arthur, George Hanson, Emmanuel Broni, Patrick O. Sakyi, Henrietta Mensah-Brown, Whelton A. Miller and Samuel K. Kwofie
Pharmaceuticals 2025, 18(1), 6; https://doi.org/10.3390/ph18010006 - 24 Dec 2024
Cited by 2 | Viewed by 2223
Abstract
Background/Objectives: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness [...] Read more.
Background/Objectives: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness is constrained by drug resistance, unfavorable side effects, and substantial associated costs. Methods: This study addresses the urgent need for novel, cost-effective drugs by employing in silico techniques to identify potential lead compounds targeting the PTR1 enzyme. A library of 1463 natural compounds from AfroDb and NANPDB, prefiltered based on Lipinski’s rules, was used to screen against the LmPTR1 target. The X-ray structure of LmPTR1 complexed with NADP and dihydrobiopterin (Protein Data Bank ID: 1E92) was identified to contain the critical residues Arg17, Leu18, Ser111, Phe113, Pro224, Gly225, Ser227, Leu229, and Val230 including the triad of residues Asp181-Tyr194-Lys198, which are critical for the catalytic process involving the reduction of dihydrofolate to tetrahydrofolate. Results: The docking yielded 155 compounds meeting the stringent criteria of −8.9 kcal/mol instead of the widely used −7.0 kcal/mol. These compounds demonstrated binding affinities comparable to the known inhibitors; methotrexate (−9.5 kcal/mol), jatrorrhizine (−9.0 kcal/mol), pyrimethamine (−7.3 kcal/mol), hardwickiic acid (−8.1 kcal/mol), and columbamine (−8.6 kcal/mol). Protein–ligand interactions and molecular dynamics (MD) simulation revealed favorable hydrophobic and hydrogen bonding with critical residues, such as Lys198, Arg17, Ser111, Tyr194, Asp181, and Gly225. Crucial to the drug development, the compounds were physiochemically and pharmacologically profiled, narrowing the selection to eight compounds, excluding those with potential toxicities. The five selected compounds ZINC000095486253, ZINC000095486221, ZINC000095486249, 8alpha-hydroxy-13-epi-pimar-16-en-6,18-olide, and pachycladin D were predicted to be antiprotozoal (Leishmania) with Pa values of 0.642, 0.297, 0.543, 0.431, and 0.350, respectively. Conclusions: This study identified five lead compounds that showed substantial binding affinity against LmPTR1 as well as critical residue interactions. A 100 ns MD combined with molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations confirmed the robust binding interactions and provided insights into the dynamics and stability of the protein–ligand complexes. Full article
Show Figures

Figure 1

Back to TopTop