Trifluralin Toxicology Revisited: Microtubule Inhibition, Mitochondrial Damage, and Anti-Protozoan Potential
Abstract
:1. Trifluralin, the Molecule
2. The Inhibitor: Molecular Mechanisms
3. Toxicology
4. Genotoxicity and Oncogenicity
5. The Drug
6. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MacBean, C. (Ed.) The Pesticide Manual, 16th ed.; British Crop Production Council: Hampshire, UK, 2012; ISBN 9781901396867. [Google Scholar]
- Callahan, H.L.; Kelley, C.; Pereira, T.; Grogl, M. Microtubule inhibitors: Structure-activity analyses suggest rational models to identify potentially active compounds. Antimicrob. Agents Chemother. 1996, 40, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Keum, Y.-S.; Li, Q.X. Reduction of nitroaromatic pesticides with zero-valent iron. Chemosphere 2004, 54, 255–263. [Google Scholar] [CrossRef]
- Guastadisegni, C.; Hall, D.; Macrí, A. Hematotoxic effects of 3,5-dinitro-4-chloro-alpha,alpha,alpha-trifluorotoluene, a water contaminant. Ecotoxicol. Environ. Saf. 1986, 12, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Guastadisegni, C.; Mantovani, A.; Ricciardi, C.; Stazi, A.V.; Maffi, D.; Salvati, A.M. Hematotoxic effects in the rat of a toluene dinitro derivative after short-term exposure. Ecotoxicol. Environ. Saf. 1989, 17, 21–29. [Google Scholar] [CrossRef]
- Mallory-Smith, C.A.; Retzinger, E.J. Revised Classification of Herbicides by Site of Action for Weed Resistance Management Strategies. Weed Technol. 2003, 17, 605–619. [Google Scholar] [CrossRef]
- Vaughn, K.C.; Lehnen, L.P. Mitotic Disrupter Herbicides. Weed Sci. 1991, 39, 450–457. [Google Scholar] [CrossRef]
- Parka, S.J.; Soper, O.F. The Physiology and Mode of Action of the Dinitroaniline Herbicides. Weed Sci. 1977, 25, 79–87. [Google Scholar] [CrossRef]
- Appleby, A.P.; Valverde, B.E. Behavior of Dinitroaniline Herbicides in Plants. Weed Technol. 1989, 3, 198–206. [Google Scholar] [CrossRef]
- Emmerson, J.L.; Anderson, R.C. Metabolism of trifluralin in the rat and dog. Toxicol. Appl. Pharmacol. 1966, 9, 84–97. [Google Scholar] [CrossRef]
- Worth, H.M. The toxicologic evaluation of benefin and trifluralin. IMS Ind. Med. Surg. 1968, 37, 545. [Google Scholar]
- Sentein, P. Trifluralin, an inhibitor of the achromatic apparatus which modifies the chromosomes. Arch. D’anatomie Microsc. Morphol. Exp. 1977, 66, 263–277. [Google Scholar]
- Bioassay of trifluralin for possible carcinogenicity. Natl. Cancer Inst. Carcinog. Tech. Rep. Ser. 1978, 34, 1–96.
- Morejohn, L.C.; Bureau, T.E.; Molè-Bajer, J.; Bajer, A.S.; Fosket, D.E. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 1987, 172, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Ortiz, R.; Dominguez, L. Unveiling the Possible Oryzalin-Binding Site in the α-Tubulin of Toxoplasma gondii. ACS Omega 2022, 7, 18434–18442. [Google Scholar] [CrossRef] [PubMed]
- Downing, K.H.; Nogales, E. Tubulin and microtubule structure. Curr. Opin. Cell Biol. 1998, 10, 16–22. [Google Scholar] [CrossRef]
- Nogales, E.; Wolf, S.G.; Downing, K.H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 1998, 391, 199–203. [Google Scholar] [CrossRef]
- Morrissette, N.S.; Mitra, A.; Sept, D.; Sibley, L.D. Dinitroanilines bind alpha-tubulin to disrupt microtubules. Mol. Biol. Cell 2004, 15, 1960–1968. [Google Scholar] [CrossRef]
- Blume, Y.B.; Nyporko, A.Y.; Yemets, A.I.; Baird, W. V Structural modeling of the interaction of plant alpha-tubulin with dinitroaniline and phosphoroamidate herbicides. Cell Biol. Int. 2003, 27, 171–174. [Google Scholar] [CrossRef]
- Mitra, A.; Sept, D. Binding and interaction of dinitroanilines with apicomplexan and kinetoplastid alpha-tubulin. J. Med. Chem. 2006, 49, 5226–5231. [Google Scholar] [CrossRef]
- Chen, J.; Chu, Z.; Han, H.; Goggin, D.E.; Yu, Q.; Sayer, C.; Powles, S.B. A Val-202-Phe α-tubulin mutation and enhanced metabolism confer dinitroaniline resistance in a single Lolium rigidum population. Pest Manag. Sci. 2020, 76, 645–652. [Google Scholar] [CrossRef]
- Wang, Y.; Han, H.; Chen, J.; Yu, Q.; Vila-Aiub, M.; Beckie, H.J.; Powles, S.B. A dinitroaniline herbicide resistance mutation can be nearly lethal to plants. Pest Manag. Sci. 2022, 78, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Li, C.; Ganesan, L.; Oak, J.; Tsai, S.; Sept, D.; Morrissette, N.S. Mutations in alpha-tubulin confer dinitroaniline resistance at a cost to microtubule function. Mol. Biol. Cell 2007, 18, 4711–4720. [Google Scholar] [CrossRef] [PubMed]
- Pham, C.L.; Morrissette, N.S. The tubulin mutation database: A resource for the cytoskeleton community. Cytoskeleton 2019, 76, 186–191. [Google Scholar] [CrossRef]
- Schibler, M.J.; Huang, B. The colR4 and colR15 beta-tubulin mutations in Chlamydomonas reinhardtii confer altered sensitivities to microtubule inhibitors and herbicides by enhancing microtubule stability. J. Cell Biol. 1991, 113, 605–614. [Google Scholar] [CrossRef]
- Erkog, F.U.; Menzer, R.E. Metabolism of trifluralin in rats. J. Agric. Food Chem. 1985, 33, 1061–1070. [Google Scholar] [CrossRef]
- Pourgholami, M.H.; Wangoo, K.T.; Morris, D.L. Albendazole-cyclodextrin complex: Enhanced cytotoxicity in ovarian cancer cells. Anticancer Res. 2008, 28, 2775–2779. [Google Scholar] [PubMed]
- Pourgholami, M.H.; Woon, L.; Almajd, R.; Akhter, J.; Bowery, P.; Morris, D.L. In vitro and in vivo suppression of growth of hepatocellular carcinoma cells by albendazole. Cancer Lett. 2001, 165, 43–49. [Google Scholar] [CrossRef]
- Poleksić, V.; Karan, V. Effects of trifluralin on carp: Biochemical and histological evaluation. Ecotoxicol. Environ. Saf. 1999, 43, 213–221. [Google Scholar] [CrossRef]
- Moody, D.E.; Narloch, B.A.; Shull, L.R.; Hammock, B.D. The effect of structurally divergent herbicides on mouse liver xenobiotic-metabolizing enzymes (P-450-dependent mono-oxygenases, epoxide hydrolases and glutathione S-transferases) and carnitine acetyltransferase. Toxicol. Lett. 1991, 59, 175–185. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, X.; Tan, Q.; Liang, R.; Chen, B.; Yu, L.; Wang, M.; Qing, M.; Yang, S.; Li, Y.; et al. Associations of dinitroaniline herbicide exposure, genetic susceptibility, and lifestyle with glucose dysregulation: A gene-environment interaction study from the Wuhan-Zhuhai cohort. Environ. Res. 2024, 262, 119938. [Google Scholar] [CrossRef]
- Ebert, E.; Leist, K.H.; Hack, R.; Ehling, G. Toxicology and hazard potential of trifluralin. Food Chem. Toxicol. 1992, 30, 1031–1044. [Google Scholar] [CrossRef]
- Byrd, R.A.; Markham, J.K.; Emmerson, J.L. Developmental toxicity of dinitroaniline herbicides in rats and rabbits. I. Trifluralin. Fundam. Appl. Toxicol. Off. J. Soc. Toxicol. 1995, 26, 181–190. [Google Scholar] [CrossRef]
- Zaidenberg, A.; Marra, C.; Luong, T.; Gómez, P.; Milani, L.; Villagra, S.; Drut, R. Trifluralin toxicity in a Chagas disease mouse model. Basic Clin. Pharmacol. Toxicol. 2007, 101, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Zago, A.M.; Faria, N.M.X.; Fávero, J.L.; Meucci, R.D.; Woskie, S.; Fassa, A.G. Pesticide exposure and risk of cardiovascular disease: A systematic review. Glob. Public Health 2022, 17, 3944–3966. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.; Lim, W.; Song, G. Ethalfluralin impairs implantation by aggravation of mitochondrial viability and function during early pregnancy. Environ. Pollut. 2022, 307, 119495. [Google Scholar] [CrossRef]
- Ham, J.; Lim, W.; Song, G. Pendimethalin induces apoptosis in testicular cells via hampering ER-mitochondrial function and autophagy. Environ. Pollut. 2021, 278, 116835. [Google Scholar] [CrossRef]
- Moreland, D.E.; Farmer, F.S.; Hussey, G.G. Inhibition of photosynthesis and respiration by substituted 2,6-dinitroaniline herbicides: II. Effects on responses in excised plant tissues and treated seedlings. Pestic. Biochem. Physiol. 1972, 2, 354–363. [Google Scholar] [CrossRef]
- Moreland, D.E.; Farmer, F.S.; Hussey, G.G. Inhibition of photosynthesis and respiration by substituted 2,6-dinitroaniline herbicides: I. Effects on chloroplast and mitochondrial activities. Pestic. Biochem. Physiol. 1972, 2, 342–353. [Google Scholar] [CrossRef]
- Moreland, D.E.; Huber, S.C. Inhibition of photosynthesis and respiration by substituted 2,6-dinitroaniline herbicides: III. Effects on electron transport and membrane properties of isolated mung bean mitochrondria. Pestic. Biochem. Physiol. 1979, 11, 247–257. [Google Scholar] [CrossRef]
- Hertel, C.; Quader, H.; Robinson, D.G.; Marmé, D. Anti-microtubular herbicides and fungicides affect Ca(2+) transport in plant mitochondria. Planta 1980, 149, 336–340. [Google Scholar] [CrossRef]
- Hertel, C.; Quader, H.; Robinson, D.G.; Roos, I.; Carafoli, E.; Marmé, D. Herbicides and fungicides stimulate Ca2+ efflux from rat liver mitochondria. FEBS Lett. 1981, 127, 37–39. [Google Scholar] [CrossRef]
- Ansari, S.M.; Saquib, Q.; Attia, S.M.; Abdel-Salam, E.M.; Alwathnani, H.A.; Faisal, M.; Alatar, A.A.; Al-Khedhairy, A.A.; Musarrat, J. Pendimethalin induces oxidative stress, DNA damage, and mitochondrial dysfunction to trigger apoptosis in human lymphocytes and rat bone-marrow cells. Histochem. Cell Biol. 2018, 149, 127–141. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, B.; Pereira, L.C.; Pazin, M.; Franco-Bernanrdes, M.F.; Dorta, D.J. Do trifluralin and tebuthiuron impair isolated rat liver mitochondria? Pestic. Biochem. Physiol. 2020, 163, 175–184. [Google Scholar] [CrossRef]
- Paul, K.C.; Krolewski, R.C.; Lucumi Moreno, E.; Blank, J.; Holton, K.M.; Ahfeldt, T.; Furlong, M.; Yu, Y.; Cockburn, M.; Thompson, L.K.; et al. A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides. Nat. Commun. 2023, 14, 2803. [Google Scholar] [CrossRef] [PubMed]
- Nehéz, M.; Selypes, A.; Páldy, A.; Mazzag, E.; Berencsi, G.; Jármay, K. The effects of five weeks treatment with dinitro-o-cresol- or trifluralin-containing pesticides on the germ cells of male mice. J. Appl. Toxicol. 1982, 2, 179–180. [Google Scholar] [CrossRef]
- Francis, P.C.; Emmerson, J.L.; Adams, E.R.; Owen, N.V. Oncogenicity study of trifluralin in B6C3F1 mice. Food Chem. Toxicol. 1991, 29, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Garriott, M.L.; Adams, E.R.; Probst, G.S.; Emmerson, J.L.; Oberly, T.J.; Kindig, D.E.; Neal, S.B.; Bewsey, B.J.; Rexroat, M.A. Genotoxicity studies on the preemergence herbicide trifluralin. Mutat. Res. 1991, 260, 187–193. [Google Scholar] [CrossRef]
- Ribas, G.; Surrallés, J.; Carbonell, E.; Xamena, N.; Creus, A.; Marcos, R. Genotoxic evaluation of the herbicide trifluralin on human lymphocytes exposed in vitro. Mutat. Res. 1996, 371, 15–21. [Google Scholar] [CrossRef]
- Kaya, B.; Marcos, R.; Yanikoğlu, A.; Creus, A. Evaluation of the genotoxicity of four herbicides in the wing spot test of Drosophila melanogaster using two different strains. Mutat. Res. 2004, 557, 53–62. [Google Scholar] [CrossRef]
- Könen, S.; Cavaş, T. Genotoxicity testing of the herbicide trifluralin and its commercial formulation Treflan using the piscine micronucleus test. Environ. Mol. Mutagen. 2008, 49, 434–438. [Google Scholar] [CrossRef]
- Hurley, P.M. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environ. Health Perspect. 1998, 106, 437–445. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Exposure Factors Handbook (1997, Final Report); U.S. Environmental Protection Agency: Washington, DC, USA, 1997.
- Saghir, S.A.; Charles, G.D.; Bartels, M.J.; Kan, L.H.L.; Dryzga, M.D.; Brzak, K.A.; Clark, A.J. Mechanism of trifluralin-induced thyroid tumors in rats. Toxicol. Lett. 2008, 180, 38–45. [Google Scholar] [CrossRef]
- Chan, M.M.; Fong, D. Inhibition of leishmanias but not host macrophages by the antitubulin herbicide trifluralin. Science 1990, 249, 924–926. [Google Scholar] [CrossRef]
- Chan, M.M.; Grogl, M.; Chen, C.C.; Bienen, E.J.; Fong, D. Herbicides to curb human parasitic infections: In vitro and in vivo effects of trifluralin on the trypanosomatid protozoans. Proc. Natl. Acad. Sci. USA 1993, 90, 5657–5661. [Google Scholar] [CrossRef] [PubMed]
- Werbovetz, K.A.; Sackett, D.L.; Delfín, D.; Bhattacharya, G.; Salem, M.; Obrzut, T.; Rattendi, D.; Bacchi, C. Selective antimicrotubule activity of N1-phenyl-3,5-dinitro-N4,N4-di-n-propylsulfanilamide (GB-II-5) against kinetoplastid parasites. Mol. Pharmacol. 2003, 64, 1325–1333. [Google Scholar] [CrossRef]
- George, T.G.; Johnsamuel, J.; Delfín, D.A.; Yakovich, A.; Mukherjee, M.; Phelps, M.A.; Dalton, J.T.; Sackett, D.L.; Kaiser, M.; Brun, R.; et al. Antikinetoplastid antimitotic activity and metabolic stability of dinitroaniline sulfonamides and benzamides. Bioorg. Med. Chem. 2006, 14, 5699–5710. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, G.; Herman, J.; Delfín, D.; Salem, M.M.; Barszcz, T.; Mollet, M.; Riccio, G.; Brun, R.; Werbovetz, K.A. Synthesis and antitubulin activity of N1- and N4-substituted 3,5-dinitro sulfanilamides against African trypanosomes and Leishmania. J. Med. Chem. 2004, 47, 1823–1832. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.M.; Tzeng, J.; Emge, T.J.; Ho, C.T.; Fong, D. Structure-function analysis of antimicrotubule dinitroanilines against promastigotes of the parasitic protozoan Leishmania mexicana. Antimicrob. Agents Chemother. 1993, 37, 1909–1913. [Google Scholar] [CrossRef]
- Carvalheiro, M.; Jorge, J.; Eleutério, C.; Pinhal, A.F.; Sousa, A.C.; Morais, J.G.; Cruz, M.E.M. Trifluralin liposomal formulations active against Leishmania donovani infections. Eur. J. Pharm. Biopharm. 2009, 71, 292–296. [Google Scholar] [CrossRef]
- Marques, C.; Carvalheiro, M.; Pereira, M.A.; Jorge, J.; Cruz, M.E.M.; Santos-Gomes, G.M. Efficacy of the liposome trifluralin in the treatment of experimental canine leishmaniosis. Vet. J. 2008, 178, 133–137. [Google Scholar] [CrossRef]
- Zaidenberg, A.; Tournier, H.; Schinella, G.; Marín, G.; Buschiazzo, H. Effects of trifluralin on Trypanosoma cruzi in vitro and in vivo. Pharmacol. Toxicol. 1999, 84, 98–100. [Google Scholar] [CrossRef]
- Traub-Cseko, Y.M.; Ramalho-Ortigão, J.M.; Dantas, A.P.; de Castro, S.L.; Barbosa, H.S.; Downing, K.H. Dinitroaniline herbicides against protozoan parasites: The case of Trypanosoma cruzi. Trends Parasitol. 2001, 17, 136–141. [Google Scholar] [CrossRef]
- Zaidenberg, A.; Luong, T.; Lirussi, D.; Bleiz, J.; Buono, M.B.D.; Quijano, G.; Drut, R.; Kozubsky, L.; Marron, A.; Buschiazzo, H. Treatment of experimental chronic Chagas disease with trifluralin. Basic Clin. Pharmacol. Toxicol. 2006, 98, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Dow, G.S.; Armson, A.; Boddy, M.R.; Itenge, T.; McCarthy, D.; Parkin, J.E.; Thompson, R.C.A.; Reynoldson, J.A. Plasmodium: Assessment of the antimalarial potential of trifluralin and related compounds using a rat model of malaria, Rattus norvegicus. Exp. Parasitol. 2002, 100, 155–160. [Google Scholar] [CrossRef]
- Fennell, B.J.; Naughton, J.A.; Dempsey, E.; Bell, A. Cellular and molecular actions of dinitroaniline and phosphorothioamidate herbicides on Plasmodium falciparum: Tubulin as a specific antimalarial target. Mol. Biochem. Parasitol. 2006, 145, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Naughton, J.A.; Hughes, R.; Bray, P.; Bell, A. Accumulation of the antimalarial microtubule inhibitors trifluralin and vinblastine by Plasmodium falciparum. Biochem. Pharmacol. 2008, 75, 1580–1587. [Google Scholar] [CrossRef] [PubMed]
- Stokkermans, T.J.; Schwartzman, J.D.; Keenan, K.; Morrissette, N.S.; Tilney, L.G.; Roos, D.S. Inhibition of Toxoplasma gondii replication by dinitroaniline herbicides. Exp. Parasitol. 1996, 84, 355–370. [Google Scholar] [CrossRef]
- Levandowsky, M.; Hauser, D.C.; Glassgold, J.M. Chemosensory responses of a protozoan are modified by antitubulins. J. Bacteriol. 1975, 124, 1037–1038. [Google Scholar] [CrossRef]
- Brand, R.M.; Mueller, C. Transdermal penetration of atrazine, alachlor, and trifluralin: Effect of formulation. Toxicol. Sci. 2002, 68, 18–23. [Google Scholar] [CrossRef]
- Urbina, J.A.; Docampo, R. Specific chemotherapy of Chagas disease: Controversies and advances. Trends Parasitol. 2003, 19, 495–501. [Google Scholar] [CrossRef]
- Bestetti, R.B.; Cardinalli-Neto, A. Sudden cardiac death in Chagas’ heart disease in the contemporary era. Int. J. Cardiol. 2008, 131, 9–17. [Google Scholar] [CrossRef]
- Arnaiz, M.R.; Fichera, L.E.; Postan, M. Cardiac myocyte hypertrophy and proliferating cell nuclear antigen expression in Wistar rats infected with Trypanosoma cruzi. J. Parasitol. 2002, 88, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Zile, M.R.; Takahashi, M.; Baicu, C.F.; Bonnema, D.D.; Cabral, F.; Menick, D.R.; Cooper, G., 4th. A direct test of the hypothesis that increased microtubule network density contributes to contractile dysfunction of the hypertrophied heart. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H2231–H2241. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G., 4th. Cytoskeletal networks and the regulation of cardiac contractility: Microtubules, hypertrophy, and cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H1003–H1014. [Google Scholar] [CrossRef]
- Simbre, V.C.; Duffy, S.A.; Dadlani, G.H.; Miller, T.L.; Lipshultz, S.E. Cardiotoxicity of cancer chemotherapy: Implications for children. Paediatr. Drugs 2005, 7, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, C.D. Casarett & Doull’s Toxicology: The Basic Science of Poisons, 9th ed.; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Giglio, A.; Vommaro, M.L. Dinitroaniline herbicides: A comprehensive review of toxicity and side effects on animal non-target organisms. Environ. Sci. Pollut. Res. Int. 2022, 29, 76687–76711. [Google Scholar] [CrossRef]
- Wallace, D.R. Trifluralin. In Encyclopedia of Toxicology, 4th ed.; Academic Press: Oxford, UK, 2024; pp. 609–613. ISBN 978-0-323-85434-4. [Google Scholar]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Gaillard, N.; Sharma, A.; Abbaali, I.; Liu, T.; Shilliday, F.; Cook, A.D.; Ehrhard, V.; Bangera, M.; Roberts, A.J.; Moores, C.A.; et al. Inhibiting parasite proliferation using a rationally designed anti-tubulin agent. EMBO Mol. Med. 2021, 13, e13818. [Google Scholar] [CrossRef]
Type | Herbicide | Residues | |||
---|---|---|---|---|---|
R1 | R2 | R3 | R4 | ||
Dinitro- anilines | Trifluralin | (CH2)2CH3 | (CH2)2CH3 | H | CF3 |
Oryzalin | (CH2)2CH3 | (CH2)2CH3 | H | SO2NH2 | |
Dinitramine | CH2-CH3 | CH2-CH3 | NH2 | CF3 | |
Pendimethalin | CH2(C2H5)CH3 | H | CH3 | CH3 | |
Ethalfluralin | CH2(CH3)=CH2 | CH2-CH3 | H | CF3 | |
Prodiamine | (CH2)2CH3 | (CH2)2CH3 | NH2 | CF3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lirussi, D. Trifluralin Toxicology Revisited: Microtubule Inhibition, Mitochondrial Damage, and Anti-Protozoan Potential. Future Pharmacol. 2025, 5, 14. https://doi.org/10.3390/futurepharmacol5020014
Lirussi D. Trifluralin Toxicology Revisited: Microtubule Inhibition, Mitochondrial Damage, and Anti-Protozoan Potential. Future Pharmacology. 2025; 5(2):14. https://doi.org/10.3390/futurepharmacol5020014
Chicago/Turabian StyleLirussi, Darío. 2025. "Trifluralin Toxicology Revisited: Microtubule Inhibition, Mitochondrial Damage, and Anti-Protozoan Potential" Future Pharmacology 5, no. 2: 14. https://doi.org/10.3390/futurepharmacol5020014
APA StyleLirussi, D. (2025). Trifluralin Toxicology Revisited: Microtubule Inhibition, Mitochondrial Damage, and Anti-Protozoan Potential. Future Pharmacology, 5(2), 14. https://doi.org/10.3390/futurepharmacol5020014