Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (251)

Search Parameters:
Keywords = AlGaN-GaN HEMT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2826 KiB  
Article
Design and Application of p-AlGaN Short Period Superlattice
by Yang Liu, Changhao Chen, Xiaowei Zhou, Peixian Li, Bo Yang, Yongfeng Zhang and Junchun Bai
Micromachines 2025, 16(8), 877; https://doi.org/10.3390/mi16080877 - 29 Jul 2025
Viewed by 362
Abstract
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using [...] Read more.
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using the device simulation software Silvaco. The results demonstrate that thin barrier structures lead to reduced acceptor incorporation, thereby decreasing the number of ionized acceptors, while facilitating vertical hole transport. Superlattice samples with varying periodic thicknesses were grown via metal-organic chemical vapor deposition, and their crystalline quality and electrical properties were characterized. The findings reveal that although gradient-thickness barriers contribute to enhancing hole concentration, the presence of thick barrier layers restricts hole tunneling and induces stronger scattering, ultimately increasing resistivity. In addition, we simulated the structure of the enhancement-mode HEMT with p-AlGaN as the under-gate material. Analysis of its energy band structure and channel carrier concentration indicates that adopting p-AlGaN superlattices as the under-gate material facilitates achieving a higher threshold voltage in enhancement-mode HEMT devices, which is crucial for improving device reliability and reducing power loss in practical applications such as electric vehicles. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices, 2nd Edition)
Show Figures

Figure 1

18 pages, 3036 KiB  
Article
Modelling and Simulation of a New π-Gate AlGaN/GaN HEMT with High Voltage Withstand and High RF Performance
by Jun Yao, Xianyun Liu, Chenglong Lu, Di Yang and Wulong Yuan
Electronics 2025, 14(15), 2947; https://doi.org/10.3390/electronics14152947 - 24 Jul 2025
Viewed by 372
Abstract
Aiming at the problems of low withstand voltage and poor RF performance of traditional HEMT devices, a new AlGaN/GaN high electron mobility transistor device with a π-gate (NπGS HEMT) is designed in this paper. The new structure incorporates a π-gate design along with [...] Read more.
Aiming at the problems of low withstand voltage and poor RF performance of traditional HEMT devices, a new AlGaN/GaN high electron mobility transistor device with a π-gate (NπGS HEMT) is designed in this paper. The new structure incorporates a π-gate design along with a PN-junction field plate and an AlGaN back-barrier layer. The device is modeled and simulated in Silvaco TCAD 2015 software and compared with traditional t-gate HEMT devices. The results show that the NπGS HEMT has a significant improvement in various characteristics. The new structure has a higher peak transconductance of 336 mS·mm−1, which is 13% higher than that of the traditional HEMT structure. In terms of output characteristics, the new structure has a higher saturation drain current of 0.188 A/mm. The new structure improves the RF performance of the device with a higher maximum cutoff frequency of about 839 GHz. The device also has a better performance in terms of voltage withstand, exhibiting a higher breakdown voltage of 1817 V. These results show that the proposed new structure could be useful for future research on high voltage withstand and high RF HEMT devices. Full article
Show Figures

Figure 1

11 pages, 3627 KiB  
Article
The Influence of Traps on the Self-Heating Effect and THz Response of GaN HEMTs
by Huichuan Fan, Xiaoyun Wang, Xiaofang Wang and Lin Wang
Photonics 2025, 12(7), 719; https://doi.org/10.3390/photonics12070719 - 16 Jul 2025
Viewed by 328
Abstract
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum [...] Read more.
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum relaxation time and the carrier lifetime. A simulation-based exploration of this mechanism provides significant scientific value for enhancing device performance through self-heating mitigation and THz response optimization. An AlGaN/GaN heterojunction HEMT model was established, with trap concentrations ranging from 0 to 5×1017 cm3. The analysis reveals that traps significantly enhance channel current (achieving 3× gain at 1×1017 cm3) via new energy levels that prolong carrier lifetime. However, elevated trap concentrations (>1×1016 cm3) exacerbate self-heating-induced current collapse, reducing the min-to-max current ratio to 0.9158. In THz response characterization, devices exhibit a distinct DC component (Udc) under non-resonant detection (ωτ1). At a trap concentration of 1×1015 cm3, Udc peaks at 0.12 V when VgDC=7.8 V. Compared to trap-free devices, a maximum response attenuation of 64.89% occurs at VgDC=4.9 V. Furthermore, Udc demonstrates non-monotonic behavior with concentration, showing local maxima at 4×1015 cm3 and 7×1015 cm3, attributed to plasma wave damping and temperature-gradient-induced electric field variations. This research establishes trap engineering guidelines for GaN HEMTs: a concentration of 4×1015 cm3 optimally enhances conductivity while minimizing adverse impacts on both self-heating and the THz response, making it particularly suitable for high-sensitivity terahertz detectors. Full article
Show Figures

Figure 1

14 pages, 2124 KiB  
Article
Simultaneous Submicron Temperature Mapping of Substrate and Channel in P-GaN/AlGaN/GaN HEMTs Using Raman Thermometry
by Jaesun Kim, Seungyoung Lim, Gyeong Eun Choi, Jung-ki Park, Ho-Young Cha, Cheol-Ho Kwak, Jinhong Lim, Youngboo Moon and Jung-Hoon Song
Appl. Sci. 2025, 15(14), 7860; https://doi.org/10.3390/app15147860 - 14 Jul 2025
Viewed by 398
Abstract
In this study, we introduce a high-resolution, high-speed thermal imaging technique using Raman spectroscopy to simultaneously measure the temperature of a substrate and a channel. By modifying the Raman spectrometer, we achieved a measurement speed faster than commercial spectrometers. This system demonstrated a [...] Read more.
In this study, we introduce a high-resolution, high-speed thermal imaging technique using Raman spectroscopy to simultaneously measure the temperature of a substrate and a channel. By modifying the Raman spectrometer, we achieved a measurement speed faster than commercial spectrometers. This system demonstrated a sub-micron spatial resolution and the ability to measure the temperatures of the Si substrate and GaN channel simultaneously. During high-current operation, we observed significant self-heating in the GaN channel, with hotspots 100 °C higher than the surroundings, while the Si substrate showed an even temperature distribution. The ability to detect hotspots can help secure the reliability of devices through early failure analysis and can also be used for improvement research to reduce hotspots. These findings highlight the potential of this technique for early defect inspection and device improvement research. This study provides a novel and effective method for measuring the sub-micron resolution temperature distribution in devices, which can be applied to various semiconductor devices, including SiC-based power devices. Full article
(This article belongs to the Special Issue Electric Power Applications II)
Show Figures

Figure 1

9 pages, 1793 KiB  
Article
Improved DC and RF Characteristics of GaN HEMT Using a Back-Barrier and Locally Doped Barrier Layer
by Shuxiang Sun, Lulu Liu, Gangchuan Qu, Xintong Xie and J. Ajayan
Micromachines 2025, 16(7), 779; https://doi.org/10.3390/mi16070779 - 30 Jun 2025
Viewed by 458
Abstract
To enhance the DC and RF performance of AlGaN/GaN HEMTs, a novel device structure was proposed and investigated through simulation. The key innovation of this new structure lies in the incorporation of an Al0.7In0.15Ga0.15N back-barrier layer and [...] Read more.
To enhance the DC and RF performance of AlGaN/GaN HEMTs, a novel device structure was proposed and investigated through simulation. The key innovation of this new structure lies in the incorporation of an Al0.7In0.15Ga0.15N back-barrier layer and an N-type locally doped AlGaN barrier layer (BD-HEMT), based on conventional device architecture. The Al0.7In0.15Ga0.15N back-barrier layer effectively confines electrons within the channel, thereby increasing the electron concentration. Simultaneously, the N-type locally doped AlGaN barrier layer introduced beneath the gate supplies additional electrons to the channel, further enhancing the electron density. These modifications collectively lead to improved DC and RF characteristics of the device. Compared to the conventional AlGaN/GaN HEMT, BD-HEMT achieves a 24.8% increase in saturation drain current and a 10.4% improvement in maximum transconductance. Furthermore, the maximum cutoff frequency and maximum oscillation frequency are enhanced by 14.8% and 21.2%, respectively. Full article
(This article belongs to the Special Issue Advances in GaN- and SiC-Based Electronics: Design and Applications)
Show Figures

Figure 1

9 pages, 1976 KiB  
Article
Adsorption Characteristics of an AlGaN/GaN Heterojunction on Potassium Ions
by Yan Dong, Mengmeng Li, Yanli Liu, Jianming Lei, Haineng Bai, Yanmei Sun, Dunjun Chen, Dongjie Zhu, Rigao Wang and Yi Sun
Molecules 2025, 30(13), 2669; https://doi.org/10.3390/molecules30132669 - 20 Jun 2025
Viewed by 260
Abstract
Slight changes in potassium levels can affect health. Therefore, rapid, reliable, and quantitative determination of potassium ion content is important for medical diagnosis. AlGaN, as a semiconductor material with good biocompatibility, has many advantages in the development of new potassium ion sensors. Understanding [...] Read more.
Slight changes in potassium levels can affect health. Therefore, rapid, reliable, and quantitative determination of potassium ion content is important for medical diagnosis. AlGaN, as a semiconductor material with good biocompatibility, has many advantages in the development of new potassium ion sensors. Understanding the adsorption behavior of a specific ion on the AlGaN surface and the eventual effect on AlGaN/GaN’s heterostructure interface is the key to obtaining high-performance nitride sensors. In this paper, we calculated the changes in the density of states and energy bands of the material after AlGaN adsorbed potassium ions through first-principles simulation. Combined with two-dimensional device simulation software, the changes in device performance caused by the changes in material properties are presented. The simulation results show that the adsorption of a single potassium ion can cause a current change in the order of milliamperes, providing a theoretical reference for the subsequent development of high-sensitivity potassium ion sensors. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

9 pages, 2014 KiB  
Article
Pd-Gated N-Polar GaN/AlGaN High-Electron-Mobility Transistor for High-Sensitivity Hydrogen Gas Detection
by Long Ge, Haineng Bai, Yidi Teng and Xifeng Yang
Crystals 2025, 15(6), 578; https://doi.org/10.3390/cryst15060578 - 18 Jun 2025
Viewed by 326
Abstract
Hydrogen gas sensing is critical for energy storage, industrial safety, and environmental monitoring. However, traditional sensors still face challenges in selectivity, sensitivity, and stability. This work introduces an innovative N-polar GaN/AlGaN high-electron-mobility transistor (HEMT) with a 10 nm Pd catalytic layer as a [...] Read more.
Hydrogen gas sensing is critical for energy storage, industrial safety, and environmental monitoring. However, traditional sensors still face challenges in selectivity, sensitivity, and stability. This work introduces an innovative N-polar GaN/AlGaN high-electron-mobility transistor (HEMT) with a 10 nm Pd catalytic layer as a hydrogen sensor. The device achieves ppm-level H2 detection with rapid recovery and reusability, which is comparable to or even exceeds the performance of conventional Ga-polar HEMTs. The N-polar structure enhances sensitivity through its unique polarization-induced 2DEG and intrinsic back barrier, while the Pd layer catalyzes H2 dissociation, forming a dipole layer that can modulate the Schottky barrier height. Experimental results demonstrate superior performance at both room temperature and elevated temperatures. Specifically, at 200 °C, the sensor exhibits a response of 102% toward 200 ppm H2, with response/recovery times of 150 s/17 s. This represents a 96% enhancement in sensitivity and a reduction of 180 s/14 s in response/recovery times compared to room-temperature conditions (23 °C). These findings highlight the potential of N-polar HEMTs for high-performance hydrogen sensing applications. Full article
Show Figures

Figure 1

14 pages, 4015 KiB  
Article
Effect of Dual Al2O3 MIS Gate Structure on DC and RF Characteristics of Enhancement-Mode GaN HEMT
by Yuan Li, Yong Huang, Jing Li, Huiqing Sun and Zhiyou Guo
Micromachines 2025, 16(6), 687; https://doi.org/10.3390/mi16060687 - 7 Jun 2025
Viewed by 949
Abstract
A dual Al2O3 MIS gate structure is proposed to enhance the DC and RF performance of enhancement-mode GaN high-electron mobility transistors (HEMTs). As a result, the proposed MOS-HEMT with a dual recessed MIS gate structure offers 84% improvements in cutoff [...] Read more.
A dual Al2O3 MIS gate structure is proposed to enhance the DC and RF performance of enhancement-mode GaN high-electron mobility transistors (HEMTs). As a result, the proposed MOS-HEMT with a dual recessed MIS gate structure offers 84% improvements in cutoff frequency (fT) and 92% improvements in maximum oscillation frequency (fmax) compared to conventional HEMTs (from 7.1 GHz to 13.1 GHz and 17.5 GHz to 33.6 GHz, respectively). As for direct-current characteristics, a remarkable reduction in off-state gate leakage current and a 26% enhancement in the maximum saturation drain current (from 519 mA·mm−1 to 658 A·mm−1) are manifested in HEMTs with new structures. The maximum transconductance (gm) is also raised from 209 mS·mm−1 to 246 mS·mm−1. Correspondingly, almost unchanged gate–source capacitance curves and gate–drain capacitance curves are also discussed to explain the electrical characteristic mechanism. These results indicate the superiority of using a dual Al2O3 MIS gate structure in GaN-based HEMTs to promote the RF and DC performance, providing a reference for further development in a miniwatt antenna amplifier and sub-6G frequencies of operation. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

17 pages, 9212 KiB  
Article
Monolithically Integrated THz Detectors Based on High-Electron-Mobility Transistors
by Adam Rämer, Edoardo Negri, Eugen Dischke, Serguei Chevtchenko, Hossein Yazdani, Lars Schellhase, Viktor Krozer and Wolfgang Heinrich
Sensors 2025, 25(11), 3539; https://doi.org/10.3390/s25113539 - 4 Jun 2025
Viewed by 489
Abstract
We present THz direct detectors based on an AlGaN/GaN high electron mobility transistor (HEMT), featuring excellent optical sensitivity and low noise-equivalent power (NEP). These detectors are monolithically integrated with various antenna designs and exhibit state-of-the-art performance at room temperature. Their architecture enables straightforward [...] Read more.
We present THz direct detectors based on an AlGaN/GaN high electron mobility transistor (HEMT), featuring excellent optical sensitivity and low noise-equivalent power (NEP). These detectors are monolithically integrated with various antenna designs and exhibit state-of-the-art performance at room temperature. Their architecture enables straightforward scaling to two-dimensional formats, paving the way for terahertz focal plane arrays (FPAs). In particular, for one detector type, a fully realized THz FPA has been demonstrated in this paper. Theoretical and experimental characterizations are provided for both single-pixel detectors (0.1–1.5 THz) and the FPA (0.1–1.1 THz). The broadband single detectors achieve optical sensitivities exceeding 20 mA/W up to 1 THz and NEP values below 100 pW/Hz. The best optical NEP is below 10 pW/Hz at 175 GHz. The reported sensitivity and NEP values were achieved including antenna and optical coupling losses, underlining the excellent overall performance of the detectors. Full article
Show Figures

Figure 1

13 pages, 1463 KiB  
Article
Weak-Light-Enhanced AlGaN/GaN UV Phototransistors with a Buried p-GaN Structure
by Haiping Wang, Feiyu Zhang, Xuzhi Zhao, Haifan You, Zhan Ma, Jiandong Ye, Hai Lu, Rong Zhang, Youdou Zheng and Dunjun Chen
Electronics 2025, 14(10), 2076; https://doi.org/10.3390/electronics14102076 - 20 May 2025
Cited by 1 | Viewed by 484
Abstract
We propose a novel ultraviolet (UV) phototransistor (PT) architecture based on an AlGaN/GaN high electron mobility transistor (HEMT) with a buried p-GaN layer. In the dark, the polarization-induced two-dimensional electron gas (2DEG) at the AlGaN/GaN heterojunction interface is depleted by the buried p-GaN [...] Read more.
We propose a novel ultraviolet (UV) phototransistor (PT) architecture based on an AlGaN/GaN high electron mobility transistor (HEMT) with a buried p-GaN layer. In the dark, the polarization-induced two-dimensional electron gas (2DEG) at the AlGaN/GaN heterojunction interface is depleted by the buried p-GaN and the conduction channel is closed. Under UV illumination, the depletion region shrinks to just beneath the AlGaN/GaN interface and the 2DEG recovers. The retraction distance of the depletion region during device turn-on operation is comparable to the thickness of the AlGaN barrier layer, which is an order of magnitude smaller than that in the conventional p-GaN/AlGaN/GaN PT, whose retraction distance spans the entire GaN channel layer. Consequently, the proposed device demonstrates significantly enhanced weak-light detection capability and improved switching speed. Silvaco Atlas simulations reveal that under a weak UV intensity of 100 nW/cm2, the proposed device achieves a photocurrent density of 1.68 × 10−3 mA/mm, responsivity of 8.41 × 105 A/W, photo-to-dark-current ratio of 2.0 × 108, UV-to-visible rejection ratio exceeding 108, detectivity above 1 × 1019 cm·Hz1/2/W, and response time of 0.41/0.41 ns. The electron concentration distributions, conduction band variations, and 2DEG recovery behaviors in both the conventional and novel structures under dark and weak UV illumination are investigated in depth via simulations. Full article
(This article belongs to the Special Issue Advances in Semiconductor GaN and Applications)
Show Figures

Figure 1

7 pages, 1890 KiB  
Article
Investigation of Temperature-Dependent Gate Degradation in Normally-Off AlGaN/GaN High-Electron-Mobility Transistor p-GaN
by Jeonghyeok Yoon and Hyungtak Kim
Electronics 2025, 14(9), 1764; https://doi.org/10.3390/electronics14091764 - 26 Apr 2025
Viewed by 672
Abstract
The effect of temperature on gate degradation behavior was analyzed in Schottky-type p-GaN gate HEMTs under a positive gate voltage. TDDB measurements were conducted at various temperatures, revealing an accelerated gate failure rate at lower temperatures. A Weibull distribution analysis was employed to [...] Read more.
The effect of temperature on gate degradation behavior was analyzed in Schottky-type p-GaN gate HEMTs under a positive gate voltage. TDDB measurements were conducted at various temperatures, revealing an accelerated gate failure rate at lower temperatures. A Weibull distribution analysis was employed to predict the 10-year rated gate voltage, showing that the rated voltage at −10 °C is significantly lower than at 60 °C. Furthermore, the derived activation energy of −0.22 eV indicates that gate degradation intensifies in colder environments. Hole accumulation occurring at the p-GaN/AlGaN interface can promote degradation by facilitating electron injection and accelerating defect generation in the presence of strong electric fields. At higher temperatures, hole release mitigates charge accumulation, thereby extending device longevity. These findings highlight the necessity of reliability assessments for p-GaN gate HEMTs suitable for environments with low temperatures, including space and polar environments. Full article
(This article belongs to the Special Issue Recent Advances in GaN Power Devices)
Show Figures

Figure 1

12 pages, 6694 KiB  
Article
Normally Off AlGaN/GaN MIS-HEMTs with Self-Aligned p-GaN Gate and Non-Annealed Ohmic Contacts via Gate-First Fabrication
by Yinmiao Yin, Qian Fan, Xianfeng Ni, Chao Guo and Xing Gu
Micromachines 2025, 16(4), 473; https://doi.org/10.3390/mi16040473 - 16 Apr 2025
Cited by 1 | Viewed by 864
Abstract
This study introduces an enhancement-mode AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) featuring a self-aligned p-GaN gate structure, fabricated using a gate-first process. The key innovation of this work lies in simplifying the fabrication process by utilizing gate metallization for both electrical contact and etching [...] Read more.
This study introduces an enhancement-mode AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) featuring a self-aligned p-GaN gate structure, fabricated using a gate-first process. The key innovation of this work lies in simplifying the fabrication process by utilizing gate metallization for both electrical contact and etching mask functions, enabling precise self-alignment. A highly selective Cl2/N2/O2 inductively coupled plasma (ICP) etching process was optimized to etch the p-GaN layer in the access regions, with a selectivity ratio of 33:1 and minimal damage to the AlGaN barrier. Additionally, a novel, non-annealed ohmic contact formation technique was developed, leveraging ICP etching to create nitrogen vacancies that facilitate contact formation without requiring thermal annealing. This technique streamlines the process by combining ohmic contact formation and mesa isolation into a single lithographic step. Incorporating a SiNx gate dielectric layer led to a 4.5 V threshold voltage shift in the fabricated devices. The resulting devices exhibited improved electrical performance, including a wide gate voltage swing (>10 V), a high on/off current ratio (~107), and clear pinch-off characteristics. These results demonstrate the effectiveness of the proposed fabrication approach, offering significant improvements in process efficiency and manufacturability. Full article
Show Figures

Figure 1

11 pages, 4995 KiB  
Article
Numerical Investigation on Electrothermal Performance of AlGaN/GaN HEMTs with Nanocrystalline Diamond/SiNx Trench Dual-Passivation Layers
by Peiran Wang, Chenkai Deng, Chuying Tang, Xinyi Tang, Wenchuan Tao, Ziyang Wang, Nick Tao, Qi Wang, Qing Wang and Hongyu Yu
Nanomaterials 2025, 15(8), 574; https://doi.org/10.3390/nano15080574 - 10 Apr 2025
Viewed by 450
Abstract
In this work, AlGaN/GaN high-electron-mobility transistors (HEMTs) with a nanocrystalline diamond (NCD)/SiNx trench dual-passivated (TDP) structure were promoted, which demonstrated superior performance with a higher saturation output current (Idss) of 1.266 A/mm, a higher maximum transconductance (Gmmax [...] Read more.
In this work, AlGaN/GaN high-electron-mobility transistors (HEMTs) with a nanocrystalline diamond (NCD)/SiNx trench dual-passivated (TDP) structure were promoted, which demonstrated superior performance with a higher saturation output current (Idss) of 1.266 A/mm, a higher maximum transconductance (Gmmax) of 0.329 S/mm, and a lower resistance (Ron) of 2.64 Ω·mm. Thermal simulations revealed a peak junction temperature of 386.36 K for TDP devices under Vds/Vgs = 30 V/0 V, representing 13.7% and 4.5% reductions versus SiNx single-passivated (SP, 447.59 K) and dual-passivated (DP, 404.58 K) devices, respectively. The results suggested that compared to conventional SP and DP devices, TDP devices can effectively suppress the self-heating effect, thereby improving output characteristics while maintaining superior RF small-signal characteristics. Moreover, the results of numerical simulations indicated that the enhanced electrothermal performance of TDP devices was predominantly attributed to the mitigation of temperature-induced degradation in electron mobility and drift velocity, thereby preserving their high power and high frequency capabilities. These results highlighted the significant potential of TDP devices to improve the performance of GaN HEMTs in high-power and high-frequency applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 5489 KiB  
Article
Preparation and Characterization of GaN-on-Si HEMTs with Nanocrystalline Diamond Passivation
by Yu Fu, Songyuan Song, Zeyang Ren, Liaoliang Zhu, Jinfeng Zhang, Kai Su, Junfei Chen, Tao Zhang, Weidong Zhu, Junpeng Li, Weidong Man, Yue Hao and Jincheng Zhang
Crystals 2025, 15(3), 242; https://doi.org/10.3390/cryst15030242 - 28 Feb 2025
Viewed by 982
Abstract
Thermal accumulation under high output power densities is one of the most significant challenges for GaN power devices. Diamond, with its ultra-high thermal conductivity, offers great potential for improving heat dissipation in high-power GaN devices. In this study, nanocrystalline diamond (NCD) passivated high-electron [...] Read more.
Thermal accumulation under high output power densities is one of the most significant challenges for GaN power devices. Diamond, with its ultra-high thermal conductivity, offers great potential for improving heat dissipation in high-power GaN devices. In this study, nanocrystalline diamond (NCD) passivated high-electron mobility transistors (HEMTs) based on AlGaN/GaN-on-Si heterostructures were fabricated with a gate length of 2 μm. The NCD film has a thickness of 250–383 nm and a uniform morphology with a grain size of mostly ~240 nm. Compared to the devices without NCD passivation, those devices with the NCD passivation layer show an increase in current density from 447 mA/mm to 555 mA/mm, a reduction in on-resistance from 20 Ω·mm to 13 Ω·mm, and a noticeable suppression of current degradation at high-drain voltages. Junction temperature measurements under varied output power densities reveal a 36% improvement in heat dissipation efficiency with the NCD passivation. These results fully demonstrate the promising potential of NCD for enhancing heat dissipation in high-power GaN devices. Full article
(This article belongs to the Special Issue Advances in Diamond Crystals and Devices)
Show Figures

Figure 1

16 pages, 3723 KiB  
Article
Real-Time 0.89 THz Terahertz Imaging with High-Electron-Mobility Transistor Detector and Hydrogen Cyanide Laser for Non-Destructive Nut Detection
by Nu Zhang, Haiqing Liu, Huihui Yan, Hongbei Wang, Jiaxing Xie, Yinxian Jie and Damao Yao
Micromachines 2025, 16(2), 185; https://doi.org/10.3390/mi16020185 - 4 Feb 2025
Viewed by 1206
Abstract
We present a method for real-time terahertz imaging that employs a hydrogen cyanide (HCN) laser as a terahertz source at 0.89 THz and an AlGaN/GaN high-electron-mobility transistor (HEMT) terahertz detector as a camera. We developed an HCN laser and constructed a transmission imaging [...] Read more.
We present a method for real-time terahertz imaging that employs a hydrogen cyanide (HCN) laser as a terahertz source at 0.89 THz and an AlGaN/GaN high-electron-mobility transistor (HEMT) terahertz detector as a camera. We developed an HCN laser and constructed a transmission imaging system based on it. This combination utilizes a high-power HCN laser with a highly sensitive terahertz detector, enabling practical applications of real-time terahertz imaging. A resolution test plane was produced to determine that the system could achieve a lateral resolution of 2 mm, and real-time terahertz imaging was carried out on Siemens star, pistachios, and sunflower seeds. The results demonstrate that the hidden structures inside nuts can be observed by terahertz imaging. Through our analysis of terahertz images of both sunflower seeds and pine nuts, we successfully assessed their fullness and demonstrated the capability to distinguish between full and unfilled nuts. These findings validate the potential of this technique for future applications in nut detection. We discuss the limitations of the current setup, potential improvements, and possible applications, and we outline the introduction of aspherical lenses and terahertz transmission tomography. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

Back to TopTop