Weak-Light-Enhanced AlGaN/GaN UV Phototransistors with a Buried p-GaN Structure
Abstract
:1. Introduction
2. Device Structures and Operation Principles
3. Simulation Models and Parameter Optimizations
4. Comparison of Conventional and Novel PTs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, D.B.; Jiang, K.; Sun, X.J.; Guo, C.L. AlGaN photonics: Recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 2018, 10, 43–110. [Google Scholar] [CrossRef]
- Alaie, Z.; Nejad, S.M.; Yousefi, M.H. Recent advances in ultraviolet photodetectors. Mater. Sci. Semicond. Process. 2015, 29, 16–55. [Google Scholar] [CrossRef]
- Zhang, J.X.; Deng, L.Q.; Xia, S.H.; Guo, C.Y.; Liu, K.Z.; Chen, L.; Liu, W.; Xiao, H.; Yang, Z.H.; Guo, W.; et al. Recent advances and prospects for a GaN-based hybrid type ultraviolet photodetector. Semicond. Sci. Technol. 2024, 39, 073001. [Google Scholar] [CrossRef]
- Yu, H.B.; Xiao, S.D.; Memon, M.H.; Luo, Y.M.; Wang, R.; Li, D.; Shen, C.; Sun, H.D. Dual-functional triangular-shape micro-size light-emitting and detecting diode for on-chip optical communication in the deep ultraviolet band. Laser Photonics Rev. 2024, 18, e2300789. [Google Scholar] [CrossRef]
- Memon, M.H.; Yu, H.B.; Luo, Y.M.; Kang, Y.; Chen, W.; Li, D.; Luo, D.Y.; Xiao, S.D.; Zuo, C.J.; Gong, C.; et al. A three-terminal light emitting and detecting diode. Nat. Electron. 2024, 7, 279–287. [Google Scholar] [CrossRef]
- Mou, W.J.; Zhao, L.N.; Chen, L.L.; Yan, D.W.; Ma, H.R.; Yang, G.F.; Gu, X.F. GaN-based Schottky barrier ultraviolet photodetectors with graded doping on patterned sapphire substrates. Solid-State Electron. 2017, 133, 78–82. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Donaldson, W.R. Ultrafast UV AlGaN metal-semiconductor-metal photodetector with a response time below 25 ps. IEEE J. Quantum Electron. 2020, 56, 1–7. [Google Scholar] [CrossRef]
- Golgir, H.R.; Li, D.W.; Keramatnejad, K.; Zou, Q.M.; Xiao, J.; Wang, F.; Jiang, L.; Silvain, J.F.; Lu, Y.F. Fast growth of GaN epilayers via laser-assisted metal-organic chemical vapor deposition for ultraviolet photodetector applications. ACS Appl. Mater. Interfaces 2017, 9, 21539–21547. [Google Scholar] [CrossRef]
- Zou, X.B.; Zhang, X.; Zhang, Y.; Lyu, Q.F.; Tang, C.W.; Lau, K.M. GaN single nanowire p-i-n diode for high-temperature operations. ACS Appl. Electron. Mater. 2020, 2, 719–724. [Google Scholar] [CrossRef]
- Roccaforte, F.; Greco, G.; Fiorenza, P.; Iucolano, F. An overview of normally-off GaN-based high electron mobility transistors. Materials 2019, 12, 1599. [Google Scholar] [CrossRef]
- Martens, M.; Schlegel, J.; Vogt, P.; Brunner, F.; Lossy, R.; Würfl, J.; Weyers, M.; Kneissl, M. High gain ultraviolet photodetectors based on AlGaN/GaN heterostructures for optical switching. Appl. Phys. Lett. 2011, 98, 211114. [Google Scholar] [CrossRef]
- Satterthwaite, P.F.; Yalamarthy, A.S.; Scandrette, N.A.; Newaz, A.K.M.; Senesky, D.G. High responsivity, low dark current ultraviolet photodetectors based on two-dimensional electron gas interdigitated transducers. ACS Photonics 2018, 5, 4277–4282. [Google Scholar] [CrossRef]
- Jang, W.H.; Kim, H.S.; Kang, M.J.; Cho, C.H.; Cha, H.Y. Recessed AlGaN/GaN UV phototransistor. J. Semicond. Tech. Sci. 2019, 19, 184–189. [Google Scholar] [CrossRef]
- Kuan, T.M.; Chang, S.J.; Su, Y.K.; Chih-Hsin, K.; Webb, J.B.; Bardwell, J.A.; Liu, Y.; Tang, H.P.; Lin, W.J.; Cherng, Y.T.; et al. High optical-gain AlGaN/GaN 2 dimensional electron gas photodetectors. Jpn. J. Appl. Phys. 2003, 42, 5563–5564. [Google Scholar] [CrossRef]
- Narita, T.; Wakejima, A.; Egawa, T. Ultraviolet photodetectors using transparent gate AlGaN/GaN high electron mobility transistor on silicon substrate. Jpn. J. Appl. Phys. 2013, 52, 01AG06. [Google Scholar] [CrossRef]
- Li, L.; Hosomi, D.; Miyachi, Y.; Hamada, T.; Miyoshi, M.; Egawa, T. High-performance ultraviolet photodetectors based on lattice-matched InAlN/AlGaN heterostructure field-effect transistors gated by transparent ITO films. Appl. Phys. Lett. 2017, 111, 102106. [Google Scholar] [CrossRef]
- Baek, S.H.; Lee, G.W.; Cho, C.Y.; Lee, S.N. Gate-controlled amplifiable ultraviolet AlGaN/GaN high-electron-mobility phototransistor. Sci. Rep. 2021, 11, 102106. [Google Scholar] [CrossRef]
- Zhang, H.C.; Liang, F.Z.; Song, K.; Xing, C.; Wang, D.H.; Yu, H.B.; Huang, C.; Sun, Y.; Yang, L.; Zhao, X.L.; et al. Demonstration of AlGaN/GaN-based ultraviolet phototransistor with a record high responsivity over 3.6 × 107 A/W. Appl. Phys. Lett. 2021, 118, 242105. [Google Scholar] [CrossRef]
- Iwaya, M.; Miura, S.; Fujii, T.; Kamiyama, S.; Amano, H.; Akasaki, I. High-performance UV detector based on AlGaN/GaN junction heterostructure-field-effect transistor with a p-GaN gate. Phys. Status Solidi C 2009, 6, S972–S975. [Google Scholar] [CrossRef]
- Lyu, Q.F.; Jiang, H.X.; Lau, K.M. High gain and high ultraviolet/visible rejection ratio photodetectors using p-GaN/AlGaN/GaN heterostructures grown on Si. Appl. Phys. Lett. 2020, 117, 071101. [Google Scholar] [CrossRef]
- Wang, H.P.; You, H.F.; Xu, Y.; Sun, X.Y.; Wang, Y.W.; Pan, D.F.; Ye, J.D.; Liu, B.; Chen, D.J.; Lu, H.; et al. High-responsivity and fast-response ultraviolet phototransistors based on enhanced p-GaN/AlGaN/GaN HEMTs. ACS Photonics 2022, 9, 2040–2045. [Google Scholar] [CrossRef]
- Chen, D.B.; Zhang, P.H.; Wang, L.Y.; Huang, W. Demonstration of p-GaN/AlGaN/GaN-based ultraviolet phototransistors with sub-saturated transfer characteristics. Semicond. Sci. Technol. 2023, 38, 055016. [Google Scholar] [CrossRef]
- Pandit, B.; Jang, H.S.; Jeong, Y.; An, S.M.; Chandramohan, S.; Min, K.K.; Won, S.M.; Choi, C.J.; Cho, J.H.; Hong, S.G.; et al. Highly sensitive ultraviolet photodetector based on an AlGaN/GaN HEMT with graphene-on-p-GaN mesa structure. Adv. Mater. Interfaces 2023, 10, 2202379. [Google Scholar] [CrossRef]
- Han, Z.F.; Li, X.D.; Wang, H.Y.; Liu, Y.B.; Yang, W.T.; Lv, Z.S.; Wang, M.; You, S.Z.; Zhang, J.C.; Hao, Y. Highly responsive gate-controlled p-GaN/AlGaN/GaN ultraviolet photodetectors with a high-transmittance indium tin oxide gate. Micromachines 2024, 15, 156. [Google Scholar] [CrossRef]
- Wang, H.P.; You, H.F.; Wang, Y.F.; Wang, Y.W.; Guo, H.; Ye, J.D.; Lu, H.; Zhang, R.; Zheng, Y.D.; Chen, D.J. High-performance p-GaN/AlGaN/GaN HEMT-based ultraviolet phototransistors with fW-Level weak light detection capacity. IEEE Electron Device Lett. 2024, 45, 1899–1902. [Google Scholar] [CrossRef]
- Wang, X.D.; Hu, W.D.; Pan, M.; Hou, L.W.; Xie, W.; Xu, J.T.; Li, X.Y.; Chen, X.S.; Lu, W. Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes. J. Appl. Phys. 2014, 115, 013103. [Google Scholar] [CrossRef]
- Yu, G.; Ishikawa, H.; Umeno, M.; Egawa, T.; Watanabe, J.; Jimbo, T.; Soga, T. Optical properties of AlxGa1-xN/GaN heterostructures on sapphire by spectroscopic ellipsometry. Appl. Phys. Lett. 1998, 72, 2202–2204. [Google Scholar] [CrossRef]
- You, H.F.; Shao, Z.G.; Wang, Y.R.; Hu, L.Q.; Chen, D.J.; Lu, H.; Zhang, R.; Zheng, Y.D. Fine control of the electric field distribution in the heterostructure multiplication region of AlGaN avalanche photodiodes. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Wang, H.P.; You, H.F.; Pan, D.F.; Chen, D.J.; Lu, H.; Zhang, R.; Zheng, Y.D. Polarization enhanced GaN avalanche photodiodes with p-type In0.05Ga0.95N layer. IEEE Photonics J. 2020, 12, 1. [Google Scholar] [CrossRef]
- Wang, H.P.; You, H.F.; Yang, J.G.; Yang, M.Q.; Wang, L.; Zhao, H.; Xie, Z.L.; Chen, D.J. Simulation study on the structure design of p-GaN/AlGaN/GaN HEMT-based ultraviolet phototransistors. Micromachines 2022, 13, 2210. [Google Scholar] [CrossRef]
- Ji, M.H.; Kim, J.; Detchprohm, T.; Dupuis, R.D.; Sood, A.K.; Dhar, N.K.; Lewis, J. Uniform and reliable GaN p-i-n ultraviolet avalanche photodiode arrays. IEEE Photonics Technol. Lett. 2016, 28, 2015–2018. [Google Scholar] [CrossRef]
- Mayerhöfer, T.G.; Pahlow, S.; Popp, J. The Bouguer-Beer-Lambert law: Shining light on the obscure. ChemPhysChem 2020, 21, 2029–2046. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qiu, X.J.; Lv, Z.S.; Song, Z.Y.; Jiang, H. Ultrahigh detectivity, high-speed and low-dark current AlGaN solar-blind heterojunction field-effect phototransistors realized using dual-float-photogating effect. Photonics Res. 2022, 10, 111–119. [Google Scholar] [CrossRef]
- Lu, J.B.; Lv, Z.S.; Jiang, H. AlGaN solar-blind phototransistor capable of directly detecting sub-fW signals: Self-depletion and photorecovery of full-channel 2DEG enabled by a quasi-pseudomorphic structure. Photonics Res. 2023, 11, 1217–1226. [Google Scholar] [CrossRef]
- Xie, Z.W.; Jiang, K.; Zhang, S.L.; Wang, Z.Q.; Shan, X.Y.; Wang, B.X.; Ben, J.W.; Liu, M.R.; Lv, S.P.; Chen, Y.; et al. Ultraviolet optoelectronic synapse based on AlScN/p-i-n GaN heterojunction for advanced artificial vision systems. Adv. Mater. 2025, 37, e2419316. [Google Scholar] [CrossRef]
- Casamento, J.; Nomoto, K.; Nguyen, T.S.; Lee, H.; Savant, C.; Li, L.; Hickman, A.; Maeda, T.; Encomendero, J.; Gund, V.; et al. FerroHEMTs: High-current and high-speed all-epitaxial AlScN/GaN ferroelectric transistors. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022. [Google Scholar] [CrossRef]
- Tahhan, M.B.; Logan, J.A.; Hardy, M.T.; Ancona, M.G.; Schultz, B.; Appleton, B.; Kazior, T.; Meyer, D.J.; Chumbes, E.M. Passivation schemes for ScAlN-barrier mm-wave high electron mobility transistors. IEEE Trans. Electron. Devices 2022, 69, 962–967. [Google Scholar] [CrossRef]
- Ligl, J.; Leone, S.; Manz, C.; Kirste, L.; Doering, P.; Fuchs, T.; Prescher, M.; Ambacher, O. Metalorganic chemical vapor phase deposition of AlScN/GaN heterostructures. J. Appl. Phys. 2020, 127, 195704. [Google Scholar] [CrossRef]
- Manz, C.; Leone, S.; Kirste, L.; Ligl, J.; Frei, K.; Fuchs, T.; Prescher, M.; Waltereit, P.; Verheijen, M.A.; Graff, A.; et al. Improved AlScN/GaN heterostructures grown by metal-organic chemical vapor deposition. Semicond. Sci. Technol. 2021, 36, 034003. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, W.Y.; Holec, D.; Humphreys, C.J.; Moram, M.A. Elastic constants and critical thicknesses of ScGaN and ScAlN. J. Appl. Phys. 2013, 114, 243516. [Google Scholar] [CrossRef]
- Streicher, I.; Leone, S.; Kirste, L.; Manz, C.; Stranák, P.; Prescher, M.; Waltereit, P.; Mikulla, M.; Quay, R.; Ambacher, O. Enhanced AlScN/GaN heterostructures grown with a novel precursor by metal-organic chemical vapor deposition. Phys. Status Solidi RRL 2023, 17, 2200387. [Google Scholar] [CrossRef]
- Streicher, I.; Leone, S.; Manz, C.; Kirste, L.; Prescher, M.; Waltereit, P.; Mikulla, M.; Quay, R.; Ambacher, O. Effect of AlN and AlGaN Interlayers on AlScN/GaN Heterostructures Grown by Metal-Organic Chemical Vapor Deposition. Cryst. Growth Des. 2023, 23, 782–791. [Google Scholar] [CrossRef]
- Döring, P.; Krause, S.; Friesicke, C.; Quay, R. Theoretical limits of the matching bandwidth and output power of AlScN-based HEMTs. IEEE Trans. Electron. Devices 2024, 71, 1670–1675. [Google Scholar] [CrossRef]
Channel Thickness | 50 nm | 100 nm | 150 nm |
---|---|---|---|
Remaining Barrier Thickness | 11 nm | 10 nm | 9 nm |
Polarization Charge Density | 8.5 × 1012 cm−2 | 7.9 × 1012 cm−2 | 7.1 × 1012 cm−2 |
2DEG Density 1 | 5.2 × 108 cm−2 | 5.9 × 108 cm−2 | 4.3 × 108 cm−2 |
Photocurrent | 1.49 × 10−3 mA/mm | 1.68 × 10−3 mA/mm | 1.21 × 10−3 mA/mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, F.; Zhao, X.; You, H.; Ma, Z.; Ye, J.; Lu, H.; Zhang, R.; Zheng, Y.; Chen, D. Weak-Light-Enhanced AlGaN/GaN UV Phototransistors with a Buried p-GaN Structure. Electronics 2025, 14, 2076. https://doi.org/10.3390/electronics14102076
Wang H, Zhang F, Zhao X, You H, Ma Z, Ye J, Lu H, Zhang R, Zheng Y, Chen D. Weak-Light-Enhanced AlGaN/GaN UV Phototransistors with a Buried p-GaN Structure. Electronics. 2025; 14(10):2076. https://doi.org/10.3390/electronics14102076
Chicago/Turabian StyleWang, Haiping, Feiyu Zhang, Xuzhi Zhao, Haifan You, Zhan Ma, Jiandong Ye, Hai Lu, Rong Zhang, Youdou Zheng, and Dunjun Chen. 2025. "Weak-Light-Enhanced AlGaN/GaN UV Phototransistors with a Buried p-GaN Structure" Electronics 14, no. 10: 2076. https://doi.org/10.3390/electronics14102076
APA StyleWang, H., Zhang, F., Zhao, X., You, H., Ma, Z., Ye, J., Lu, H., Zhang, R., Zheng, Y., & Chen, D. (2025). Weak-Light-Enhanced AlGaN/GaN UV Phototransistors with a Buried p-GaN Structure. Electronics, 14(10), 2076. https://doi.org/10.3390/electronics14102076