sensors-logo

Journal Browser

Journal Browser

Topical Advisory Panel Members' Collection Series: "Terahertz Sensors"

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Physical Sensors".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 2757

Special Issue Editors


E-Mail Website
Guest Editor
Department of Physics, Goethe University of Frankfurt am Main, Max von Laue Strasse 1, 60438 Frankfurt, Germany
Interests: terahertz sensors; microwave sensors; bio-electromagnetic sensors; radar sensors
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Information Technology, Electrical Engineering, Mechatronics Department, Technische Hochschule Mittelhessen, Wiesenstraße 14, 35390 Giessen, Germany
Interests: metamaterial; THz sensors; material characterization techniques; surface acoustic wave components (SAW) sensors; sensors for particle accelerators; antennas; energy harvesting; localization and monitoring systems

Special Issue Information

Dear Colleagues,

In recent years, terahertz technology has developed rapidly and has shown a wide range of potential applications in the fields of communication, imaging, detection, and medicine. Terahertz (THz) waves have the properties of good coherence, high signal-to-noise ratio, and low radiation energy and are widely used in the field of sensing. This Special Issue aims to provide a comprehensive overview of terahertz sensors. We seek research articles and reviews that provide insight into terahertz sensors. Topics of interest include (but are not limited to):

  • Sensing mechanisms;
  • Terahertz physics;
  • Gas and liquid sensors;
  • THz imaging systems;
  • Chemical sensors;
  • Biomedical sensors;
  • Fiber optic sensors;
  • THz sensors and arrays;
  • THz diffractive optics;
  • Medical imaging.

Prof. Dr. Viktor Krozer
Prof. Dr. Andreas Penirschke
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 6083 KiB  
Article
Switchable and Tunable Terahertz Metamaterial Absorber with Ultra-Broadband and Multi-Band Response for Cancer Detection
by Yadgar I. Abdulkarim
Sensors 2025, 25(5), 1463; https://doi.org/10.3390/s25051463 - 27 Feb 2025
Cited by 1 | Viewed by 524
Abstract
This paper proposes a switchable and tunable terahertz metamaterial absorber utilizing a graphene-VO2 layered structure. The design employs reconfigurable seven-layer architecture from top to bottom as (topaz/VO2/topaz/Si/graphene/topaz/Au). CST software 2018 was used to simulate the absorption properties of terahertz waves [...] Read more.
This paper proposes a switchable and tunable terahertz metamaterial absorber utilizing a graphene-VO2 layered structure. The design employs reconfigurable seven-layer architecture from top to bottom as (topaz/VO2/topaz/Si/graphene/topaz/Au). CST software 2018 was used to simulate the absorption properties of terahertz waves (0–14 THz). The proposed metamaterial exhibits dual functionalities depending on the VO2 phase state. In the insulating state, the design achieves a tri-band response with distinct peaks at 3.12 THz, 5.65 THz, and 7.24 THz. Conversely, the VO2’s conducting state enables ultra-broadband absorption from 2.52 THz to 11.62 THz. Extensive simulations were conducted to demonstrate the tunability of absorption: Simulated absorption spectra were obtained for broadband and multi-band states. Electric field distributions were analyzed at resonance frequencies for both conducting and insulating states. The impact was studied of VO2 conductivity, loss tangent, and graphene’s chemical potential on absorption. The influence was investigated of topaz layer thickness on the absorption spectrum. Absorption behavior was examined of VO2 under different states and layer configurations. Variations were analyzed of absorption spectra with frequency, polarization angle, and incident angle. The proposed design used for the detection of cervical and breast cancer detection and the sensitivity is about is 0.2489 THz/RIU. The proposed design holds significant promise for real-world applications due to its reconfigurability. This tunability allows for tailoring absorption properties across a broad terahertz range, making it suitable for advanced devices like filters, modulators, and perfect absorbers. Full article
Show Figures

Figure 1

21 pages, 12012 KiB  
Article
Subwavelength Imaging in Sub-THz Range Using Dielectric Waveguide
by Paweł Komorowski, Przemysław Zagrajek, Mateusz Kaluza, Andrzej Kołodziejczyk, Sławomir Ertman, Adrianna Nieradka, Mateusz Surma and Agnieszka Siemion
Sensors 2025, 25(2), 336; https://doi.org/10.3390/s25020336 - 9 Jan 2025
Viewed by 939
Abstract
Terahertz radiation patterns can be registered using various detectors; however, in most cases, the scanning resolution is limited. Thus, we propose an alternative method for the detailed scanning of terahertz light field distributions after passing simple and complex structures. Our method relies on [...] Read more.
Terahertz radiation patterns can be registered using various detectors; however, in most cases, the scanning resolution is limited. Thus, we propose an alternative method for the detailed scanning of terahertz light field distributions after passing simple and complex structures. Our method relies on using a dielectric waveguide to achieve better sampling resolution. The optical properties of many materials were analyzed using time-domain spectroscopy. A cyclic olefin copolymer (COC) was chosen as one of the most transparent. This study contains a characterization of the losses introduced by the waveguide and a discussion of the setup’s geometry. As a structure introducing the radiation pattern, a 2D quasi-periodic amplitude grating was chosen to observe the Talbot effect (self-imaging). Moreover, some interesting physical phenomena were observed and discussed due to the possibility of detailed scanning, with subwavelength resolution, registering the terahertz wavefront changes behind the structure. Full article
Show Figures

Figure 1

13 pages, 27964 KiB  
Article
Enhanced Terahertz Sensing via On-Chip Integration of Diffractive Optics with InGaAs Bow-Tie Detectors
by Karolis Redeckas, Vytautas Jakštas, Matas Bernatonis, Vincas Tamošiūnas, Gintaras Valušis and Linas Minkevičius
Sensors 2025, 25(1), 229; https://doi.org/10.3390/s25010229 - 3 Jan 2025
Viewed by 707
Abstract
The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie [...] Read more.
The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie diodes directly on a semiconductor chip. Numerical simulations were conducted to optimize the Fresnel zone plate’s focal length and the InP substrate’s thickness to achieve constructive interference at 600 GHz, room-temperature operation and achieve a sensitivity more than an order of magnitude higher—up to 24.5 V/W—than that of a standalone bow-tie detector. Investigations revealed the strong angular dependence of the incident radiation on the Fresnel zone plate-integrated bow-tie diode’s response. These findings pave a promising avenue for the further development of single-sided integration of flat optics with THz detectors, enabling improved sensitivity, simplified manufacturing processes, and reduced costs for THz detection systems in a more compact design scheme. Full article
Show Figures

Figure 1

Back to TopTop