Monolithically Integrated THz Detectors Based on High-Electron-Mobility Transistors
Abstract
1. Introduction
2. Resistive Self-Mixing
3. Design
3.1. HEMT Dimensions
- Gate length: 150 nm;
- Gate width: 3 µm and 5 µm;
- Gate head: 350 µm;
- Gate-source distance: 350 nm;
- Gate-drain distance: 1.1 µm.
3.2. Design Requirements and Antenna Structure
- Top Row: Overview of the entire structure.
- Bottom Row: Detailed metallic structures of the HEMT.
- Column (a): a scanning electron micrograph shows the partially fabricated HEMT, where the gate terminal completely encloses the drain terminal.
- Column (b): the continuation of the metal surface, directly connected to the gate terminal.
- Column (c): the metallic connection of the source terminal which is in the same plane as the gate connection.
- Column (d): the metallic connection structure of the drain terminal
3.3. Integration of HEMT Terminals into the Design
- Prevents crosstalk with neighboring structures.
- Preserves antenna impedance by isolating connection structures.
- Drain and gate terminals (red curve).
- Source and gate terminals (blue curve).
- The real part of the impedance was less than 10 over the entire frequency range.
- The reactance increases with frequency due to the inductive behavior introduced by the distance between the MIM capacitor and the reference plane.
- Low Frequencies (<80 GHz): The structure is small with respect to the operating wavelength, causing the impedance to be influenced by the external environment rather than the antenna.
- Transition Range (80 GHz–400 GHz): The structure’s edge acts as a short circuit, allowing the antenna to dominate impedance. However, the wavelength remains too large for efficient radiation.
- High Frequencies (>400 GHz): The antenna structure reaches at least a quarter of the wavelength, where the impedance is determined by the radiation resistance in parallel with a capacitance determined by the metallic structures of the HEMT.
4. Implementation
4.1. Single Detector
- Structures A2 and B2: Broadband THz detectors with log-spiral and bow-tie antennas, respectively;
- Structures A1, C1, and D2: Narrowband slot antennas covering 100 GHz to 400 GHz.
- Structure A1: Two HEMTs connected in parallel at the structure’s edge.
- Structure D2: Narrowband design for 350 GHz.
4.2. THz Focal Plane Array
5. Measurements
5.1. Single Detectors
5.2. THz Focal Plane Array
6. Results
6.1. Single Detectors
6.2. THz Focal Plane Array
7. Conclusions
8. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-Dimensional |
DC | Direct Current |
EM | ElectroMagnetic |
FET | Field-Effect Transistor |
FFT | Fast Fourier Transform |
FPS | Focal Plane Array |
FPS | Frames per second |
HBT | Heterojunction Bipolar Transistor |
HEMT | High Electron Mobility Bipolar Transistor |
LO | Local Oscillator |
MIM | Metal Insulator Metal |
MMIC | Monolithic Microwave Integrated Circuit |
NEP | Noise Equivalent Power |
RF | Radio Frequency |
SiC | Silicon Carbide |
SMU | Source Measurement Unit |
SNR | Signal-to-Noise Ratio |
TIA | TransImpedance Amplifier |
References
- Pawar, A.Y.; Sonawane, D.D.; Erande, K.B.; Derle, D.V. Terahertz technology and its applications. Drug Invent. Today 2013, 5, 157–163. [Google Scholar] [CrossRef]
- Markelz, A.G.; Mittleman, D.M. Perspective on terahertz applications in bioscience and biotechnology. Acs Photonics 2022, 9, 1117–1126. [Google Scholar] [CrossRef]
- Amini, T.; Jahangiri, F.; Ameri, Z.; Hemmatian, M.A. A review of feasible applications of THz waves in medical diagnostics and treatments. J. Lasers Med. Sci. 2021, 12, e92. [Google Scholar] [CrossRef] [PubMed]
- Kemp, M.C.; Taday, P.; Cole, B.E.; Cluff, J.; Fitzgerald, A.J.; Tribe, W.R. Security applications of terahertz technology. In Proceedings of the Terahertz for Military and Security Applications, Orlando, FL, USA, 21 April 2003; Volume 5070, pp. 44–52. [Google Scholar]
- Amenabar, I.; Lopez, F.; Mendikute, A. In introductory review to THz non-destructive testing of composite mater. J. Infrared Millim. Terahertz Waves 2013, 34, 152–169. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Maita, F.; Maiolo, L.; Beccherelli, R.; Zografopoulos, D.C. Broadband dielectric characterization of high-permittivity Rogers substrates via terahertz time-domain spectroscopy in reflection mode. Appl. Sci. 2022, 12, 8259. [Google Scholar] [CrossRef]
- Fuscaldo, W.; De Simone, S.; Dimitrov, D.; Marinova, V.; Mussi, V.; Beccherelli, R.; Zografopoulos, D.C. Terahertz characterization of graphene conductivity via time-domain reflection spectroscopy on metal-backed dielectric substrates. J. Phys. D Appl. Phys. 2022, 55, 365101. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Maita, F.; Maiolo, L.; Beccherelli, R.; Zografopoulos, D.C. Broadband Terahertz Characterization and Electromagnetic Models for Fishnet Metasurfaces: From the Homogenization to the Resonant Regime. IEEE Trans. Antennas Propag. 2024, 72, 6771–6776. [Google Scholar] [CrossRef]
- Leitenstorfer. The 2023 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2023, 56, 223001. [Google Scholar] [CrossRef]
- Virginia Diods Inc. Available online: https://www.vadiodes.com/en/products/detectors (accessed on 27 May 2025).
- Ikamas, K.; Cibiraite, D.; Bauer, M.; Lisauskas, A.; Krozer, V.; Roskos, H.G. Ultrabroadband Terahertz Detectors Based on CMOS Field-Effect Transistors with Integrated Antennas. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018. [Google Scholar] [CrossRef]
- Rehman, A.; Sai, P.; Delgado Notario, J.; But, D.; Prystawko, P.; Ivonyak, Y.; Cywinski, G.; Knap, W.; Rumyantsev, S. Comparative analysis of sub-THz detection in graphene, GaN HEMT, and FinFET devices. In Proceedings of the 2022 24th International Microwave and Radar Conference (MIKON), Gdansk, Poland, 12–14 September 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Blin, S.; Teppe, F.; Tohme, L.; Hisatake, S.; Arakawa, K.; Nouvel, P.; Coquillat, D.; Penarier, A.; Torres, J.; Varani, L.; et al. Plasma-Wave Detectors for Terahertz Wireless Communication. IEEE Electron Device Lett. 2012, 33, 1354–1356. [Google Scholar] [CrossRef]
- Bauer, M.; Rämer, A.; Chevtchenko, S.A.; Osipov, K.Y.; Cibiraite, D.; Pralgauskaite, S.; Ikamas, K.; Lisauskas, A.; Heinrich, W.; Krozer, V.; et al. A High-Sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-Tie Antenna. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 430–444. [Google Scholar] [CrossRef]
- Rämer, A.; Negri, E.; Yacoub, H.; Theumer, J.; Wartena, J.; Krozer, V.; Heinrich, W. A Monolithically Integrated InP HBT-based THz Detector. In Proceedings of the 2024 54th European Microwave Conference (EuMC), Paris, France, 24–26 September 2024; pp. 1000–1003. [Google Scholar]
- Coquillat, D.; Nodjiadjim, V.; Duhant, A.; Triki, M.; Strauss, O.; Konczykowska, A.; Riet, M.; Dyakonova, N.; Knap, W. High-Speed InP-Based double heterojunction bipolar transistors and varactors for three-dimensional terahertz computed tomography. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter, and TerahertzWaves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017. [Google Scholar] [CrossRef]
- Ojefors, E.; Pfeiffer, U.R.; Lisauskas, A.; Roskos, H.G. A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology. IEEE J. Solid-State Circuits 2009, 44, 1968–1976. [Google Scholar] [CrossRef]
- Liebchen, T.; Dischke, E.; Ramer, A.; Muller, F.; Schellhase, L.; Chevtchenko, S.; Heinrich, W.; Krozer, V. Compact 12 × 12-Pixel THz Camera using AlGaN/GaN HEMT Technology Operating at Room Temperature. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 29 August–3 September 2021. [Google Scholar] [CrossRef]
- Cibiraite-Lukenskiene, D.; Ikamas, K.; Lisauskas, T.; Rysiavets, A.; Krozer, V.; Roskos, H.G.; Lisauskas, A. Completely Passive Room-Temperature Imaging of Human Body Radiation Below 1 THz with Field-Effect Transistors. In Proceedings of the 2020 45th International Conference on Infrared, Millimeter, and TerahertzWaves (IRMMW-THz), Buffalo, NY, USA, 8–13 November 2020; Volume 9078, pp. 1–2. [Google Scholar] [CrossRef]
- Garcia, J.; Pedro, J.; Fuente, M.L.D.L.; Carvalho, N.D.; Sanchez, A.; Puente, A. Resistive FET mixer conversion loss and IMD optimization by selective drain bias. IEEE Trans. Microw. Theory Tech. 1999, 47, 2382–2392. [Google Scholar] [CrossRef]
- Yazdani, H.; Chevtchenko, S.; Ostermay, I.; Würfl, J. Threshold voltage shift induced by intrinsic stress in gate metal of AlGaN/GaN HFET. Semicond. Sci. Technol. 2021, 36, 055018. [Google Scholar] [CrossRef]
- Osipov, K.; Lossy, R.; Kurpas, P.; Chevtchenko, S.; Ostermay, I.; Würfl, J.; Tränkle, G. Iridium Plug Technology for AlGaN/GaN HEMT Short-Gate Fabrication. In Proceedings of the CS MANTECH 2017, Indian Wells, CA, USA, 22–25 May 2017. [Google Scholar]
- TOPTICA Photonics AG. Available online: https://www.toptica.com/products/terahertz-systems/frequency-domain/terabeam (accessed on 27 May 2025).
- Lisauskas, A.; Boppel, S.; Haring-Bolivar, P.; Roskos, H. Terahertz responsivity and low-frequency noise in biased silicon field-effect transistors. Appl. Phys. Lett. 2013, 102, 153505. [Google Scholar] [CrossRef]
- Rämer, A.; Shevchenko, S. Radiation Detector and Method for Producing. German Patent DE 10 2017 103 687 B3, 26 April 2018. European Patent EP 3 449 508 B1, 30 August 2018, U.S. Patent US13/106,896, 3 November 2020, Japanese Patent JP 6914967 B2, 4 August 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rämer, A.; Negri, E.; Dischke, E.; Chevtchenko, S.; Yazdani, H.; Schellhase, L.; Krozer, V.; Heinrich, W. Monolithically Integrated THz Detectors Based on High-Electron-Mobility Transistors. Sensors 2025, 25, 3539. https://doi.org/10.3390/s25113539
Rämer A, Negri E, Dischke E, Chevtchenko S, Yazdani H, Schellhase L, Krozer V, Heinrich W. Monolithically Integrated THz Detectors Based on High-Electron-Mobility Transistors. Sensors. 2025; 25(11):3539. https://doi.org/10.3390/s25113539
Chicago/Turabian StyleRämer, Adam, Edoardo Negri, Eugen Dischke, Serguei Chevtchenko, Hossein Yazdani, Lars Schellhase, Viktor Krozer, and Wolfgang Heinrich. 2025. "Monolithically Integrated THz Detectors Based on High-Electron-Mobility Transistors" Sensors 25, no. 11: 3539. https://doi.org/10.3390/s25113539
APA StyleRämer, A., Negri, E., Dischke, E., Chevtchenko, S., Yazdani, H., Schellhase, L., Krozer, V., & Heinrich, W. (2025). Monolithically Integrated THz Detectors Based on High-Electron-Mobility Transistors. Sensors, 25(11), 3539. https://doi.org/10.3390/s25113539