Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = 2,4-diamino-1,3,5-triazines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2783 KB  
Article
Influence of π-Conjugated Backbone Length and Tail Chain Number on Self-Assembly Structures of 4,6-Diamino-1,3,5-triazine Derivatives Revealed by STM
by Yi Wang, Fuqiong Wang, Xiaoyang Zhao, Zhipeng Zhang, Yue Huang, Hua Zheng, Xiaohong Cheng and Xinrui Miao
Chemistry 2025, 7(6), 173; https://doi.org/10.3390/chemistry7060173 - 27 Oct 2025
Viewed by 545
Abstract
4,6-Diamino-1,3,5-triazine (DT) derivatives typically exhibit excellent liquid crystal properties, attracting numerous researchers interested in enhancing their performance. In this paper, two DT molecules (DT−10 and DT−12) are employed to elucidate the effects of their backbone length and number of branches in the tail [...] Read more.
4,6-Diamino-1,3,5-triazine (DT) derivatives typically exhibit excellent liquid crystal properties, attracting numerous researchers interested in enhancing their performance. In this paper, two DT molecules (DT−10 and DT−12) are employed to elucidate the effects of their backbone length and number of branches in the tail chains on self-assembled nanostructures using scanning tunneling microscopy (STM) at the 1-octanoic acid/highly ordered pyrolytic graphite interface, compared to our previous report (2TDT−n, n = 10,12,16,18). DT−10 features a short backbone and a trialkoxy chain tail, whereas DT−12 possesses a long backbone and bifurcated chain tails. STM results reveal that DT−10 assembles into a cross-shaped nanostructure with DT head groups arranged in a head-to-head configuration stabilized by a pair of N–H···N hydrogen bindings (HBs). In contrast, DT−12 assembles into a two-row linear pattern, where DT head groups exhibit a side-by-side arrangement mediated by a pair of N–H···N HBs. Comparison with our previous findings indicates that although variations in backbone length and tail chain branching can modulate the nanostructural features of DT derivatives, the chain length of DT molecules emerges as a pivotal factor governing their assembly architecture. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Graphical abstract

12 pages, 1174 KB  
Article
In Vitro Activity of the Triazinyl Diazepine Compound FTSD2 Against Drug-Resistant Mycobacterium tuberculosis Strains
by Carlos Aranaga, Ruben Varela, Aura Falco, Janny Villa, Leydi M. Moreno, Manuel Causse and Luis Martínez-Martínez
Pharmaceuticals 2025, 18(3), 360; https://doi.org/10.3390/ph18030360 - 2 Mar 2025
Viewed by 1337
Abstract
Background/Objectives: Compounds derived from pyrimido-diazepine have shown selective inhibition of the susceptible Mycobacterium tuberculosis strain H37Rv. However, there is a need for studies that evaluate the activity of these compounds against multidrug-resistant strains and clinical isolates. This study aims to evaluate the antitubercular [...] Read more.
Background/Objectives: Compounds derived from pyrimido-diazepine have shown selective inhibition of the susceptible Mycobacterium tuberculosis strain H37Rv. However, there is a need for studies that evaluate the activity of these compounds against multidrug-resistant strains and clinical isolates. This study aims to evaluate the antitubercular potential of FTSD2 against drug-resistant strains of M. tuberculosis. Methods: The compound 4-(2,4-diamino-8-(4-methoxyphenyl)-8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepin-6-yl)-N-(2-(4-(dimethylamino)-6-(4-fluorophenyl)amino-1,3,5-triazin-2-yl)amino)ethyl)benzenesulfonamide (FTSD2) was tested against drug-resistant M. tuberculosis strains at minimal inhibitory and bactericidal concentrations (MIC and MBC). Kill curve assays were performed to assess bactericidal activity, and cytotoxicity was evaluated in human monocyte-derived macrophages and the RAW 264.7 murine macrophage cell line. Intracellular death assays, specifically macrophage infection assays, were also conducted to evaluate the effect of FTSD2 on intracellular M. tuberculosis growth. Results: FTSD2 inhibited the growth of drug-resistant M. tuberculosis at MIC and MBC values between 0.5 and 1 mg/L. Kill curve assays demonstrated concentration-dependent bactericidal activity. No cytotoxicity was observed in macrophages at concentrations below 64 mg/L. Additionally, FTSD2 significantly suppressed intracellular M. tuberculosis growth after 192 h. FTSD2 did not inhibit the growth of nontuberculous mycobacteria, including M. avium, M. abscessus, M. fortuitum, M. chelonae, and M. smegmatis at 50 mg/L. Conclusions: FTSD2 exhibits strong potential as a leading compound for the development of new antitubercular drugs, with selective activity against M. tuberculosis and minimal cytotoxic effects on macrophages. Further studies are needed to explore its mechanisms of action and therapeutic potential. Full article
Show Figures

Figure 1

17 pages, 6412 KB  
Article
Enhancing the Photocatalytic Activity of Immobilized TiO2 Using Laser-Micropatterned Surfaces
by Theodoros Giannakis, Sevasti-Kiriaki Zervou, Theodoros M. Triantis, Christophoros Christophoridis, Erasmia Bizani, Sergey V. Starinskiy, Panagiota Koralli, Georgios Mousdis, Anastasia Hiskia and Maria Kandyla
Appl. Sci. 2024, 14(7), 3033; https://doi.org/10.3390/app14073033 - 4 Apr 2024
Cited by 6 | Viewed by 3489
Abstract
In the past, the application of TiO2 slurry reactors has faced difficulties concerning the recovery and reusability of the catalyst. In response to these challenges, immobilized photocatalyst systems have been investigated, wherein the catalyst is fixed onto a solid support, frequently with [...] Read more.
In the past, the application of TiO2 slurry reactors has faced difficulties concerning the recovery and reusability of the catalyst. In response to these challenges, immobilized photocatalyst systems have been investigated, wherein the catalyst is fixed onto a solid support, frequently with reduced photocatalytic performance. In the present study, thin TiO2 films were developed in the anatase phase by the sol-gel process and spin-cast on laser-microstructured silicon substrates, to form photocatalytic surfaces of increased activity. The TiO2 films were thoroughly characterized using SEM-EDX, XRD, UV–Vis spectroscopy, and Raman spectroscopy. The photocatalytic activity of these surfaces was evaluated by the degradation of atrazine in aqueous solution under UV irradiation. Their photocatalytic activity was found to be significantly enhanced (mean kobs 24.1 × 10−3 min−1) when they are deposited on laser-microstructured silicon compared with flat silicon (mean kobs 4.9 × 10−3 min−1), approaching the photocatalytic activity of sol-gel TiO2 fortified with Degussa P25, used as a reference material (mean kobs 32.7 × 10−3 min−1). During the photocatalytic process, several transformation products (TPs) of atrazine, namely 2-chloro-4-(isopropylamino)-6-amino-s-triazine (CIAT), 2-chloro-4-amino-6-(ethylamino)-s-triazine (CAET), and 2-chloro-4.6-diamino-s-triazine (CAAT), were identified with LC–MS/MS. The stability of the photocatalytic surfaces was also investigated and remained unchanged through multiple cycles of usage. The surfaces were further tested with two other pollutants, i.e., 2,4,6-trichlorophenol and bisphenol-a, showing similar photocatalytic activity as with atrazine. Full article
Show Figures

Figure 1

21 pages, 19175 KB  
Article
Synthesis of a Novel P/N-Triazine-Containing Ring Flame Retardant and Its Application in Epoxy Resin
by Yi Yu, Junlei Chen, Anxin Ding, Changzeng Wang, Yunfei Wang and Ling Yang
Polymers 2024, 16(7), 871; https://doi.org/10.3390/polym16070871 - 22 Mar 2024
Cited by 2 | Viewed by 2089
Abstract
To meet the environmental protection and flame retardancy requirements for epoxy resins (EPs) in certain fields, in this study, a novel triazine-ring-containing DOPO-derived compound (VDPD), derived from vanillin, 2,4-Diamino-6-phenyl-1,3,5-triazine, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), was synthesized using a one-pot method. Flame-retardant epoxy resin (FREP) was [...] Read more.
To meet the environmental protection and flame retardancy requirements for epoxy resins (EPs) in certain fields, in this study, a novel triazine-ring-containing DOPO-derived compound (VDPD), derived from vanillin, 2,4-Diamino-6-phenyl-1,3,5-triazine, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), was synthesized using a one-pot method. Flame-retardant epoxy resin (FREP) was prepared by adding various ratios of VDPD to EP and curing with 4,4-diaminodiphenylmethane (DDM). The curing behavior, thermal stability, mechanical properties, and flame-retardant properties of the FREP were examined in various tests. According to the results, when the amount of VDPD added to the EP increased, the glass transition temperature of the FREP decreased linearly, and the flame-retardant properties gradually improved. With a 0.4 wt.% P content, the vertical burning rating of EP/DDM/VDPD-0.4 (according to the theoretical content of VDPD) reached the V-0 level, and the LOI value reached 33.1%. In addition, the results of a CCT showed that the peak heat release rate (PHRR) of EP/DDM/VDPD-0.4 decreased by 32% in comparison with that of the EP. Furthermore, compared with those of the EP, the tensile strength of EP/DDM/VDPD-0.4 decreased from 80.2 MPa to 74.3 MPa, only decreasing by 6 MPa, and the tensile modulus increased. Overall, VDPD can maintain the mechanical properties of EP and effectively improve its flame-retardant properties. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

3 pages, 533 KB  
Proceeding Paper
The Reaction of 1,6-Diamino-4-aryl-2-oxo-1,2-dihydropyridine- 3,5-Dicarbonitriles with Certain Electrophilic Agents
by Alexei A. Dolganov, Alexandra R. Chikava and Victor V. Dotsenko
Chem. Proc. 2023, 14(1), 8; https://doi.org/10.3390/ecsoc-27-16081 - 6 Dec 2023
Viewed by 3244
Abstract
The reaction of 1,6-diamino-2-oxo-1,2-dihydropyridine-3,5-dicarbonitriles, which are easily available through the reaction of cyanoacetohydrazide with arylmethylene malononitriles, with ninhydrin leads to the formation of novel dihydroindeno[1,2-e]pyrido[1,2-b][1,2,4]triazines. Another active carbonyl compound, glyoxal, reacts with 1,6-diamino-2-oxo-1,2-dihydropyridine-3,5-dicarbonitriles under mild conditions to give functionalized 6-oxo-6H-pyrido[1,2-b][1,2,4]triazine-7,9-dicarbonitriles. Full article
Show Figures

Scheme 1

11 pages, 1110 KB  
Article
Synthesis of New Polyheterocyclic Pyrrolo[3,4-b]pyridin-5-ones via an Ugi-Zhu/Cascade/Click Strategy
by Roberto E. Blanco-Carapia, Enrique A. Aguilar-Rangel, Mónica A. Rincón-Guevara, Alejandro Islas-Jácome and Eduardo González-Zamora
Molecules 2023, 28(10), 4087; https://doi.org/10.3390/molecules28104087 - 14 May 2023
Cited by 3 | Viewed by 3590
Abstract
A diversity-oriented synthesis (DOS) of two new polyheterocyclic compounds was performed via an Ugi-Zhu/cascade (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration)/click strategy, both step-by-step to optimize all involved experimental stages, and in one pot manner to evaluate the scope and sustainability of this polyheterocyclic-focused [...] Read more.
A diversity-oriented synthesis (DOS) of two new polyheterocyclic compounds was performed via an Ugi-Zhu/cascade (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration)/click strategy, both step-by-step to optimize all involved experimental stages, and in one pot manner to evaluate the scope and sustainability of this polyheterocyclic-focused synthetic strategy. In both ways, the yields were excellent, considering the high number of bonds formed with release of only one carbon dioxide and two molecules of water. The Ugi-Zhu reaction was carried out using the 4-formylbenzonitrile as orthogonal reagent, where the formyl group was first transformed into the pyrrolo[3,4-b]pyridin-5-one core, and then the remaining nitrile group was further converted into two different nitrogen-containing polyheterocycles, both via click-type cycloadditions. The first one used sodium azide to obtain the corresponding 5-substituted-1H-tetrazolyl-pyrrolo[3,4-b]pyridin-5-one, and the second one with dicyandiamide to synthesize the 2,4-diamino-1,3,5-triazine-pyrrolo[3,4-b]pyridin-5-one. Both synthesized compounds may be used for further in vitro and in silico studies because they contain more than two heterocyclic moieties of high interest in medicinal chemistry, as well as in optics due to their high π-conjugation. Full article
(This article belongs to the Collection Heterocyclic Compounds)
Show Figures

Graphical abstract

14 pages, 4258 KB  
Article
Thermally Crosslinked Hydrogen-Bonded Organic Framework Membranes for Highly Selective Ion Separation
by Xiyu Song, Chen Wang, Xiangyu Gao, Yao Wang, Rui Xu, Jian Wang and Peng Li
Molecules 2023, 28(5), 2173; https://doi.org/10.3390/molecules28052173 - 26 Feb 2023
Cited by 16 | Viewed by 9755
Abstract
The weak bonding energy and flexibility of hydrogen bonds can hinder the long-term use of hydrogen-bonded organic framework (HOF) materials under harsh conditions. Here we invented a thermal-crosslinking method to form polymer materials based on a diamino triazine (DAT) HOF (FDU-HOF-1), containing high-density [...] Read more.
The weak bonding energy and flexibility of hydrogen bonds can hinder the long-term use of hydrogen-bonded organic framework (HOF) materials under harsh conditions. Here we invented a thermal-crosslinking method to form polymer materials based on a diamino triazine (DAT) HOF (FDU-HOF-1), containing high-density hydrogen bonding of N-H⋯N. With the increase of temperature to 648 K, the formation of –NH– bonds between neighboring HOF tectons by releasing NH3 was observed based on the disappearance of the characteristic peaks of amino groups on FDU-HOF-1 in the Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (ss-NMR). The variable temperature PXRD indicated the formation of a new peak at 13.2° in addition to the preservation of the original diffraction peaks of FDU-HOF-1. The water adsorption, acid-base stability (12 M HCl to 20 M NaOH) and solubility experiments concluded that the thermally crosslinked HOFs (TC-HOFs) are highly stable. The membranes fabricated by TC-HOF demonstrate the permeation rate of K+ ions as high as 270 mmol m−2 h−1 as well as high selectivity of K+/Mg2+ (50) and Na+/Mg2+ (40), which was comparable to Nafion membranes. This study provides guidance for the future design of highly stable crystalline polymer materials based on HOFs. Full article
Show Figures

Figure 1

14 pages, 1996 KB  
Article
Conjugated Microporous Polymers Based on Ferrocene Units as Highly Efficient Electrodes for Energy Storage
by Maha Mohamed Samy, Mohamed Gamal Mohamed and Shiao-Wei Kuo
Polymers 2023, 15(5), 1095; https://doi.org/10.3390/polym15051095 - 22 Feb 2023
Cited by 39 | Viewed by 4044
Abstract
This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH2), and tetrakis(4-aminophenyl)ethane (TPE-NH2) to form PDAT-FC, TPA-FC, and TPE-FC CMPs from Schiff base reaction of 1,1′-diacetylferrocene [...] Read more.
This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH2), and tetrakis(4-aminophenyl)ethane (TPE-NH2) to form PDAT-FC, TPA-FC, and TPE-FC CMPs from Schiff base reaction of 1,1′-diacetylferrocene monomer with these three aryl amines, respectively, for efficient supercapacitor electrodes. PDAT-FC and TPA-FC CMPs samples featured higher surface area values of approximately 502 and 701 m2 g−1, in addition to their possession of both micropores and mesopores. In particular, the TPA-FC CMP electrode achieved more extended discharge time compared with the other two FC CMPs, demonstrating good capacitive performance with a specific capacitance of 129 F g−1 and capacitance retention value of 96% next 5000 cycles. This feature of TPA-FC CMP is attributed to the presence of redox-active triphenylamine and ferrocene units in its backbone, in addition to a high surface area and good porosity that facilitates the redox process and provides rapid kinetics. Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films III)
Show Figures

Graphical abstract

17 pages, 6576 KB  
Article
Self-Associated 1,8-Naphthalimide as a Selective Fluorescent Chemosensor for Detection of High pH in Aqueous Solutions and Their Hg2+ Contamination
by Awad I. Said, Desislava Staneva, Silvia Angelova and Ivo Grabchev
Sensors 2023, 23(1), 399; https://doi.org/10.3390/s23010399 - 30 Dec 2022
Cited by 15 | Viewed by 3654
Abstract
A novel diamino triazine based 1,8-naphthalimide (NI-DAT) has been designed and synthesized. Its photophysical properties have been investigated in different solvents and its sensory capability evaluated. The fluorescence emission of NI-DAT is significantly impacted by the solvent polarity due to its inherent intramolecular [...] Read more.
A novel diamino triazine based 1,8-naphthalimide (NI-DAT) has been designed and synthesized. Its photophysical properties have been investigated in different solvents and its sensory capability evaluated. The fluorescence emission of NI-DAT is significantly impacted by the solvent polarity due to its inherent intramolecular charge transfer character. Moreover, the fluorescence emission quenched at higher pH as a result of photo-induced electron transfer (PET) from triazine moiety to 1,8-naphthalimide after cleaving hydrogen bonds in the self-associated dimers. Furthermore, the new chemosensor exhibited a good selectivity and sensitivity towards Hg2+ among all the used various cations and anions in the aqueous solution of ethanol (5:1, v/v, pH = 7.2, Tampon buffer). NI-DAT emission at 540 nm was quenched remarkably only by Hg2+, even in the presence of other cations or anions as interfering analytes. Job’s plot revealed a 2:1 stoichiometric ratio for NI-DAT/Hg2+ complex, respectively. Full article
(This article belongs to the Special Issue Chemiresistive Sensors: Materials and Applications)
Show Figures

Figure 1

14 pages, 3792 KB  
Article
Initial Decomposition Mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under Shock Loading: ReaxFF Parameterization and Molecular Dynamic Study
by Lixiaosong Du, Shaohua Jin, Pengsong Nie, Chongchong She and Junfeng Wang
Molecules 2021, 26(16), 4808; https://doi.org/10.3390/molecules26164808 - 9 Aug 2021
Cited by 21 | Viewed by 4017
Abstract
We report a reactive molecular dynamic (ReaxFF-MD) study using the newly parameterized ReaxFF-lg reactive force field to explore the initial decomposition mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under shock loading (shock velocity >6 km/s). The new ReaxFF-lg parameters were trained from massive quantum mechanics data [...] Read more.
We report a reactive molecular dynamic (ReaxFF-MD) study using the newly parameterized ReaxFF-lg reactive force field to explore the initial decomposition mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under shock loading (shock velocity >6 km/s). The new ReaxFF-lg parameters were trained from massive quantum mechanics data and experimental values, especially including the bond dissociation curves, valence angle bending curves, dihedral angle torsion curves, and unimolecular decomposition paths of 3-Nitro-1,2,4-triazol-5-one (NTO), 1,3,5-Trinitro-1,3,5-triazine (RDX), and 1,1-Diamino-2,2-dinitroethylene (FOX-7). The simulation results were obtained by analyzing the ReaxFF dynamic trajectories, which predicted the most frequent chain reactions that occurred before NTO decomposition was the unimolecular NTO merged into clusters ((C2H2O3N4)n). Then, the NTO dissociated from (C2H2O3N4)n and started to decompose. In addition, the paths of NO2 elimination and skeleton heterocycle cleavage were considered as the dominant initial decomposition mechanisms of NTO. A small amount of NTO dissociation was triggered by the intermolecular hydrogen transfer, instead of the intramolecular one. For α-NTO, the calculated equation of state was in excellent agreement with the experimental data. Moreover, the discontinuity slope of the shock-particle velocity equation was presented at a shock velocity of 4 km/s. However, the slope of the shock-particle velocity equation for β-NTO showed no discontinuity in the shock wave velocity range of 3–11 km/s. These studies showed that MD by using a suitable ReaxFF-lg parameter set, could provided detailed atomistic information to explain the shock-induced complex reaction mechanisms of energetic materials. With the ReaxFF-MD coupling MSST method and a cheap computational cost, one could also obtain the deformation behaviors and equation of states for energetic materials under conditions of extreme pressure. Full article
(This article belongs to the Special Issue Advances in the Theoretical and Computational Chemistry)
Show Figures

Figure 1

26 pages, 4949 KB  
Article
Chain-End Effects on Supramolecular Poly(ethylene glycol) Polymers
by Ana Brás, Ana Arizaga, Uxue Agirre, Marie Dorau, Judith Houston, Aurel Radulescu, Margarita Kruteva, Wim Pyckhout-Hintzen and Annette M. Schmidt
Polymers 2021, 13(14), 2235; https://doi.org/10.3390/polym13142235 - 7 Jul 2021
Cited by 8 | Viewed by 4981
Abstract
In this work we present a fundamental analysis based on small-angle scattering, linear rheology and differential scanning calorimetry (DSC) experiments of the role of different hydrogen bonding (H-bonding) types on the structure and dynamics of chain-end modified poly(ethylene glycol) (PEG) in bulk. As [...] Read more.
In this work we present a fundamental analysis based on small-angle scattering, linear rheology and differential scanning calorimetry (DSC) experiments of the role of different hydrogen bonding (H-bonding) types on the structure and dynamics of chain-end modified poly(ethylene glycol) (PEG) in bulk. As such bifunctional PEG with a molar mass below the entanglement mass Me is symmetrically end-functionalized with three different hydrogen bonding (H-bonding) groups: thymine-1-acetic acid (thy), diamino-triazine (dat) and 2-ureido-4[1H]-pyrimidinone (upy). A linear block copolymer structure and a Newtonian-like dynamics is observed for PEG-thy/dat while results for PEG-upy structure and dynamics reveal a sphere and a network-like behavior, respectively. These observations are concomitant with an increase of the Flory–Huggins interaction parameter from PEG-thy/dat to PEG-upy that is used to quantify the difference between the H-bonding types. The upy association into spherical clusters is established by the Percus–Yevick approximation that models the inter-particle structure factor for PEG-upy. Moreover, the viscosity study reveals for PEG-upy a shear thickening behavior interpreted in terms of the free path model and related to the time for PEG-upy to dissociate from the upy clusters, seen as virtual crosslinks of the formed network. Moreover, a second relaxation time of different nature is also obtained from the complex shear modulus measurements of PEG-upy by the inverse of the angular frequency where G’ and G’’ crosses from the network-like to glass-like transition relaxation time, which is related to the segmental friction of PEG-upy polymeric network strands. In fact, not only do PEG-thy/dat and PEG-upy have different viscoelastic properties, but the relaxation times found for PEG-upy are much slower than the ones for PEG-thy/dat. However, the activation energy related to the association dynamics is very similar for both PEG-thy/dat and PEG-upy. Concerning the segmental dynamics, the glass transition temperature obtained from both rheological and calorimetric analysis is similar and increases for PEG-upy while for PEG-thy/dat is almost independent of association behavior. Our results show how supramolecular PEG properties vary by modifying the H-bonding association type and changing the molecular Flory–Huggins interaction parameter, which can be further explored for possible applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

13 pages, 3592 KB  
Article
Simultaneous Adsorption and Reduction of Cr(VI) to Cr(III) in Aqueous Solution Using Nitrogen-Rich Aminal Linked Porous Organic Polymers
by Muhammad A. Sabri, Ziad Sara, Mohammad H. Al-Sayah, Taleb H. Ibrahim, Mustafa I. Khamis and Oussama M. El-Kadri
Sustainability 2021, 13(2), 923; https://doi.org/10.3390/su13020923 - 18 Jan 2021
Cited by 15 | Viewed by 4811
Abstract
Two novel nitrogen-rich aminal linked porous organic polymers, NRAPOP-O and NRAPOP-S, have been prepared using a single step-one pot Schiff-base condensation reaction of 9,10-bis-(4,6-diamino-S-triazin-2-yl)benzene and 2-furaldehyde or 2-thiophenecarboxaldehyde, respectively. The two polymers show excellent thermal and physiochemical stabilities and possess high porosity with [...] Read more.
Two novel nitrogen-rich aminal linked porous organic polymers, NRAPOP-O and NRAPOP-S, have been prepared using a single step-one pot Schiff-base condensation reaction of 9,10-bis-(4,6-diamino-S-triazin-2-yl)benzene and 2-furaldehyde or 2-thiophenecarboxaldehyde, respectively. The two polymers show excellent thermal and physiochemical stabilities and possess high porosity with Brunauer–Emmett–Teller (BET) surface areas of 692 and 803 m2 g−1 for NRAPOP-O and NRAPOP-S, respectively. Because of such porosity, attractive chemical and physical properties, and the availability of redox-active sites and physical environment, the NRAPOPs were able to effectively remove Cr(VI) from solution, reduce it to Cr(III), and simultaneously release it into the solution. The efficiency of the adsorption process was assessed under various influencing factors such as pH, contact time, polymer dosage, and initial concentration of Cr(VI). At the optimum conditions, 100% removal of Cr(VI) was achieved, with simultaneous reduction and release of Cr(III) by NRAPOP-O with 80% efficiency. Moreover, the polymers can be easily regenerated by the addition of reducing agents such as hydrazine without significant loss in the detoxication of Cr(VI). Full article
(This article belongs to the Special Issue Sustainable Chemical Engineering: Adsorption and Water Disinfection)
Show Figures

Figure 1

19 pages, 2605 KB  
Review
Products of Oxidative Guanine Damage Form Base Pairs with Guanine
by Katsuhito Kino, Taishu Kawada, Masayo Hirao-Suzuki, Masayuki Morikawa and Hiroshi Miyazawa
Int. J. Mol. Sci. 2020, 21(20), 7645; https://doi.org/10.3390/ijms21207645 - 15 Oct 2020
Cited by 24 | Viewed by 5386
Abstract
Among the natural bases, guanine is the most oxidizable base. The damage caused by oxidation of guanine, commonly referred to as oxidative guanine damage, results in the formation of several products, including 2,5-diamino-4H-imidazol-4-one (Iz), 2,2,4-triamino-5(2H)-oxazolone (Oz), guanidinoformimine (Gf), guanidinohydantoin/iminoallantoin [...] Read more.
Among the natural bases, guanine is the most oxidizable base. The damage caused by oxidation of guanine, commonly referred to as oxidative guanine damage, results in the formation of several products, including 2,5-diamino-4H-imidazol-4-one (Iz), 2,2,4-triamino-5(2H)-oxazolone (Oz), guanidinoformimine (Gf), guanidinohydantoin/iminoallantoin (Gh/Ia), spiroiminodihydantoin (Sp), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), urea (Ua), 5-guanidino-4-nitroimidazole (NI), spirodi(iminohydantoin) (5-Si and 8-Si), triazine, the M+7 product, other products by peroxynitrite, alkylated guanines, and 8,5′-cyclo-2′-deoxyguanosine (cG). Herein, we summarize the present knowledge about base pairs containing the products of oxidative guanine damage and guanine. Of these products, Iz is involved in G-C transversions. Oz, Gh/Ia, and Sp form preferably Oz:G, Gh/Ia:G, and Sp:G base pairs in some cases. An involvement of Gf, 2Ih, Ua, 5-Si, 8-Si, triazine, the M+7 product, and 4-hydroxy-2,5-dioxo-imidazolidine-4-carboxylic acid (HICA) in G-C transversions requires further experiments. In addition, we describe base pairs that target the RNA-dependent RNA polymerase (RdRp) of RNA viruses and describe implications for the 2019 novel coronavirus (SARS-CoV-2): When products of oxidative guanine damage are adapted for the ribonucleoside analogs, mimics of oxidative guanine damages, which can form base pairs, may become antiviral agents for SARS-CoV-2. Full article
Show Figures

Graphical abstract

15 pages, 1648 KB  
Article
Supramolecular Dimerization in a Polymer Melt from Small-Angle X-ray Scattering and Rheology: A Miscible Model System
by Mariapaola Staropoli, Margarita Kruteva, Jürgen Allgaier, Andreas Wischnewski and Wim Pyckhout-Hintzen
Polymers 2020, 12(4), 880; https://doi.org/10.3390/polym12040880 - 10 Apr 2020
Cited by 3 | Viewed by 3535
Abstract
We present a structural and dynamic study on the simplest supramolecular hetero-association, recently investigated by the authors to prepare architectural homogeneous structures in the melt state, based on the bio-inspired hydrogen-bonding of thymine/diaminotriazine (thy–DAT) base-pairs. In the combination with an amorphous low T [...] Read more.
We present a structural and dynamic study on the simplest supramolecular hetero-association, recently investigated by the authors to prepare architectural homogeneous structures in the melt state, based on the bio-inspired hydrogen-bonding of thymine/diaminotriazine (thy–DAT) base-pairs. In the combination with an amorphous low Tg poly(butylene oxide) (PBO), no micellar structures are formed, which is expected for nonpolar polymers because of noncompatibility with the highly polar supramolecular groups. Instead, a clear polymer-like transient architecture is retrieved. This makes the heterocomplementary thy–DAT association an ideal candidate for further exploitation of the hydrogen-bonding ability in the bulk for self-healing purposes, damage management in rubbers or even the development of easily processable branched polymers with built-in plasticizer. In the present work, we investigate the temperature range from Tg + 20 °C to Tg + 150 °C of an oligomeric PBO using small-angle X-ray scattering (SAXS) and linear rheology on the pure thy and pure DAT monofunctionals and on an equimolar mixture of thy/DAT oligomers. The linear rheology performed at low temperature is found to correspond to fully closed-state dimeric configurations. At intermediate temperatures, SAXS probes the equilibrium between open and closed states of the thy–DAT mixtures. The temperature-dependent association constant in the full range between open and closed H-bonds and an enhancement of the monomeric friction coefficient due to the groups is obtained. The thy–DAT association in the melt is more stable than the DAT–DAT, whereas the thy–thy association seems to involve additional long-lived interactions. Full article
(This article belongs to the Special Issue Multifunctional Supramolecular Polymers)
Show Figures

Figure 1

16 pages, 3464 KB  
Article
Hybrid Molecules Composed of 2,4-Diamino-1,3,5-triazines and 2-Imino-Coumarins and Coumarins. Synthesis and Cytotoxic Properties
by Anna Makowska, Franciszek Sączewski, Patrick J. Bednarski, Jarosław Sączewski and Łukasz Balewski
Molecules 2018, 23(7), 1616; https://doi.org/10.3390/molecules23071616 - 3 Jul 2018
Cited by 28 | Viewed by 7739
Abstract
A series of 2-imino-2H-chromen-3-yl-1,3,5-triazine compounds 512, which are namely hybrids of 2,4-diamino-1,3,5-triazines and 2-imino-coumarins, was synthesized by reacting 2-(4,6-diamine-1,3,5-triazin-2-yl)acetonitriles 14 with 2-hydroxybenzaldehydes. After this, upon heating in aqueous DMF, 2-imino-2H-chromen-3-yl-1,3,5-triazines 10 and 12 were [...] Read more.
A series of 2-imino-2H-chromen-3-yl-1,3,5-triazine compounds 512, which are namely hybrids of 2,4-diamino-1,3,5-triazines and 2-imino-coumarins, was synthesized by reacting 2-(4,6-diamine-1,3,5-triazin-2-yl)acetonitriles 14 with 2-hydroxybenzaldehydes. After this, upon heating in aqueous DMF, 2-imino-2H-chromen-3-yl-1,3,5-triazines 10 and 12 were converted into the corresponding 2H-chromen-3-yl-1,3,5-triazines 13 and 14, which are essentially hybrids of 2,4-diamino-1,3,5-triazines and coumarins. The in vitro anticancer activity of the newly prepared compounds was evaluated against five human cancer cell lines: DAN-G, A-427, LCLC-103H, SISO and RT-4. The greatest cytotoxic activity displayed 4-[7-(diethylamino)-2-imino-2H-chromen-3-yl]-6-(4-phenylpiperazin-1-yl)-1,3,5-triazin-2-amine (11, IC50 in the range of 1.51–2.60 μM). Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop