Functional and Conductive Polymer Thin Films III

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Smart and Functional Polymers".

Deadline for manuscript submissions: closed (31 October 2023) | Viewed by 11830

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical and Materials Engineering, National Yun-Lin University of Science and Technology, Yun-Lin 64002, Taiwan
Interests: nanocomposite; biomedical materials; separation technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The development of materials is a key factor in industry growth and innovation. Material functionality enhancements effectively promote the profundity and breadth of original material applications. Material functionality methods include chemical modifications and compounding from physical blending. Functional polymers are polymers bearing functional groups that have a greater polarity or reactivity than simple linear backbones. Conductive polymers are organic polymers that conduct electricity. The electrical properties can be modulated using the methods of organic synthesis and dispersion techniques. A thin film is a layer of material ranging from nanometers to several micrometers in thickness. Since layers are thin relative to the length scale, interface effects are much more important than in bulk materials, bringing about novel physical properties. Film properties and functions have become a major research field. We published many outstanding results on this topic in the first two Special Issues. The core subjects of this Special Issue suggest that these materials are promising in flexible electronic devices, biodegradable conducting polymers, sensor devices, supercapacitors, optoelectronic devices, green energy cells, batteries, wearable smart devices, organic light-emitting diodes, electrochromic devices, electromagnetic shielding and microwave-absorbent coatings, etc.

Prof. Dr. Yen-Zen Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • flexible electronic devices
  • biodegradable conducting polymers
  • sensor devices
  • supercapacitors
  • optoelectronic devices
  • green energy cells
  • wearable smart devices
  • organic light-emitting diodes
  • electrochromic devices
  • electromagnetic shielding and microwave-absorbent coatings

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 4634 KiB  
Article
A Flexible Lithium-Ion-Conducting Membrane with Highly Loaded Titanium Oxide Nanoparticles to Promote Charge Transfer for Lithium–Air Battery
by Si-Han Peng, Yen-Hsiang Yu, Hsin-Chun Lu and Shingjiang Jessie Lue
Polymers 2023, 15(10), 2409; https://doi.org/10.3390/polym15102409 - 22 May 2023
Viewed by 1461
Abstract
In this research, we aim to investigate a flexible composite lithium-ion-conducting membrane (FC-LICM) consisting of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and titanium dioxide (TiO2) nanoparticles with a TiO2-rich configuration. PVDF-HFP was selected as the host polymer owing to its chemically compatible [...] Read more.
In this research, we aim to investigate a flexible composite lithium-ion-conducting membrane (FC-LICM) consisting of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and titanium dioxide (TiO2) nanoparticles with a TiO2-rich configuration. PVDF-HFP was selected as the host polymer owing to its chemically compatible nature with lithium metal. TiO2 (40–60 wt%) was incorporated into the polymer matrix, and the FC-LICM charge transfer resistance values (Rct) were reduced by two-thirds (from 1609 Ω to 420 Ω) at the 50 wt% TiO2 loading compared with the pristine PVDF-HFP. This improvement may be attributed to the electron transport properties enabled by the incorporation of semiconductive TiO2. After being immersed in an electrolyte, the FC-LICM also exhibited a Rct that was lower by 45% (from 141 to 76 Ω), suggesting enhanced ionic transfer upon the addition of TiO2. The TiO2 nanoparticles in the FC-LICM facilitated charge transfers for both electron transfer and ionic transport. The FC-LICM incorporated at an optimal load of 50 wt% TiO2 was assembled into a hybrid electrolyte Li–air battery (HELAB). This battery was operated for 70 h with a cut-off capacity of 500 mAh g−1 in a passive air-breathing mode under an atmosphere with high humidity. A 33% reduction in the overpotential of the HELAB was observed in comparison with using the bare polymer. The present work provides a simple FC-LICM approach for use in HELABs. Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films III)
Show Figures

Graphical abstract

12 pages, 3042 KiB  
Article
Studies on the Application of Polyimidobenzimidazole Based Nanofiber Material as the Separation Membrane of Lithium-Ion Battery
by Yu-Hsiang Lu, Yu-Chang Huang, Yen-Zen Wang and Ko-Shan Ho
Polymers 2023, 15(8), 1954; https://doi.org/10.3390/polym15081954 - 20 Apr 2023
Cited by 1 | Viewed by 1565
Abstract
Aromatic polyimide has good mechanical properties and high-temperature resistance. Based on this, benzimidazole is introduced into the main chain, and its intermolecular (internal) hydrogen bond can increase mechanical and thermal properties and electrolyte wettability. Aromatic dianhydride 4,4′-oxydiphthalic anhydride (ODPA) and benzimidazole-containing diamine 6,6′-bis [...] Read more.
Aromatic polyimide has good mechanical properties and high-temperature resistance. Based on this, benzimidazole is introduced into the main chain, and its intermolecular (internal) hydrogen bond can increase mechanical and thermal properties and electrolyte wettability. Aromatic dianhydride 4,4′-oxydiphthalic anhydride (ODPA) and benzimidazole-containing diamine 6,6′-bis [2-(4-aminophenyl)benzimidazole] (BAPBI) were synthesized by means of a two-step method. Imidazole polyimide (BI-PI) was used to make a nanofiber membrane separator (NFMS) by electrospinning process, using its high porosity and continuous pore characteristics to reduce the ion diffusion resistance of the NFMS, enhancing the rapid charge and discharge performance. BI-PI has good thermal properties, with a Td5% of 527 °C and a dynamic mechanical analysis Tg of 395 °C. The tensile strength of the NFMS increased from 10.92MPa to 51.15MPa after being hot-pressed. BI-PI has good miscibility with LIB electrolyte, the porosity of the film is 73%, and the electrolyte absorption rate reaches 1454%. That explains the higher ion conductivity (2.02 mS cm−1) of NFMS than commercial one (0.105 mS cm−1). When applied to LIB, it is found that it has high cyclic stability and excellent rate performance at high current density (2 C). BI-PI (120 Ω) has a lower charge transfer resistance than the commercial separator Celgard H1612 (143 Ω). Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films III)
Show Figures

Graphical abstract

16 pages, 4111 KiB  
Article
Self-Healing of Recombinant Spider Silk Gel and Coating
by Shin-Da Wu, Wei-Tsung Chuang, Jo-Chen Ho, Hsuan-Chen Wu and Shan-hui Hsu
Polymers 2023, 15(8), 1855; https://doi.org/10.3390/polym15081855 - 12 Apr 2023
Cited by 6 | Viewed by 2735
Abstract
Self-healing properties, originating from the natural healing process, are highly desirable for the fitness-enhancing functionality of biomimetic materials. Herein, we fabricated the biomimetic recombinant spider silk by genetic engineering, in which Escherichia coli (E. coli) was employed as a heterologous expression [...] Read more.
Self-healing properties, originating from the natural healing process, are highly desirable for the fitness-enhancing functionality of biomimetic materials. Herein, we fabricated the biomimetic recombinant spider silk by genetic engineering, in which Escherichia coli (E. coli) was employed as a heterologous expression host. The self-assembled recombinant spider silk hydrogel was obtained through the dialysis process (purity > 85%). The recombinant spider silk hydrogel with a storage modulus of ~250 Pa demonstrated autonomous self-healing and high strain-sensitive properties (critical strain ~50%) at 25 °C. The in situ small-angle X-ray scattering (in situ SAXS) analyses revealed that the self-healing mechanism was associated with the stick-slip behavior of the β-sheet nanocrystals (each of ~2–4 nm) based on the slope variation (i.e., ~−0.4 at 100%/200% strains, and ~−0.9 at 1% strain) of SAXS curves in the high q-range. The self-healing phenomenon may occur through the rupture and reformation of the reversible hydrogen bonding within the β-sheet nanocrystals. Furthermore, the recombinant spider silk as a dry coating material demonstrated self-healing under humidity as well as cell affinity. The electrical conductivity of the dry silk coating was ~0.4 mS/m. Neural stem cells (NSCs) proliferated on the coated surface and showed a 2.3-fold number expansion after 3 days of culture. The biomimetic self-healing recombinant spider silk gel and thinly coated surface may have good potential in biomedical applications. Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films III)
Show Figures

Graphical abstract

14 pages, 1996 KiB  
Article
Conjugated Microporous Polymers Based on Ferrocene Units as Highly Efficient Electrodes for Energy Storage
by Maha Mohamed Samy, Mohamed Gamal Mohamed and Shiao-Wei Kuo
Polymers 2023, 15(5), 1095; https://doi.org/10.3390/polym15051095 - 22 Feb 2023
Cited by 22 | Viewed by 2043
Abstract
This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH2), and tetrakis(4-aminophenyl)ethane (TPE-NH2) to form PDAT-FC, TPA-FC, and TPE-FC CMPs from Schiff base reaction of 1,1′-diacetylferrocene [...] Read more.
This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH2), and tetrakis(4-aminophenyl)ethane (TPE-NH2) to form PDAT-FC, TPA-FC, and TPE-FC CMPs from Schiff base reaction of 1,1′-diacetylferrocene monomer with these three aryl amines, respectively, for efficient supercapacitor electrodes. PDAT-FC and TPA-FC CMPs samples featured higher surface area values of approximately 502 and 701 m2 g−1, in addition to their possession of both micropores and mesopores. In particular, the TPA-FC CMP electrode achieved more extended discharge time compared with the other two FC CMPs, demonstrating good capacitive performance with a specific capacitance of 129 F g−1 and capacitance retention value of 96% next 5000 cycles. This feature of TPA-FC CMP is attributed to the presence of redox-active triphenylamine and ferrocene units in its backbone, in addition to a high surface area and good porosity that facilitates the redox process and provides rapid kinetics. Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films III)
Show Figures

Graphical abstract

14 pages, 4165 KiB  
Article
Synthesis and Characterization of Solution-Processible Donor-Acceptor Electrochromic Conjugated Copolymers Based on Quinoxalino[2′,3′:9,10]phenanthro[4,5-abc]phenazine as the Acceptor Unit
by Zhen Xu, Bozhen Wang, Lingqian Kong, Jinsheng Zhao and Yuchang Du
Polymers 2023, 15(4), 940; https://doi.org/10.3390/polym15040940 - 14 Feb 2023
Cited by 2 | Viewed by 1698
Abstract
Donor-acceptor (D-A) type conjugated polymers are of high interest in the field of electrochromism. In this study, three novel conjugated copolymers (PBPE–1, PBPE-2 and PBPE-3) based on quinoxalino[2′,3′:9,10]phenanthro[4,5-abc]phenazine (A) as the acceptor unit and 4,8-bis((2-octyldodecyl)oxy)benzo[1,2-b:4,5-b′]dithiophene (D1) and 3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (ProDOT-decyl2, [...] Read more.
Donor-acceptor (D-A) type conjugated polymers are of high interest in the field of electrochromism. In this study, three novel conjugated copolymers (PBPE–1, PBPE-2 and PBPE-3) based on quinoxalino[2′,3′:9,10]phenanthro[4,5-abc]phenazine (A) as the acceptor unit and 4,8-bis((2-octyldodecyl)oxy)benzo[1,2-b:4,5-b′]dithiophene (D1) and 3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (ProDOT-decyl2, D2) as the donor units with different donor-to-acceptor ratios were successfully synthesized through Stille coupling polymerization. The polymers were then characterized by cyclic voltammetry (CV), fourier transform infrared (FT-IR) spectoscopy, X-ray photoelectron spectroscopy (XPS), spectroelectrochemistry, thermogravimetry (TG), electrochromic switching and colorimetry. Optical band gap values were calculated as 1.99 eV, 2.02 eV and 2.03 eV, respectively. The three copolymers have good solubility, distinct redox peaks, wide absorption spectra, good thermal stabilities, bright color changes and significant electrochromic switching properties. Compared to the other two copolymers, the PBPE-3 film exhibited high coloration efficiency values of 513 cm2·C−1 at 504 nm and 475 cm2·C−1 at 1500 nm. The films have the advantage of exhibiting cathodic and anodic coloration. Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films III)
Show Figures

Figure 1

18 pages, 4980 KiB  
Article
2,6-Diaminopyridine-Based Polyurea as an ORR Electrocatalyst of an Anion Exchange Membrane Fuel Cell
by Yen-Zen Wang, Tar-Hwa Hsieh, Yu-Chang Huang and Ko-Shan Ho
Polymers 2023, 15(4), 915; https://doi.org/10.3390/polym15040915 - 11 Feb 2023
Cited by 3 | Viewed by 1842
Abstract
In order to yield more Co(II), 2,6-diaminopyridine (DAP) was polymerized with 4,4-methylene diphenyl diisocyanates (MDI) in the presence of Co(II) to obtain a Co-complexed polyurea (Co-PUr). The obtained Co-PUr was calcined to become Co, N-doped carbon (Co–N–C) as the cathode catalyst of an [...] Read more.
In order to yield more Co(II), 2,6-diaminopyridine (DAP) was polymerized with 4,4-methylene diphenyl diisocyanates (MDI) in the presence of Co(II) to obtain a Co-complexed polyurea (Co-PUr). The obtained Co-PUr was calcined to become Co, N-doped carbon (Co–N–C) as the cathode catalyst of an anion exchange membrane fuel cell (AEMFC). High-resolution transmission electron microscopy (HR-TEM) of Co–N–C indicated many Co-Nx (Co covalent bonding with several nitrogen) units in the Co–N–C matrix. X-ray diffraction patterns showed that carbon and cobalt crystallized in the Co–N–C catalysts. The Raman spectra showed that the carbon matrix of Co–N–C became ordered with increased calcination temperature. The surface area (dominated by micropores) of Co–N–Cs also increased with the calcination temperature. The non-precious Co–N–C demonstrated comparable electrochemical properties (oxygen reduction reaction: ORR) to commercial precious Pt/C, such as high on-set and half-wave voltages, high limited reduction current density, and lower Tafel slope. The number of electrons transferred in the cathode was close to four, indicating complete ORR. The max. power density (Pmax) of the single cell with the Co–N–C cathode catalyst demonstrated a high value of 227.7 mWcm−2. Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films III)
Show Figures

Graphical abstract

Back to TopTop