Influence of π-Conjugated Backbone Length and Tail Chain Number on Self-Assembly Structures of 4,6-Diamino-1,3,5-triazine Derivatives Revealed by STM
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. DFT Calculations
3. Results and Discussion
3.1. Self-Assembling Nanostructures of DT Molecules Regulated by π-Conjugated Backbone Length
3.2. How Does the Number of Branches in the Tail Chain Affect the DT Molecular Assembly?
4. Role of the DT Moiety
5. Analyzing the Assembly Structures Through Unit Cell Parameters
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DT | 4,6-Diamino-1,3,5-triazines |
| OA | 1-Octanoic acid |
| HOPG | Highly ordered pyrolytic graphite |
| LC | Liquid crystal |
| HB | Hydrogen bonding |
References
- Fuh, A.Y.G.; Cheng, K.T.; Lee, C.R. Liquid crystals biphotonic recording effect of polarization gratings based on dye-doped liquid crystal films biphotonic recording effect of polarization gratings based on dye—Doped liquid crystal films. Liq. Cryst. 2007, 34, 389–393. [Google Scholar] [CrossRef]
- Zuo, K.; Shi, Y.; Luo, D. A review of two-dimensional liquid crystal polarization gratings. Crystals 2021, 11, 1015. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, P.; Zhao, J.; Liang, M.; He, Z.; Miao, Z. Molecular engineering controlled electric-optical performance of polymer dispersed liquid crystals. Liq. Cryst. 2024, 51, 2117–2127. [Google Scholar] [CrossRef]
- Jeong, K.U.; Jing, A.J.; Monsdorf, B.; Graham, M.J.; Harris, F.W.; Cheng, S.Z.D. Self-assembly of chemically linked rod-disc mesogenic liquid crystals. J. Phys. Chem. B 2007, 111, 767–777. [Google Scholar] [CrossRef]
- Jonkheijm, P.; Miura, A.; Zdanowska, M.; Hoeben, F.J.M.; De Feyter, S.; Schenning, A.P.H.J.; De Schryver, F.C.; Meijer, E.W. π-Conjugated oligo-(π-phenylenevinylene) rosettes and their tubular self-assembly. Angew. Chem. Inter. Edit. 2004, 43, 74–78. [Google Scholar] [CrossRef]
- Pisula, W.; Tomovi, E.; Wegner, M.; Graf, R.; Pouderoijen, M.J.; Meijer, E.W.; Schenning, A.P.H.J. Liquid crystalline hydrogen bonded oligo(π-phenylenevinylene)s. J. Mater. Chem. 2008, 18, 2968–2977. [Google Scholar] [CrossRef]
- Tschierske, C. Liquid crystal engineering-new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 2007, 36, 1930–1970. [Google Scholar] [CrossRef]
- Ichimura, K. Photoalignment of liquid-crystal systems. Chem. Rev. 2000, 100, 1847–1874. [Google Scholar] [CrossRef]
- Kim, T.Y.; Kim, D.S.; Ju, J.H.; Cho, W.H.; Kim, J.E.; Suh, K.S. Static charge-induced orientation of liquid crystals in LCD panels. In Proceedings of the Electrical Overstress/Electrostatic Discharge Symposium Proceedings 2010, Reno, NV, USA, 3–8 October 2010; IEEE: New York, NY, USA, 2010; pp. 1–4. [Google Scholar]
- Su, L.; Lu, F.; Li, Y.R.; Wang, Y.Q.; Li, X.Z.; Li, Q.; Gao, X.P. Gyroid liquid crystals as quasi-solid-state electrolytes toward ultrastable zinc batteries. ACS Nano 2024, 18, 7633–7643. [Google Scholar] [CrossRef]
- Cyr, D.M.; Venkataraman, B.; Flynn, G.W. STM investigations of organic molecules physisorbed at the liquid-solid interface. Chem. Mater. 1996, 8, 1600–1615. [Google Scholar] [CrossRef]
- McClelland, A.A.; Ahn, S.; Matzger, A.J.; Chen, Z. Deducing 2D crystal structure at the liquid/solid interface with atomic resolution: A combined STM and SFG study. Langmuir 2009, 25, 12847–12850. [Google Scholar] [CrossRef]
- Stabel, A.; Heinz, R.; Rabe, J.; Wegner, G.; De Schryver, F.; Corens, D.; Dehaen, W.; Süling, C. STM investigation of 2D crystals of anthrone derivatives on graphite: Analysis of molecular structure and dynamics. J. Phys. Chem. 1995, 99, 8690–8697. [Google Scholar] [CrossRef]
- Tersoff, J.; Hamann, D.R. Theory and Application for the Scanning Tunneling Microscope. Phys. Rev. Lett. 1983, 50, 1998–2001. [Google Scholar] [CrossRef]
- Sijbesma, R.R.; Meijer, E.B. Self-assembly of well-defined structures by hydrogen bonding. Curr. Opin. Colloid Interface Sci. 2010, 30, 24–32. [Google Scholar] [CrossRef]
- Mohan, B.; Singh, G.; Gupta, R.K.; Sharma, P.K.; Solovev, A.A.; Pombeiro, A.J.L.; Ren, P. Hydrogen-bonded organic frameworks (HOFs): Multifunctional material on analytical monitoring. Trac-Trend. Anal. Chem. 2024, 170, 117436. [Google Scholar] [CrossRef]
- Clair, S.; Pons, S.; Seitsonen, A.P.; BruneKlaus, H.; Barth, K.V. STM study of terephthalic acid self-assembly on Au(111): hydrogen-bonded sheets on an inhomogeneous substrate. J. Phys. Chem. B 2004, 108, 14585–14590. [Google Scholar] [CrossRef]
- Vaughan, O.P.H.; Alavi, A.; Williams, F.J.; Lambert, R.M. Dipole amplification: A principle for the self-assembly of asymmetric monomers on metal surfaces. Angew. Chem. Inter. Edit. 2008, 47, 2422–2426. [Google Scholar] [CrossRef]
- Liu, J.; Chen, T.; Deng, X.; Wang, D.; Pei, J.; Wan, L.J. Chiral hierarchical molecular nanostructures on two-dimensional surface by controllable trinary self-assembly. J. Am. Chem. Soc. 2011, 133, 21010–21015. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Liu, Z.Y.; Fu, W.F.; Liu, F.; Wang, C.M.; Sheng, C.Q.; Wang, Y.F.; Deng, K.; Zeng, Q.D.; Shu, L.J. Donor–acceptor conjugated macrocycles: Synthesis and host–guest coassembly with fullerene toward photovoltaic application. ACS Nano 2017, 11, 11701–11713. [Google Scholar] [CrossRef]
- Shen, Y.T.; Guan, L.; Zhu, X.Y.; Zeng, Q.D.; Wang, C. Submolecular observation of photosensitive macrocycles and their isomerization effects on host-guest network. J. Am. Chem. Soc. 2009, 131, 6174–6180. [Google Scholar] [CrossRef]
- Hutter, J.L.; Bechhoefer, J. Manipulation of van der Waals forces to improve image resolution in atomic-force microscopy. J. Appl. Phys. 1993, 73, 4123–4129. [Google Scholar] [CrossRef]
- Maly, K.E.; Dauphin, C.; Wuest, J.D. Self-assembly of columnar mesophases from diaminotriazines. J. Mater. Chem. 2006, 16, 4695–4700. [Google Scholar] [CrossRef]
- Saraswathi, S.K.; Joseph, J. Thymine-induced dynamic switching of self-assembled nanofibers in diaminotriazine-functionalized tetraphenylethylene derivatives: Implications for one-dimensional molecular devices. ACS Appl. Nano Mater. 2022, 5, 3018–3027. [Google Scholar] [CrossRef]
- Łączkowski, K.Z.; Anusiak, J.; Świtalska, M.; Dzitko, K.; Cytarska, J.; Baranowska-Łączkowska, A.; Plech, T.; Paneth, A.; Wietrzyk, J.; Białczyk, J. Synthesis, molecular docking, ctDNA interaction, DFT calculation and evaluation of antiproliferative and anti-Toxoplasma gondii activities of 2, 4-diaminotriazine-thiazole derivatives. Med. Chem. Res. 2018, 27, 1131–1148. [Google Scholar] [CrossRef]
- Miura, A.; Jonkheijm, P.; De Feyter, S.; Schenning, A.P.H.J.; Meijer, E.W.; De Schryver, F.C. 2D self-assembly of oligo(π-phenylene vinylene) derivatives: From dimers to chiral rosettes. Small 2005, 1, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Gesquière, A.; Jonkheijm, P.; Hoeben, F.J.M.; Schenning, A.P.H.J.; De Feyter, S.; De Schryver, F.C.; Meijer, E.W. 2D-structures of quadruple hydrogen bonded oligo(π-phenylenevinylene)s on graphite: Self-assembly behavior and expression of chirality. Nano Lett. 2004, 4, 1175–1179. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, H.; Ke, M.; Zeng, X.; Miao, X.; Cheng, X.; Deng, W. Chain-length-and concentration-dependent isomerization of bithiophenyl-based diaminotriazine derivatives in two-dimensional polymorphic self-assembly. Langmuir 2022, 38, 7005–7012. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, X.; Pang, P.; Li, B.; Miao, X.; Cheng, X.; Deng, W. Template-assisted 2D self-assembled chiral Kagomé network for selective adsorption of coronene. Chem. Commun. 2020, 56, 13991–13994. [Google Scholar] [CrossRef]
- Tan, X.P.; Chang, Q.; Su, F.; Cao, Y.; Liu, F.; Cheng, X.H. Rodlike 4,6-diamino-1,3,5-triazine derivatives, effect of the core length on mesophase behavior and their application as LE-LCD device. J. Mol. Liq. 2022, 346, 117879. [Google Scholar] [CrossRef]
- Silly, F. A robust method for processing scanning probe microscopy images and determining nanoobject position and dimensions. J. Microsc-oxford. 2010, 236, 211–218. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 2008, 41, 157–167. [Google Scholar] [CrossRef]
- Bader, R. Atoms in molecules: A quantum theory. J. Mol. Struct. Theochem. 1994, 360, 1–3. [Google Scholar]
- Xu, L.R.; Yang, L.; Lei, S.B. Self-assembly of conjugated oligomers and polymers at the interface: Structure and properties. Nanoscale 2012, 4, 4399–4415. [Google Scholar] [CrossRef]
- Zhao, J.F.; Li, Y.B.; Lin, Z.Q.; Xie, L.H.; Shi, N.E.; Wu, X.K.; Wang, C.; Huang, W. Molecule length directed self-assembly behavior of tetratopic oligomeric phenylene−Ethynylenes end-capped with carboxylic groups by scanning tunneling microscopy. J. Phys. Chem. C 2010, 114, 9931–9937. [Google Scholar] [CrossRef]
- Hu, Y.; Miao, K.; Zha, B.; Peng, S.; Xu, L.; Miao, X.Y.; Deng, W.L. STM exploration of the diverse polymorphs for tri-substituted anthraquinone derivatives via alkyl chain elongation. Adv. Mater. Interfaces 2016, 3, 1600428. [Google Scholar] [CrossRef]
- Kikkawa, Y.; Koyama, E.; Tsuzuki, S.; Fujiwara, K.; Miyake, K.; Tokuhisa, H.; Kanesato, M. Self-assembly of bipyridine derivatives at solid/liquid interface: Effects of the number of peripheral alkyl chains and metal coordination on the two-dimensional structures. Surf. Sci. 2007, 601, 2520–2524. [Google Scholar] [CrossRef]
- Guo, Z.; De Cat, I.; Van Averbeke, B.; Lin, J.; Wang, G.; Xu, H.; Lazzaroni, R.; Beljonne, D.; Meijer, E.W.; Schenning, A.P.H.J. Nucleoside-assisted self-assembly of oligo(π-phenylenevinylene)s at liquid/solid interface: Chirality and nanostructures. J. Am. Chem. Soc. 2011, 133, 17764–17771. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gao, H.; Li, T.; Xiao, Y.; Cheng, X.H. Bisthiophene/triazole based 4,6-diamino-1,3,5-triazine triblock polyphiles: Synthesis, self-assembly and metal binding properties. J. Mol. Struct. 2019, 1193, 294–302. [Google Scholar] [CrossRef]
- Hu, Y.; Miao, K.; Zha, B.; Miao, X.R.; Xu, L.; Deng, W.L. Side chain position, length and odd/even effects on the 2D self-assembly of mono-substituted anthraquinone derivatives at the liquid/solid interface. RSC Adv. 2015, 5, 93337–93346. [Google Scholar] [CrossRef]





| Compound | Pattern | a (nm) | b (nm) | θ (°) |
|---|---|---|---|---|
| DT−10 | Cross-shaped | 3.9 ± 0.1 | 4.8 ± 0.1 | 37 ± 1 |
| 2TDT−10 [28] | Four-leaved | 4.5 ± 0.1 | 6.2 ± 0.1 | 40 ± 1 |
| DT−12 | Two-row linear pattern | 1.7 ± 0.1 | 6.5 ± 0.1 | 75 ± 1 |
| 2TDT−12 [28] | Two-row linear pattern | 1.6 ± 0.1 | 7.2 ± 0.1 | 90 ± 1 |
| 2TDT−16 [28] | Two-row linear pattern | 1.2 ± 0.1 | 8.8 ± 0.1 | 90 ± 1 |
| 2TDT−18 [28] | Two-row linear pattern | 1.2 ± 0.1 | 9.1 ± 0.3 | 90 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, F.; Zhao, X.; Zhang, Z.; Huang, Y.; Zheng, H.; Cheng, X.; Miao, X. Influence of π-Conjugated Backbone Length and Tail Chain Number on Self-Assembly Structures of 4,6-Diamino-1,3,5-triazine Derivatives Revealed by STM. Chemistry 2025, 7, 173. https://doi.org/10.3390/chemistry7060173
Wang Y, Wang F, Zhao X, Zhang Z, Huang Y, Zheng H, Cheng X, Miao X. Influence of π-Conjugated Backbone Length and Tail Chain Number on Self-Assembly Structures of 4,6-Diamino-1,3,5-triazine Derivatives Revealed by STM. Chemistry. 2025; 7(6):173. https://doi.org/10.3390/chemistry7060173
Chicago/Turabian StyleWang, Yi, Fuqiong Wang, Xiaoyang Zhao, Zhipeng Zhang, Yue Huang, Hua Zheng, Xiaohong Cheng, and Xinrui Miao. 2025. "Influence of π-Conjugated Backbone Length and Tail Chain Number on Self-Assembly Structures of 4,6-Diamino-1,3,5-triazine Derivatives Revealed by STM" Chemistry 7, no. 6: 173. https://doi.org/10.3390/chemistry7060173
APA StyleWang, Y., Wang, F., Zhao, X., Zhang, Z., Huang, Y., Zheng, H., Cheng, X., & Miao, X. (2025). Influence of π-Conjugated Backbone Length and Tail Chain Number on Self-Assembly Structures of 4,6-Diamino-1,3,5-triazine Derivatives Revealed by STM. Chemistry, 7(6), 173. https://doi.org/10.3390/chemistry7060173
