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Abstract: The weak bonding energy and flexibility of hydrogen bonds can hinder the long-term
use of hydrogen-bonded organic framework (HOF) materials under harsh conditions. Here we
invented a thermal-crosslinking method to form polymer materials based on a diamino triazine (DAT)
HOF (FDU-HOF-1), containing high-density hydrogen bonding of N-H· · ·N. With the increase of
temperature to 648 K, the formation of –NH– bonds between neighboring HOF tectons by releasing
NH3 was observed based on the disappearance of the characteristic peaks of amino groups on FDU-
HOF-1 in the Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (ss-NMR).
The variable temperature PXRD indicated the formation of a new peak at 13.2◦ in addition to the
preservation of the original diffraction peaks of FDU-HOF-1. The water adsorption, acid-base stability
(12 M HCl to 20 M NaOH) and solubility experiments concluded that the thermally crosslinked HOFs
(TC-HOFs) are highly stable. The membranes fabricated by TC-HOF demonstrate the permeation rate
of K+ ions as high as 270 mmol m−2 h−1 as well as high selectivity of K+/Mg2+ (50) and Na+/Mg2+

(40), which was comparable to Nafion membranes. This study provides guidance for the future
design of highly stable crystalline polymer materials based on HOFs.

Keywords: hydrogen-bonded organic framework (HOF); thermally crosslinked; ion separation

1. Introduction

Emerging porous materials constructed by the design rules of reticular chemistry, such
as metal-organic frameworks (MOFs) [1,2], covalent organic frameworks (COFs) [3,4], and
hydrogen-bonded organic frameworks (HOFs) [5–8], are crystalline porous materials with
atomic-level precision and have a wide range of applications in gas storage and separation,
sensing, and catalysis due to their permanent porosity and designability of structure and
function [9–11]. Unlike the coordination bonds in MOFs and covalent bonds in COFs, HOFs
are composed of organic or metallic structured building blocks through intermolecular
H-bonding interactions [12]. HOFs have been rapidly evolving into an important and
unique class of functional porous materials that exhibit excellent solution processability,
gentle preparation, and easy regeneration and recycling. The term HOF was created in 2011
by Chen et al., who reported the first HOF with a 2,4-diaminotriazine groups (DAT) (i.e.,
HOF-1) that was used for the separation of C2H2/C2H4 [13,14]. Chen’s coining of the term
HOFs marked the beginning of this field and greatly stimulated interest in exploring new
HOFs for various applications. Since then, the practice of hydrogen bonding chemistry for
extended networks has led to many HOFs with high porosity and Brunauer–Emmett–Teller
(BET) surface area. Rational combination of molecular backbone and H-bonding units
has led to the formation of robust and porous HOFs with high porosity. Since then, a
series of DAT-based HOFs [15–23] have been prepared and show diverse applications.
The DAT group has three ways to form H-bonded dimers: head-to-head, side-by-side,
and head-to-side (Scheme 1). Their diversity is due to the presence of excess hydrogen
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bond donors and acceptors. Because of this, the H-bonding network can expand in more
dimensions, while solvent molecules may be able to have additional hydrogen binding
sites which occupy the pore space. It is a formidable challenge to construct permanently
porous HOFs materials based on organic units of DAT.
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The weak H-bonding energy (10–40 kJ mol−1) and the flexibility of hydrogen bonds
make HOFs extremely fragile and most of them are prone to collapse after the removal
of solvent molecules by heat treatment or vacuum activation. Therefore, the construc-
tion of permanently porous HOFs is an important challenge. So far, for example, (1) π-π
stacking interactions are attractive and exhibit non-covalent interaction between aromatic
rings [18,24–32]; (2) interpenetrated frameworks, in which two or more frameworks with
the same composition are locked together, provide a more robust framework [33–37].
Charge-assisted H-bonding interactions [38,39] and cross-linking modification [40] strate-
gies have been proposed to further improve the stability of HOFs.

Based on the above strategies, a series of HOFs materials with permanent porosity
were synthesized using various organic units with high-density hydrogen bond donors
and acceptors. Recently, Ke et al. have enhanced the chemical and structural stability by
covalently crosslinking hydrogen-bonded, pre-organized molecular crystals with covalent
bonds to strengthen the hydrogen-bonded network, which has led to further insights in
the design of HOFs materials [41,42]. In addition to the chemical crosslinking method,
however, the thermal crosslinking method is seldom used to prepare polymer materials
from HOFs. Considering the potential advantages of simple synthesis, easy processing,
and scaled-up preparation, it is highly desirable to develop a novel synthesis method to
obtain thermally crosslinked HOF materials. In a sense, thermally crosslinked HOFs are
also similar to COF materials.

Membrane separation is a popular technology with the advantages of high separation
efficiency and low energy consumption [43]. Polymer membranes currently dominate the
commercial market; however, it is difficult to control the pore structure at the molecular
level, and their drawbacks are more prominent when used for precise ion separation [44].
In addition, the separation performance of polymer membranes usually receives Robe-
son upper limits [45], resulting in a poor balance between permeability and selectivity.
However, HOF materials have the advantages of controlled pore structure and adjustable
ion-specific functional groups, making them novel candidates for the development of mem-
brane separation technologies. Unlike desalination processes that block various ions, ion
separation selectively permeates the smaller size and lower valence ions but blocks larger
ions, which is critical in the battery and mining industries, such as the recovery of lithium
ions and other precious metal ions [46]. Achieving accurate ion separation remains a great



Molecules 2023, 28, 2173 3 of 14

challenge and there is an urgent need for HOF membrane materials with high selectivity to
achieve ion separation sieving.

As key starting materials of graphite-like carbon nitride (g-C3N4), melamine and
its derivatives have been generally used to synthesize carbon-nitride-based polymers
(CNP) by direct high-temperature calcination, during which ammonia is released, and
-NH-covalent bonds are formed. CNP is widely used in many applications for its ideal
visible light response, environmental and low-cost advantages, and tunable electronic
properties [47,48]. CNP materials generally cannot be dissolved in acids, bases, or organic
solvents and are very thermally stable in air; however, they have a low BET surface area,
and many are also non-porous, which limits the application of this material. Melamine
and HOF-8 with DAT groups can be carbonized at high temperature (973 K to 1273 K)
to obtain metal-free microporous nitrogen-doped carbon materials, which reduces the
disadvantages of low BET and low nitrogen content of the original carbon materials and
forms carbon materials with uniform active sites and high BET [49,50]. We speculate that
DAT-functionalized HOFs may also cross-link under heating to form highly stable porous
polymer materials (Figure 1). Here, we report an example of DAT-based HOF (FDU-HOF-1)
material that could be thermally crosslinked with itself and neighboring molecules into
partially covalently bonded organic frameworks.
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With this strategy, the thermally crosslinked HOF materials retain high crystallinity
and porosity, while showing significantly improved chemical stabilities under strong acid
(12 M HCl) and base conditions (20 M NaOH) for three days. As a proof of functionality, the
thin-film membranes fabricated with the thermally crosslinked HOF materials demonstrate
high ion permeability (up to 270 mmol m−2 h−1 for K+) and K+/Mg2+ selectivity (up to
50), which is even comparable to commercial Nafion membranes.

2. Results and Discussion

6-[4-(4,6-diamino-1,3,5-triazin-2-yl)phenyl]-1,3,5-triazine-2,4-diamine (BDAT) was syn-
thesized following the previous procedures [51]. Briefly, it is the reaction of dicyanobenzene
and dicyandiamide in N’N-Dimethylformamide (DMF). BDAT was dissolved in DMF in
an uncapped vial. Then this vial was placed in a bigger vial containing water. Following
this, it was placed in a baking oven for about a week to obtain large crystals of FDU-HOF-1.
Single-crystal X-ray diffraction (SCXRD) revealed FDU-HOF-1 in an orthorhombic Pnnm
space group (a = 3.6813 Å, b = 11.5900 Å, c = 15.8935 Å, α = β = γ = 90◦). In FDU-HOF-1,
each BDAT molecule is interconnected with eight adjacent units using N-H···N hydrogen
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bonds to form a two-dimensional (2D) framework. These 2D layers are stacked in an ABAB
pattern through π-π stacking interactions, forming 3D structures with a one-dimensional
pore channel of 4.7 Å × 9.5 Å along the [101] direction (Figure 2b). The calculated different
free spaces of FDU-HOF-1 are 20% (564.07 Å 3 as void volume, Connolly radius 0.6 Å),
14% (593.35 Å3 as void volume, Connolly radius 0.9 Å), and 10% (616.85 Å as void volume,
Connolly radius 1.3 Å) (Figure S3 and Table S2). The porosity of FDU-HOF-1 was initially
verified by calculation, indicating that FDU-HOF-1 is a porous HOF material.
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The powder X-ray diffraction (PXRD) patterns of FDU-HOF-1 were closely matched
with the simulated one. To further test the thermal stability of FDU-HOF-1, we measured
the variable temperature PXRD (VT-PXRD) (Figure 3a). It could be seen by PXRD that at
higher than 373 K, FDU-HOF-1 still maintains high crystallinity, while the peak does not
change, indicating that FDU-HOF-1 was a stable HOF material. We named FDU-HOF-1
at different temperatures as FDU-HOF-1-X (X = 298 K, 573 K, 623 K, 648 K, and 673 K).
We found that the PXRD pattern of FDU-HOF-1 basically remained at high crystallinity
with no change until 523 K, and some peaks disappeared at 648 K. When heated to 673
K, its PXRD diffraction intensity becomes weaker, and its peaks basically all disappear
when it reaches 700 K. This indicates that its thermal stability cannot exceed 700 K. When
it exceeds 700 K, it loses its crystallinity and is no longer an ordered HOF material. We
observed that the powder color of FDU-HOF-1 gradually deepened with the increase in
temperature (Figure 3b). To further understand the changes, we measured the Fourier
transform infrared (FTIR) spectroscopy of FDU-HOF-1-X (298 K, 573 K, 623 K, and 673 K)
(Figure 3c). In the FTIR spectra, FDU-HOF-1-298 K and FDU-HOF-1-573 K treatments still
had the characteristic absorption double peak of intermolecular amino hydrogen bonds
at 3500–3300 cm−1, which was absent at 623 K and 673 K treatments, indicating that the
original N-H···N hydrogen bond disappeared. To better interpret the materials of HOFs
after thermal cross-linking, we tested the solid NMR of FDU-HOF-1-298K and FDU-HOF-
1-648K. The Solid-state 1 H NMR spectrum experiments showed a great correlation with
the FIIR for the solid materials. A new peak was generated at about 1 ppm, which we
presume to be the peak of hydrogen on -NH- after thermal crosslinking (Figure S4). We
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purposely studied the effect of heating time on the phase change of FDU-HOF-1. As shown
in Figure 3d, we compared FDU-HOF-1-298 K and FDU-HOF-1-648K-x (x = 12, 24, 36 h);
the PXRD peaks of the material changed at 648 K. The peaks at 11◦, 15.1◦, and 18.3◦ all
fade away. After heating FDU-HOF-1-648K to 36 h, there was only about 13.2◦ of the new
peak, the rest of the peak (11◦, 15.1◦, and 18.3◦) disappeared. We consider the peak at
about 13.2◦ as the characteristic peak after thermal crosslinking. Therefore, we believe that
FDU-HOF-1-648 K, the N-H···N hydrogen bond in FDU-HOF-1 completely disappears and
gradually thermally crosslinks into covalent bonds of –NH–. We also examined the powder
color of FDU-HOF-1-648K at 12 h, 24 h, and 36 h, respectively, and found that the material
color gradually became darker yellow (Figure S5).
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Figure 3. (a) VT-PXRD patterns of the crystalline of FDU−HOF−1. (b) Photographs of FDU−HOF−1
powder after being treated under different temperature conditions. (c) Stacked FIIR spectra
of FDU-HOF-1 at different temperatures. (d) PXRD patterns of the FDU−HOF−1−298 K and
FDU−HOF−1−648 K for different times.

To further investigate the stability of the material, we dissolved FDU-HOF-1 and ther-
mally crosslinked samples in DMF solution (Figure 4a). With the increase in temperature
and heating time, the solubility of the formed material becomes worse and worse until it
becomes completely insoluble at 673 K treatment. This also proves that our idea is correct,
i.e., the solubility then decreases, and the material is gradually thermally crosslinked into
covalent bonds. We perform further stability tests on FDU-HOF-1 processed under 648 K
conditions. Notably, as shown in Figure 4b, FDU-HOF-1-648K maintained its crystallinity
and stability under harsh alkaline conditions (20 M NaOH) and acidic conditions (1 M
HCl); however, its crystallinity decreased under strongly acidic conditions (12 M HCl).
Many stable HOFs are unstable in alkaline solutions because they undergo deprotonation
or hydrolysis. For example, Trispyrazole-1 (1 M HCl and 2 M NaOH for 30 days) [52],
CPHAT-1a (10% HCl for 24 h) [53], HOF-101/PFC-1 (12 M HCl for 117 days) [26], HOF-16a
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(pH 1~7 for 7 days) [54], HOF-FAFU-1 (pH 1~9 for 12 h) [55], PFC-5 (0.1 M HCl for 24 h) [56],
HOF-76a (pH 1~10 for 24 h) [57], HOF-110 (pH 1~7 for 16 h) [58], BPMCz-P1 (10% HCl
for 48 h) [59], HOF-25 (pH 7~11 for 7 days) [60], CBPHAT-1a (37% HCl for 7 days) [61],
and HOF-40 (pH 1~14 for 5 days) [62]. The chemical stability of most HOFs materials is
not too good; some HOFs are only acid resistant, some HOFs are only alkali resistant, and
only a few are stable under both acid and alkali conditions. These are made possible by
its stable build model. In contrast, FDU-HOF-1-648K exhibits excellent chemical stability,
thanks to its heating crosslinking to form more stable covalent bonds and multiple π-π
intermolecular interactions, superior to previously reported HOFs materials with DAT.
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Many HOFs have been discovered to have excellent thermal and chemical stabil-
ity; however, most of them are unable to maintain the skeletal structure during water
adsorption, resulting in skeleton collapse. To further elucidate the water stability and
porosity after thermal crosslinking, the water vapor sorption of FDU-HOF-1-298K and
FDU-HOF-1-648K-x (x = 12, 24, 36 h) at 298 K were collected to probe the structural stability
line. As shown in Figure 5, it is found that FDU-HOF-1-298K and FDU-HOF-1-648K-x
(x = 12, 24, 36 h) have S-shaped sorption isotherm, and the water absorption gradually
increases until 48% RH, and then suddenly absorbs until 72% RH. FDU-HOF-1-298K and
FDU-HOF-1-648K-x (x = 12, 24, 36 h) adsorb 13.7, 16.7, 19.6, and 20.8 wt% water vapor
at 298 K, respectively. Surprisingly, the thermally crosslinked HOFs adsorb even more
water vapor than the pristine FDU-HOF-1, and the amount of water absorbed rises as the
degree of thermal crosslinking increases in the HOFs. This indicates that the pores are
filled with water, which proves its high-water stability and that it maintains its porosity.
The excellent water stability has surpassed most HOFs materials, as well as many MOFs
and COFs materials, which indicates that thermally crosslinked FDU-HOF-1 (TC-HOF) has
great potential to be applied in practical situations.

Encouraged by the high thermal/chemical stabilities and water uptake ability of
the FDU-HOF-1 and their thermally crosslinked derivative materials, we moved on to
preparing HOF-based thin films. The thin films of FDU-HOF-1 (~3 µm in thickness) were
prepared by spin-coating a dilute monomer solution of DMF onto a porous silica membrane
support and were dried under flowing dry air at room temperature (Figure 6a–c). The
film was further heated at 648 K for different times (12 h, 24 h, 36 h) in N2 atmosphere to
form thermally crosslinked HOF thin films (noted as TC-HOF-TF-x, x = 12, 24, 36). The
scanning electron microscopy (SEM) images showed the densely packed HOF particles and
defect-free cross-section of the HOF thin films (Figure 6d–f). The successful preparation of
the films also prompted us to further explore their application properties.
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Permeation selectivity of the FDU-HOF-1/silica and TC-HOF-TF/silica membrane
were investigated with a two-chamber cell, and selective ion transport was demonstrated
using concentration-driven diffusion experiments (Figure 7). The ion permeation rate
of FDU-HOF-1 membranes was much lower than that of TC-HOF-TF membranes. The
permeation rate of K+ ions is in the order of 201 < 221 < 247 < 270 mmol m−2 h−1 for
FDU-HOF-1 and TC-HOF-TF-x (x = 12, 24, 36), respectively. The K+ ions permeation
rate of TC-HOF-TF-36 was higher than that of DMBP-TB (200 mmol m−2 h−1) and PIM-1
(5 mmol m−2 h−1) [63]. For Na+, Li+, and Mg2+, the trends of permeation rate are similar
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for FDU-HOF-1 and TC-HOF-TF. The faster diffusion rate in TC-HOF-TF-x over FDU-HOF-
1 is possibly attributed to their higher porosity, which is consistent with the observation
in water vapor adsorption experiments. However, the FDU-HOF-1 membrane shows a
better ion selectivity, which allows the transport of smaller ions (K+, Na+, Li+ with 0.125,
0.184, 0.238 nm in Stokes radius), while rejecting larger Mg2+ (0.347 nm in Stokes radius).
Both the FDU-HOF-1 membrane and TC-HOF-TFs show the selectivity of K+/Mg2+ (up
to 30–50) and Na+/Mg2+ (up to 30–40). The selectivity of K+/Mg2+ is higher than that of
many membrane materials, such as PIM-TA-TB (K+/Mg2+ selectivity 13.6) and AO-PIM-1
(K+/Mg2+ selectivity 33), but lower than PIM-BzMA-TB (K+/Mg2+ selectivity 93) and
DMBP-TB (K+/Mg2+ selectivity 140) [63]. To the best of our knowledge, the permeation
rate and selectivity of these HOF and TC-HOF-TF membranes are even comparable to that
of commercial Nafion membranes, which have the potential for a range of applications,
such as ion separation, and wastewater treatment.
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3. Materials and Methods
3.1. Materials

1,4-dicyanobenzene, dicyandiamide, and potassium hydroxide (KOH) were supplied
by Shanghai Titan Technology Co., Ltd. (Shanghai, China). Sodium hydroxide (NaOH),
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potassium chloride (KCl), sodium chloride (NaCl), lithium chloride (LiCl), magnesium
chloride (MgCl2), and hydrochloric acid (HCl) were supplied by Adamas (Shanghai, China).
N’N-Dimethylformamide, methanol, ethanol, and acetone were supplied by Sigma-Aldrich
and Aladdin (Shanghai, China). Unless otherwise indicated, all chemicals and solvents
used for synthesis were purchased from commercial sources and used as received without
any further purification.

3.1.1. Synthesis of BDAT

6-[4-(4,6-diamino-1,3,5-triazin-2-yl)phenyl]-1,3,5-triazine-2,4-diamine (BDAT) was syn-
thesized following the previous procedures (Scheme 2) [51]. 1,4-dicyanobenzene (1.544 g,
9.2 mmol), dicyandiamide (4.048 g, 48 mmol), and KOH (1.124 g, 20 mmol) into 200 mL
of DMF. The two solutions were then mixed in a 250 mL round bottom flask and refluxed
under a nitrogen atmosphere and stirred at 140 ◦C for 20 h. The product was washed
several times with methanol and dried under vacuum at 70 ◦C to obtain the product BDAT,
with a yield of about 85%. The molecular formula was C12H12N10. 1H NMR (600 MHz,
DMSO): δ (ppm) 8.32 (s, 4 H), 6.82 (s, 8 H) (Figure S1).
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3.1.2. Synthesis of FDU-HOF-1 Single Crystals

10 mg of BDAT was added to a 5 mL vial with 1 mL DMF. Then, the 5 mL vial was put
without a cover into a 20 mL vial filled with 5 mL water solution, and a lid was put on the
20 mL vial. After standing for a week or longer, the white single crystals were collected for
single-crystal X-ray diffraction analysis.

3.1.3. Synthesis of FDU-HOF-1 Powder

100 mg of BDAT was dissolved in 10 mL of DMF at 298 K to produce a clear solution.
The solution was poured into 30 mL of water under stirring (300 rpm) within 1 min. The
suspension was kept stirring for 6 h and isolated by centrifugation at 8000× g rpm for
5 min. The obtained white powder was further washed with acetone (2 ×45 mL), and then
dried at room temperature (yield 90 mg, 90%).

3.1.4. Synthesis of HOF Thin-Films and TC-HOF-TF

HOF thin films were fabricated by spin-coating dilute BDAT solutions (1 mg/mL in
DMF) onto a porous silica membrane. BDAT solutions were filtered through syringe filters
and dropped onto a porous silica membrane, and then the silica membrane was rotated at
a speed of 1000 rpm with an acceleration speed of 500 rpm for 1 min. The DMF solvent was
removed in vacuo at 90 ◦C for 8 h and dried under flowing dry air at room temperature for
at least 24 h. The TC-HOF-TF-x (x = 12, 24, 36) membranes were prepared by loading the
resulting HOF thin film into a tube furnace and was heated at 684 K for 12, 24, and 36 h,
respectively.
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3.2. Methods
3.2.1. Powder X-Ray Diffraction

Powder X-ray diffraction was measured at room temperature on a STOE-STADI P
powder diffractometer equipped with an asymmetric curved Germanium monochromator
(CuKα1 radiation, λ = 1.54056 Å) and a one-dimensional silicon strip detector (MYTHEN2
1 K from DECTRIS). The line-focused Cu X-ray tube was operated at 40 kV and 40 mA.

3.2.2. Variable Temperature PXRD (VT-PXRD)

Variable temperature PXRD measurements of HOFs were conducted on a STOE-STADI
MP powder diffractometer operating at 40 kV voltage and 40 mA current with Mo-Kα1
X-ray radiation (λ = 0.71073 nm) in spinning capillaries in the temperature range of 20 to
400 ◦C under vacuum.

3.2.3. Single-Crystal X-Ray Diffraction

Single crystals of FDU-HOF-1 were mounted on a Bruker D8 Venture MetalJet X-ray
diffractometer equipped with a Photon II detector, and measurements of diffractions data
were collected at 173 K. X-rays were generated by the Ga/In source (λ = 1.34138 Å) at
200 W (70 kV, 2.86 mA). Details of the crystal data, data collection, structure solution, and
refinement are shown in Table S1. CCDC 2,238,476 contain the crystallographic data for
FDU-HOF-1, and the data can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/structures (acceseed on 5 February 2023).

3.2.4. NMR Measurements

Solution 1H NMR spectra were collected on a 500 MHz Bruker AVANCE III HD
spectrometer at 298 K.

3.2.5. Measurement of FTIR Spectra

The FTIR (Fourier transform infrared) spectra of powder samples were recorded in
the 400–4000 cm−1 frequency region using a KBr discs method. FTIR spectra of nanofiber
samples were using a slicing method.

3.2.6. Solid-state 1H NMR Spectra

Solid-state NMR experiments were performed on a Bruker WB Avance II 400 MHz
spectrometer.

3.2.7. Chemical Stability Test

50 mg of HOFs powder was immersed in 30 mL of HCl (1 M and 12 M), NaOH (14 M
and 20 M), and water (pH = 7) for 3 days and 7 days. The samples were then isolated by
centrifugation and washed with water (3 ×45 mL) and acetone (3 × 45 mL) dried under
vacuum at 80 ◦C for 12 h before PXRD test.

3.2.8. Scanning Electron Microscope

Scanning electron microscope (SEM) images were obtained on a Phenom Prox micro-
scope (Phenom Netherlands) at an acceleration voltage of 4.8 kV–15 kV.

3.2.9. Water Vapor Adsorption

Water isotherms were measured on a Micromeritics 3Flex, and the water uptake in
g g−1 units is calculated as [(adsorbed amount of water)/(amount of adsorbent)]. Prior
to the water adsorption measurements, water (analyte) was flash frozen under liquid
nitrogen and then evacuated under dynamic vacuum at least 3 times to remove any gases
in the water reservoir. The measurement temperature was controlled with a Micromeritics
temperature controller.

www.ccdc.cam.ac.uk/structures
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3.2.10. Ion Permeability Test

The ion diffusion tests were carried out using stirred H-shaped cells. Membrane
samples were sandwiched between two O-rings and sealed in the middle of the H-shaped
cells. The effective area of the membrane samples in the H-shaped cell was 0.8 cm2. 30 mL
of 5 mM salt solution (KCl, NaCl, LiCl, MgCl2) was used as the feed solution, and the
permeate side was filled with 30 mL of deionized water (pH = 7). The ionic concentration
of the permeate solution over time was measured by ICP-OES.

4. Conclusions

In summary, we synthesized a microporous HOF material FDU-HOF-1 based on
DAT with high-density hydrogen bonding of N-H· · ·N. After 36 h of treatment at 648 K,
the HOF material could be converted into a thermally crosslinked polymer material TC-
HOF. Notably, TC-HOF has excellent chemical stability (12 M HCl to 20 M NaOH), which
exceeds most porous MOF and HOF materials. In addition, TC-HOF films have high ionic
permeability and high K+/Mg2+ selectivity. This work provides a new strategy for the
construction of novel stable crystalline porous polymer materials.

Supplementary Materials: The following supporting information can be downloaded at these
websites: https://www.mdpi.com/article/10.3390/molecules28052173/s1, Table S1: Crystal data
and structure refinement for FDU-HOF-1; Figure S1: 1H NMR spectrum of BDAT; Figure S2: H-
bonded distance and angle of BDAT ligand of FDU-HOF-1; Figure S3: Pore structure at (a) 0.6 Å,
(b) 0.9 Å, and (c) 1.3 Å probe molecular sizes of FDU-HOF-1 in Materials Studio 2019. (d) Pore
structure display along the z-axis of FDU-HOF-1; Table S2: Different Connolly radius of FDU-HOF-1
of occupied volume, free volume, and surface area; Figure S4: Solid-state 1H NMR spectra of FDU-
HOF-1; Figure S5: Photographs of FDU-HOF-1 powder after being treated at 648 K for (a) 12 h,
(b) 24 h, and (c) 36 h. File S1: FDU-HOF-1 Checkcif.
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