Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,966)

Search Parameters:
Keywords = 1D/2D NMR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11132 KB  
Article
Cracking-Resistance Mechanism of Fiber-Reinforced Coal-Based Solid-Waste Grouting Materials
by Shuai Guo, Weifeng Liang, Xiangru Wu, Chenyang Li, Hongzeng Li, Yahui Liu, Shenyang Ouyang, Yachao Guo and Junmeng Li
Materials 2026, 19(2), 389; https://doi.org/10.3390/ma19020389 (registering DOI) - 18 Jan 2026
Abstract
Grouting technology can be employed to repair cracks in an aquifer to maintain its stability; however, existing grouting materials tend to come with problems such as low flexural strength, poor cracking resistance, and the coupled effects of fiber reinforcement and sulfoaluminate cement (SAC) [...] Read more.
Grouting technology can be employed to repair cracks in an aquifer to maintain its stability; however, existing grouting materials tend to come with problems such as low flexural strength, poor cracking resistance, and the coupled effects of fiber reinforcement and sulfoaluminate cement (SAC) addition on hydrate evolution, and pore-refinement and crack-resistance mechanisms in coal-based solid-waste cementitious grouts remain insufficiently understood. In this paper, fiber-modified coal-based solid-waste grouting (F-CWG) materials were prepared by mixing different contents of sulfoaluminate cement (SAC) and different fibers. The mechanical strength, microstructure, hydration products, and pore evolution characteristics were analyzed by means of mechanical property tests, energy-dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and nuclear magnetic resonance (NMR). The results show that the mechanical strength decreases at first due to insufficient early-stage hydration products. Specifically, the 28 d compressive and flexural strengths decrease from 15.34 MPa and 4.55 MPa at 0% SAC to 8.18 MPa and 2.99 MPa at 40% SAC but increase again to 13.36 MPa and 3.79 MPa at 60% SAC as the formation of ettringite (AFt) and C–S–H is promoted with higher SAC content. Among the tested fibers, a dosage of 0.6% generally improves mechanical strength and refines pore structure, with PVA and steel fibers showing the most pronounced effects. Our results reveal the mechanism behind the enhancement of cracking resistance in F-CWG materials, providing a scientific basis for grouting and water-preservation mining, and are of great significance in improving the utilization rate of coal-based solid waste. Full article
(This article belongs to the Special Issue Low-Carbon Cementitious Composites)
12 pages, 611 KB  
Article
Isolation of Neuroprotective Constituents from Dryopteris crassirhizoma Rhizomes Inhibiting Beta-Amyloid Production and BACE1 Activity
by Hwan Bin Joo, Tae Eun Park, Min Sung Ko, Chung Hyeon Lee, Kwang Woo Hwang and So-Young Park
Separations 2026, 13(1), 35; https://doi.org/10.3390/separations13010035 (registering DOI) - 16 Jan 2026
Viewed by 29
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition that progressively impairs cognitive processes, particularly learning and memory. A key pathological feature of AD involves senile plaques mainly composed of β-amyloid (Aβ) peptides, generated via the amyloidogenic pathway from amyloid precursor protein (APP) through [...] Read more.
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition that progressively impairs cognitive processes, particularly learning and memory. A key pathological feature of AD involves senile plaques mainly composed of β-amyloid (Aβ) peptides, generated via the amyloidogenic pathway from amyloid precursor protein (APP) through sequential β-secretase (BACE1) and γ-secretase cleavage, positioning BACE1 inhibition as a prime therapeutic target. In this study, we applied bioassay-guided fractionation of the butanol-soluble fraction from Dryopteris crassirhizoma rhizomes, previously reported to inhibit Aβ production, to isolate and characterize Aβ-lowering constituents. Through successive chromatographic steps, nine compounds were isolated and structurally classified into flavonoids, chromones, and phloroglucinols, including epicatechin (1), β-carboxymethyl-(-)-epicatechin (2), 7-methoxy-isobiflorin (3), biflorin (4), eriodictyol (5), noreugenin (6), phloroglucinols (butyrylphloroglucinol (7), 2-propionyl-4-methylphloroglucinol (8), and 2-butyryl-4-methylphloroglucinol (9) by comprehensive spectroscopic analysis (NMR, MS, UV, IR). These compounds were assessed for effects on sAPPβ and BACE1 (β-secretase) levels by Western blot, with Aβ production quantified via ELISA in a cellular AD model (APP-CHO cells). Compounds 59 significantly reduced sAPPβ and BACE1 expression while potently suppressing Aβ generation. These results demonstrate that diverse constituents from D. crassirhizoma rhizomes inhibited Aβ production through BACE1 suppression, highlighting their potential as natural lead compounds for AD prevention or therapy. Full article
(This article belongs to the Special Issue Isolation and Identification of Biologically Active Natural Compounds)
25 pages, 5496 KB  
Article
Plant-Based Protein Bioinks with Transglutaminase Crosslinking: 3D Printability and Molecular Insights from NMR and Synchrotron-FTIR
by Jaksuma Pongsetkul, Sarayut Watchasit, Tanyamon Petcharat, Marcellus Arnold, Yolanda Victoria Rajagukguk, Passakorn Kingwascharapong, Supatra Karnjanapratum, Pimonpan Kaewprachu, Lutz Grossmann, Young Hoon Jung, Saroat Rawdkuen and Samart Sai-Ut
Foods 2026, 15(2), 322; https://doi.org/10.3390/foods15020322 - 15 Jan 2026
Viewed by 99
Abstract
The increasing demand for sustainable and functional plant-based foods has driven interest in 3D food printing technologies, which require bioinks with tailored rheological and structural properties. This study investigated the effects of transglutaminase (TGase) on the structure–function relationships of plant protein bioinks from [...] Read more.
The increasing demand for sustainable and functional plant-based foods has driven interest in 3D food printing technologies, which require bioinks with tailored rheological and structural properties. This study investigated the effects of transglutaminase (TGase) on the structure–function relationships of plant protein bioinks from fava bean, mung bean, pea, and soybean. TNBS assays showed a dose-dependent increase in crosslinking (27.46–64.57%), with soybean and pea proteins exhibiting the highest reactivity (p < 0.05). 1H-NMR confirmed protein-specific ε-(γ-glutamyl)lysine bond formation, and synchrotron FTIR revealed TGase-induced α-helix reduction and β-sheet enrichment, indicative of network formation across all proteins. SDS-PAGE analysis demonstrated TGase-mediated polymerization with high-molecular-weight aggregates, particularly pronounced in soybean, while SEM images revealed denser, more continuous protein networks compared to untreated samples. Rheological characterization showed enhanced viscoelasticity and shear-thinning behavior in all bioinks, supporting extrusion and post-printing stability. Textural analysis indicated improvements in hardness, springiness, cohesiveness, and chewiness across all proteins, with soybean and fava showing the most pronounced increases. These results demonstrate that TGase is a versatile tool for reinforcing plant protein networks, improving printability, structural integrity, and texture in 3D-printed foods, while highlighting protein-specific differences in response. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

13 pages, 1876 KB  
Article
Discovery of Novel Minor Steviol Glycoside from the Stevia rebaudiana: Structural Characterization and Proposed Biosynthetic Pathway of Rebaudioside D17
by Xiao Juie Wong, Khairul Nizam Bin Nawi, Yeen Yee Wong, Ismail Ammar Bin Mohamat, Saravanan Ramandach, Mohamad Afzaal Bin Hasim and Avetik Markosyan
Biomolecules 2026, 16(1), 146; https://doi.org/10.3390/biom16010146 - 14 Jan 2026
Viewed by 142
Abstract
A novel steviol glycoside, Rebaudioside D17, was identified from the leaf extract of Stevia rebaudiana Bertoni. This compound features a rare β-1→4 glycosidic linkage between two glucose units at the C19 position, distinguishing it from its structural isomer, Rebaudioside D. The [...] Read more.
A novel steviol glycoside, Rebaudioside D17, was identified from the leaf extract of Stevia rebaudiana Bertoni. This compound features a rare β-1→4 glycosidic linkage between two glucose units at the C19 position, distinguishing it from its structural isomer, Rebaudioside D. The aim of this study was to isolate and characterize Rebaudioside D17 and investigate its biosynthetic origin. The compound was isolated and structurally characterized using comprehensive NMR spectroscopy including 1H, 13C, COSY, NOESY, Heteronuclear Single Quantum Coherence–Distortionless Enhancement by Polarization Transfer (HSQC-DEPT), Heteronuclear Multiple Bond Correlation (HMBC), Heteronuclear Single Quantum Coherence–Total Correlated Spectroscopy (HSQC-TOCSY), along with mass spectrometry analysis. A tentative biosynthetic pathway is proposed, involving Rebaudioside E19, a putative intermediate bearing the same β-1→4 glycosidic linkage at C19. Rebaudioside E19 may serve as a common precursor to both Rebaudioside D17 and Rebaudioside U3, a minor steviol glycoside previously reported in Stevia rebaudiana leaf extract, which also contains the same β-1→4 glycosidic linkage. The discovery of Rebaudioside D17 expands the known diversity of steviol glycosides and provides new insights into glycosylation patterns in Stevia rebaudiana, which may support the development and production of novel sweeteners with improved sensory and physicochemical properties. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

13 pages, 750 KB  
Article
Thorough Characterization of Two Sessein Derivatives with Potential Biological Activity
by Abraham Gómez-Rivera, Cristian Octavio Barredo-Hernández, Santiago Santos-Vázquez, Carlos Ernesto Lobato-García, Ammy Joana Gallegos-García, Ricardo López-Rodríguez, Laura Alvarez, Ma Dolores Pérez-García, Manasés González-Cortazar, Jorge Luis Torres-López and Eric Jaziel Medrano-Sánchez
Molecules 2026, 31(2), 286; https://doi.org/10.3390/molecules31020286 - 13 Jan 2026
Viewed by 145
Abstract
The diterpene sessein, isolated from Salvia sessei, is a metabolite of interest due to its conjugated p-quinone system, δ-lactone ring, and phenolic hydroxyl in C-12. These functionalities make it an ideal starting point for reactivity studies and semi-synthetic derivatization. In [...] Read more.
The diterpene sessein, isolated from Salvia sessei, is a metabolite of interest due to its conjugated p-quinone system, δ-lactone ring, and phenolic hydroxyl in C-12. These functionalities make it an ideal starting point for reactivity studies and semi-synthetic derivatization. In this work, we report the obtainment of two derivatives by selective esterification of phenolic hydroxyl in C-12, through acetylation and benzoylation reactions under mild conditions and with high yields. The structures were characterized by UPLC-MS, FTIR, and NMR spectroscopy 1H, 13C, and 2D, which allowed to precisely confirm the modifications made in the derivatives. These results confirm that hydroxyl in C-12 constitutes a privileged site of reactivity within the royleanone family, consolidating sessein as a versatile nucleus for the generation of derivatives. Finally, the preliminary evaluation of the antimicrobial activity showed that sessein shows a broad spectrum of action against Gram-positive, Gram-negative, and Candida albicans strains. The acetylated derivative showed an increase in activity against gram-negative bacteria, while the benzoyl derivative had a loss of effect at the concentrations evaluated. These findings demonstrate that structural modifications influence the properties of the derivatives with respect to the compound sessein. Full article
Show Figures

Figure 1

27 pages, 3030 KB  
Article
Structural Characterization and Anti-Inflammatory Properties of an Alginate Extracted from the Brown Seaweed Ericaria amentacea
by Maha Moussa, Serena Mirata, Lisa Moni, Valentina Asnaghi, Marina Alloisio, Simone Pettineo, Maila Castellano, Silvia Vicini, Mariachiara Chiantore and Sonia Scarfì
Mar. Drugs 2026, 24(1), 41; https://doi.org/10.3390/md24010041 - 13 Jan 2026
Viewed by 148
Abstract
Brown algae of the Cystoseira genus are recognized as valuable sources of bioactive compounds, including polysaccharides. Within the framework of current restoration efforts regarding damaged Ericaria amentacea populations in the Mediterranean Sea, the valorization of apices derived from ex situ cultivation waste represents [...] Read more.
Brown algae of the Cystoseira genus are recognized as valuable sources of bioactive compounds, including polysaccharides. Within the framework of current restoration efforts regarding damaged Ericaria amentacea populations in the Mediterranean Sea, the valorization of apices derived from ex situ cultivation waste represents a sustainable opportunity for industrial and biomedical applications. In this study, sodium alginate (SA) was extracted from E. amentacea apex by-products using a hydrothermal–alkaline method and subsequently chemically characterized. FTIR analysis showed O-H, C-H, and COO- stretching compatible with commercial alginates, while 1H-NMR spectroscopy indicated high β-D-mannuronic acid content, with an M/G ratio of 2.33. The extracted SA displayed a molecular weight of 1 × 104 g/mol and a polydispersity index of 3.5. The bioactive properties of the SA extract were investigated in chemico and in vitro. SA exhibited remarkable antioxidant activity, showing significant DPPH and nitric oxide-radical-scavenging capacity. Furthermore, SA demonstrated a strong anti-inflammatory effect in LPS-stimulated macrophages through modulation of several inflammatory mediators (i.e., IL-6, IL-8/CXCL5, MCP-1, and TNF-α). In particular, SA promoted a striking iNOS gene expression inhibition, which, paired with its direct NO-scavenging ability, paves the way for future pharmacological use of E. amentacea derivatives, particularly if sustainably obtained from restoration activity waste. Full article
(This article belongs to the Special Issue The Extraction and Application of Functional Components in Algae)
Show Figures

Graphical abstract

26 pages, 4165 KB  
Article
Spectroscopic Methods in Evaluation of Antioxidant Potential, Enzyme Inhibition, Cytotoxicity, and Antimicrobial Activity of the Synthesized N3-Substituted Amidrazones
by Renata Paprocka, Leszek Pazderski, Jolanta Kutkowska, Iqra Naeem, Amna Shahid Awan, Zahid Mushtaq and Aleksandra Szydłowska-Czerniak
Int. J. Mol. Sci. 2026, 27(2), 746; https://doi.org/10.3390/ijms27020746 - 12 Jan 2026
Viewed by 154
Abstract
Seven amidrazones containing a characteristic NH2–N=C(Ar1)–NHAr2 moiety, where Ar1, Ar2 are phenyl, 4-methylphenyl, 4-nitrophenyl, 2-pyridyl, and 4-pyridyl substituents, denoted as 2a2g, were synthesized by the reactions between thioamides and hydrazine. Their molecular [...] Read more.
Seven amidrazones containing a characteristic NH2–N=C(Ar1)–NHAr2 moiety, where Ar1, Ar2 are phenyl, 4-methylphenyl, 4-nitrophenyl, 2-pyridyl, and 4-pyridyl substituents, denoted as 2a2g, were synthesized by the reactions between thioamides and hydrazine. Their molecular structures were confirmed by 1H, 13C, 1H-13C HMQC, 1H-13C HMBC, and 1H-15N HMBC NMR spectroscopy, with complete assignment of the detected signals, as well as by high-resolution mass spectra. The biological activity of all compounds was studied, exhibiting antioxidant properties determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods, inhibitory potential against digestive tract enzymes (α-amylase, lipase, pepsin), cytotoxicity (hemolysis), and antimicrobial activities (against Gram-positive and Gram-negative bacteria, and a fungus). The antioxidant activity of the studied amidrazones varied from 83.34% to 93.27% and 1.01–5.79 mM FeSO4 for the DPPH and FRAP methods, respectively. Moreover, these derivatives revealed inhibition potential against α-amylase (28.6–86.8%), lipase (28.0–60.0%), and pepsin (34.1–76.6%), which increased when increasing their concentrations from 0.2 to 1 mg/mL. Among them, compound 2d (possessing 2-pyridyl and 4-nitrophenyl substituents) stood out in particular, as a potent antioxidant (DPPH = 90.43%, FRAP = 4.73 Mm FeSO4) with the highest activity against Gram-positive bacteria: S. aureus (MIC = 64 μg/mL), G. rubripertincta (MIC = 64 μg/mL), and fungus: C. albicans (MIC = 32 μg/mL); high α-amylase (86.8%) inhibition at the highest concentration (1 mg/mL); and lipase (38.0%) and pepsin (43.8%) inhibition at the lowest concentration (0.2 mg/mL). The obtained results were analyzed by unsupervised multivariate techniques to confirm significant differences in the biological activity of amidrazones depending on the Ar1 and Ar2 substituents. Full article
(This article belongs to the Special Issue Spectroscopic Techniques in Molecular Sciences)
Show Figures

Graphical abstract

12 pages, 1097 KB  
Article
Rapid Separation of Non-Sweet Glycosides from Siraitia grosvenorii by Two-Step Medium-Pressure Liquid Chromatography
by Wanzhen Cai, Xiaoling Tan, Xinghua Dai, Xuerong Yang, Xiaohua Jiang, Yulu Wei, Haiying Jiang and Fenglai Lu
Separations 2026, 13(1), 26; https://doi.org/10.3390/separations13010026 - 12 Jan 2026
Viewed by 97
Abstract
Siraitia grosvenorii (Swingle) C. Jeffrey is widely recognized for its anti-inflammatory properties, as well as its roles in lung purification, phlegm elimination, intestinal function regulation, and anti-tumor activity. Its pharmacological activity is attributed to a diversity of functional components. However, due to the [...] Read more.
Siraitia grosvenorii (Swingle) C. Jeffrey is widely recognized for its anti-inflammatory properties, as well as its roles in lung purification, phlegm elimination, intestinal function regulation, and anti-tumor activity. Its pharmacological activity is attributed to a diversity of functional components. However, due to the extensive application of sweet glycosides in food additives, there have been few studies on non-sweet glycosides, particularly those with high polarity. This paper investigates the chemical constituents in the non-sweet glycosides fraction of S. grosvenorii juice. First, an MCI GEL CHP20P chromatographic column was utilized to enrich the non-sweet glycosides fraction. Furthermore, two-step medium-pressure liquid chromatography (MPLC) was performed for the efficient preparative separation of high-polarity non-sweet glycosides with similar structures, using C18 and silica gel as stationary phases, respectively. Seven non-sweet glycoside compounds were identified through NMR and mass spectrometry analyses, including three new compounds (4-hydroxyphenylethanol 4-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside, 4-hydroxyphenylethanol 4-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside and n-butanol 1-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside), as well as four known ones (α-D-glucopyranosyl-(1→4)-D-glucose, α-D-glucopyranosyl-(1→2)-β-D-fructofuranoside, methoxy hydroquinone diglucoside, and β-D-glucopyranoside). The results demonstrate that mixed-mode MPLC using different stationary phases is an efficient approach for separating non-sweet glycosides from S. grosvenorii. Full article
Show Figures

Figure 1

12 pages, 1903 KB  
Article
Chemical Investigation of the Global Regulator veA-Overexpressed Mutant of an Arctic Strain Aspergillus sydowii MNP-2
by Qing Gong, Wei Wang, Yujie Zhao, Xiaoying Wang, Xuelian Bai and Huawei Zhang
Mar. Drugs 2026, 24(1), 34; https://doi.org/10.3390/md24010034 - 9 Jan 2026
Viewed by 185
Abstract
A growing body of evidence indicates that artificial manipulation of transcriptional regulation is a powerful approach to activate cryptic biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) in fungi. In this study, one mutant strain MNP-2-OE::veA was constructed by overexpressing the global [...] Read more.
A growing body of evidence indicates that artificial manipulation of transcriptional regulation is a powerful approach to activate cryptic biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) in fungi. In this study, one mutant strain MNP-2-OE::veA was constructed by overexpressing the global transcription regulator veA in an Arctic-derived strain Aspergillus sydowii MNP-2. Chemical investigation of the mutant OE::veA resulted in the isolation of one novel polyhydroxy anthraquinone (1) together with nine known metabolites (210), which were unambiguously characterized by various spectroscopic methods including 1D and 2D NMR and HR-ESI-MS as well as via comparison with literature data. Biosynthetically, compounds 1 and 10 as new arising chemicals were, respectively, formed by type II polyketide synthase (T2PK) and non-ribosomal peptide synthetase (NRPS), which were silent in the wild-type (WT) strain MNP-2. A bioassay showed that only compound 3 had weak inhibitory effect on human pathogen Candida albicans, with a MIC value of 64 ug/mL, and 4 displayed in vitro weak cytotoxic activity against HCT116 cells (IC50 = 44.47 μM). These results indicate that overexpression of veA effectively awakened the cryptic BGCs in fungal strains and enhanced their structural diversity in natural products. Full article
(This article belongs to the Special Issue Structural Diversity in Marine Natural Products)
Show Figures

Graphical abstract

17 pages, 3718 KB  
Article
Ghardaqenoids A–F: Six New Diterpenoids from the South China Sea Soft Coral Heteroxenia ghardaqensis with Lipid-Lowering Activity via the Activation of the AMPK Signaling Pathway
by Yue Zhang, Xin Han, Juan Wu, Shan Liu, Hongwei Zhang, Lili Zhao and Guoqiang Li
Mar. Drugs 2026, 24(1), 30; https://doi.org/10.3390/md24010030 - 8 Jan 2026
Viewed by 217
Abstract
Six new diterpenoids, including two verticillane ghardaqenoids A–B (12) and four dolabellane ghardaqenoids C–F (36), were isolated from the soft coral Heteroxenia ghardaqensis collected in the South China Sea. The structures of ghardaqenoids A, D, [...] Read more.
Six new diterpenoids, including two verticillane ghardaqenoids A–B (12) and four dolabellane ghardaqenoids C–F (36), were isolated from the soft coral Heteroxenia ghardaqensis collected in the South China Sea. The structures of ghardaqenoids A, D, and E (1, 4, 5) were determined by X-ray diffraction. Ghardaqenoids B, C, and F (2, 3, 6) were identified on the basis of NMR data, DP4+, and ECD spectral data. In particular, compound 6 exhibited strong in vitro lipid-lowering activity in free fatty acid (FFA)-induced HepG2 cells and liver organoids. Further mechanistic studies revealed that compound 6 regulated AMPK-related proteins and genes, thereby inhibiting the accumulation of triglycerides (TG) and total cholesterol (TC). These findings suggested that pharmacological AMPK activation serves as a promising role in lipid-lowering therapeutic strategies. Full article
(This article belongs to the Special Issue Natural Products from Soft Corals and Their Associated Microbes)
Show Figures

Graphical abstract

29 pages, 4846 KB  
Article
In Vitro Study on the Effects of Rhododendron mucronulatum Branch Extract, Taxifolin-3-O-Arabinopyranoside and Taxifolin on Muscle Loss and Muscle Atrophy in C2C12 Murine Skeletal Muscle Cells
by Hyun Seo Lee, Hyeon Du Jang, Tae Hee Kim, Da Hyeon An, Ye Eun Kwon, Eun Ji Kim, Jae In Jung, Sangil Min, Hee Kyu Kim, Kwang-Hyun Park, Heesung Woo and Sun Eun Choi
Int. J. Mol. Sci. 2026, 27(2), 570; https://doi.org/10.3390/ijms27020570 - 6 Jan 2026
Viewed by 200
Abstract
Sarcopenia, an age-related muscle atrophy disease, is a major health concern in aging societies and is closely associated with severe chronic diseases. Its primary pathogenesis involves oxidative stress-induced apoptosis in muscle cells and an imbalance in protein metabolism. This study evaluated the potential [...] Read more.
Sarcopenia, an age-related muscle atrophy disease, is a major health concern in aging societies and is closely associated with severe chronic diseases. Its primary pathogenesis involves oxidative stress-induced apoptosis in muscle cells and an imbalance in protein metabolism. This study evaluated the potential of Rhododendron mucronulatum branch extract (RMB) and its major flavonoids, taxifolin-3-O-arabinopyranoside (Tax-G) and taxifolin (Tax-A), as natural therapeutic agents for sarcopenia. Phytochemical analyses were performed using TLC, HPLC, LC-MS/MS, and NMR, and Tax-G and Tax-A were isolated from RMB. In vitro models of apoptosis and muscle atrophy were established in C2C12 cells using H2O2 and dexamethasone (DEX), respectively. Cell viability, myotube diameter, and protein expression related to apoptosis and muscle differentiation were assessed. All three substances reduced H2O2-induced apoptosis by increasing Bcl-2 and inhibiting cleaved caspase-3 and PARP. They also attenuated DEX-induced muscle atrophy by suppressing Atrogin-1, MuRF1, and FoxO3α while promoting MyoD, Myogenin, Akt, and mTOR. Although Tax-A showed the highest activity, Tax-G exhibited comparable effects with lower cytotoxicity. These findings demonstrate that RMB and its active compounds protect muscle cells by regulating apoptosis and muscle metabolism, suggesting their potential as safe and functional natural materials for the prevention of sarcopenia. Full article
Show Figures

Graphical abstract

18 pages, 2928 KB  
Article
Water-Dispersible Supramolecular Nanoparticles Formed by Dicarboxyl-bis-pillar[5]arene/CTAB Host–Guest Interaction as an Efficient Delivery System of Quercetin
by Marco Milone, Martina Mazzaferro, Antonella Calderaro, Giuseppe T. Patanè, Davide Barreca, Salvatore Patanè, Norberto Micali, Valentina Villari, Anna Notti, Melchiorre F. Parisi, Ilenia Pisagatti and Giuseppe Gattuso
Int. J. Mol. Sci. 2026, 27(1), 516; https://doi.org/10.3390/ijms27010516 - 4 Jan 2026
Viewed by 278
Abstract
Supramolecular nanoparticles offer an efficient strategy to enhance the solubility, stability, and bioavailability of poorly water-soluble therapeutic molecules. In this study, water-dispersible SNPs were successfully prepared from dicarboxyl-bis-pillar[5]arene (H) and cetyltrimethylammonium bromide (CTAB) using a microemulsion method. Dynamic light scattering revealed [...] Read more.
Supramolecular nanoparticles offer an efficient strategy to enhance the solubility, stability, and bioavailability of poorly water-soluble therapeutic molecules. In this study, water-dispersible SNPs were successfully prepared from dicarboxyl-bis-pillar[5]arene (H) and cetyltrimethylammonium bromide (CTAB) using a microemulsion method. Dynamic light scattering revealed that the resulting CTAB/H nanoparticles possessed a size distribution centered around 40 nm, a positive surface charge (+15 mV), and exhibited high colloidal stability over three months. 1H NMR, 2D TOCSY, 2D NOESY, diffusion ordered NMR spectroscopy, and UV-Vis investigations confirmed the inclusion of the CTAB alkyl chain within the pillar[5]arene cavity, supporting the formation of stable supramolecular assemblies capable of efficiently encapsulating the poorly water-soluble flavonol quercetin (Q). The CTAB/H system displayed low cytotoxicity (up to 50 µg/mL) and pronounced antioxidant activity, as evidenced by DPPH, ABTS, and FRAP assays. Quercetin-loaded nanoparticles (CTAB/H/Q) enhanced cellular uptake and exhibited a marked cytoprotective effect against H2O2-induced oxidative stress in NIH-3T3 fibroblasts. Full article
Show Figures

Figure 1

7 pages, 1061 KB  
Short Note
(RS)-6,6,7′,7′-Tetramethyl-2-sulfanylidene-5,6,6′,7′-tetrahydro-2H,2′H,4H,4′H,5′H-spiro[thiopyran-3,3′-thiopyrano [2,3-b]thiopyran]-4,5′-dione
by Werner Seebacher, Antoine Dupé, Eva-Maria Pferschy-Wenzig, Robert Saf, Theresa Hermann and Robert Weis
Molbank 2026, 2026(1), M2117; https://doi.org/10.3390/M2117 - 4 Jan 2026
Viewed by 180
Abstract
The reaction of aliphatic aldehydes with the tautomers 6,6-dimethyl-4-hydroxy-2H-thiopyrane-2-thione and 6,6-dimethyl-2-mercapto-4H-thiopyrane-4-one is reported to yield spiro compounds. However, the spiro compound of the reaction with formaldehyde is postulated, but has not been isolated to date. Due to a change [...] Read more.
The reaction of aliphatic aldehydes with the tautomers 6,6-dimethyl-4-hydroxy-2H-thiopyrane-2-thione and 6,6-dimethyl-2-mercapto-4H-thiopyrane-4-one is reported to yield spiro compounds. However, the spiro compound of the reaction with formaldehyde is postulated, but has not been isolated to date. Due to a change in reaction conditions, we managed to isolate (RS)-6,6,7′,7′-Tetramethyl-2-sulfanylidene-5,6,6′,7′-tetrahydro-2H,2′H,4H,4′H,5′H-spiro[thiopyran-3,3′-thiopyrano [2,3-b]thiopyran]-4,5′-dione for the first time. The structure was proven with the help of a single X-ray crystal analysis. Furthermore, the new compound was fully characterized using one- and two- dimensional NMR techniques such as 1H, 13C, DEPT, COSY, HSQC and HMBC spectra, as well as IR and HRMS measurements. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

23 pages, 2253 KB  
Article
Bioactive Metabolites from Aerial Parts of Plantago indica L.: Structural Elucidation and Integrated In Vitro/In Vivo Assessment of Anti-Inflammatory and Wound-Healing Efficacy
by Hilal Bacanak, Zeynep Dogan, Esra Küpeli Akkol, Akito Nagatsu and Iclal Saracoglu
Plants 2026, 15(1), 141; https://doi.org/10.3390/plants15010141 - 3 Jan 2026
Viewed by 310
Abstract
The genus Plantago (Plantaginaceae) is widely distributed worldwide. The Plantago species are used in traditional medicine as wound healers, anti-inflammatory agents, antipyretics, and analgesics. This study aimed to investigate the phytochemical composition from the aerial parts of Plantago indica L. and to evaluate [...] Read more.
The genus Plantago (Plantaginaceae) is widely distributed worldwide. The Plantago species are used in traditional medicine as wound healers, anti-inflammatory agents, antipyretics, and analgesics. This study aimed to investigate the phytochemical composition from the aerial parts of Plantago indica L. and to evaluate its biological activities. Isolation studies and in vitro investigations were conducted on an aqueous phase of 80% EtOH extract of Plantago indica. In addition, in vivo studies were carried out using the MeOH, 80% EtOH, and water extracts. Plantarenaloside (1), 3-oxo-α-ionol β-glucoside (2), martynoside (3), acteoside (4), feruloyl gardoside (5), and ursolic acid (6) were isolated from the extract. The structures of the compounds were elucidated using 1D- and 2D-NMR and ESI-MS analyses. The extract, fractions, and pure compounds were tested in vitro for cytotoxicity (MTT), anti-inflammatory activity (NO, IL-6, and TNF-α production), wound healing (scratch test), and antioxidant capacity (DPPH, ABTS, SO). Feruloyl gardoside (20.11–58.27%) significantly reduced NO levels at concentrations of 25–100 µM. It significantly reduced IL-6 levels (40.17%) at 100 µM. Additionally, the in vivo anti-inflammatory (acetic acid-induced vascular permeability) and wound healing (incision and excision models) effects of the extracts were investigated. The findings suggest that P. indica may be considered to be a potential therapeutic option for managing inflammation and for promoting wound healing. Full article
Show Figures

Figure 1

15 pages, 1638 KB  
Article
Screening of Bioactive Microalgae from Freshwaters, Collected in Hue, Vietnam: Cytotoxic Constituents from Dolichospermum smithii HU04
by Nguyen Thi Minh Hang, Nguyen Thi Thu Ha, Hoang Duc Manh, Duong Thi Thuy, Hoang Thi Quynh, Nguyen Thi Thu Lien, Nguyen Thi Tu Oanh, Tran Huu Giap, Buu Huu Tai, Doan Thi Mai Huong, Ngo Quoc Anh and Nguyen Xuan Nhiem
Molecules 2026, 31(1), 165; https://doi.org/10.3390/molecules31010165 - 1 Jan 2026
Viewed by 274
Abstract
Background/Objectives: Microalgae are recognized as prolific producers of bioactive metabolites with pharmaceutical potential. This study aimed to isolate and characterize cytotoxic constituents from selected cytotoxic microalgae, collected in Hue city, Vietnam. Methods: Microalgal samples were collected from freshwater bodies, morphologically identified, and maintained [...] Read more.
Background/Objectives: Microalgae are recognized as prolific producers of bioactive metabolites with pharmaceutical potential. This study aimed to isolate and characterize cytotoxic constituents from selected cytotoxic microalgae, collected in Hue city, Vietnam. Methods: Microalgal samples were collected from freshwater bodies, morphologically identified, and maintained in laboratory culture. Thirteen strains were successfully isolated and cultivated in BG11, Z8, and BBM media to determine optimal growth conditions. Cytotoxic effects of extracts/compounds were determined using the sulforhodamine B assay on human lung cancer (SK-LU-1) and human liver cancer (HepG2) cell lines. The methanol extract was partitioned with n-hexane and CH2Cl2, followed by extensive chromatographic separation and HPLC purification to afford twelve compounds, including two new and ten known compounds. The structures were elucidated by HR-ESI-MS and NMR spectra, chemical methods, and comparing compounds in the literature. Results: From the phytoplankton samples collected across six freshwater bodies in Hue city, Vietnam, thirteen microalgal strains were successfully isolated and purified under laboratory conditions. These strains were morphologically and taxonomically identified to be Microcystis aeruginosa HU05, Microcystis viridis HU13, Anabaena circinalis HU08, Aphanizomenon flos-aquae HU02, Dolichospermum smithii HU04, Calothrix braunii HU14, Nostoc muscorum HU12, Nostoc punctiforme HU11, Raphidiopsis raciborskii HU03, Lyngbya spiralis HU15, Planktothrix stagnina HU16, Phormidium subtilis HU06, and Scenedesmus quadricauda HU07. All methanol extracts of those microalgae were evaluated for cytotoxic activity. The MeOH extracts of M. viridis (HU13) and D. smithii (HU04) exhibited significant cytotoxic effects, with IC50 values of 6.19 ± 0.80 and 4.89 ± 0.76 µg/mL for M. viridis, and 9.51 ± 0.84 and 8.32 ± 0.94 µg/mL for D. smithii against SK-LU-1 and HepG2 cell lines, respectively. Furthermore, chemical studies of D. smithii HU04 led to the isolation of two new compounds, smithioside A (1) and smithioside B (2) and ten known ones, 3,4,5-trimethoxyphenyl-1-O-β-D-glucopyranoside (3), 4′-hydroxy-3′-methoxyphenol-β-D-[6-O-(4″-hydroxy-3″,5″-dimethoxylbenzoate)]-glucopyranoside (4), 4′-hydroxy-2′,6′-dimethoxyphenol 1-O-β-D-(6-O-syringoyl)glucopyranoside (5), mallophenol B (6), pisoninol II (7), guaiacylglycerol (8), (E)-asarone (9), deacetylsarmentamide B (10), (E)-2-hexenyl-β-D-glucopyranoside (11), and 5,6-dihydropyridin-2(1H)-one (12). The cytotoxic activity of all isolated compounds was also evaluated against SK-LU-1 and HepG2 cancer cell lines. Compound 12 showed the strongest activity, with IC50 values of 9.13 ± 0.89 µM (SK-LU-1) and 7.64 ± 0.46 µM (HepG2). Compounds 5 and 6 exhibited moderate cytotoxic activity on both human cancer cell lines with IC50 values ranging from 25.99 to 51.47 µM. Conclusions: These results highlight the potential of Dolichospermum smithii HU04 as a source of bioactive compounds, particularly in anticancer applications. These findings suggest that D. smithii HU04 extracts could be developed for therapeutic purposes targeting cancer. Full article
Show Figures

Figure 1

Back to TopTop