In Vitro Study on the Effects of Rhododendron mucronulatum Branch Extract, Taxifolin-3-O-Arabinopyranoside and Taxifolin on Muscle Loss and Muscle Atrophy in C2C12 Murine Skeletal Muscle Cells
Abstract
1. Introduction
2. Results
2.1. Phytochemical Analysis
2.1.1. Qualitative Analysis of RMB (TLC)
2.1.2. HPLC Quantitative Analysis and LC-MS/MS Analysis of RMB
2.2. Chemical Separation and Identification
2.3. Impact of Rhododendron mucronulatum Branch Extract (RMB), Taxifolin-3-O-Arabinopyranoside (Tax-G) and Taxifolin (Tax-A) the Viability of C2C12 Myoblasts
2.3.1. Measurement of Cell Viability Under Normal Conditions
2.3.2. Impact of H2O2-Induced Myoblast Damage
2.3.3. Impact of Dexamethasone-Induced Myotube Damage
2.4. Effects of Rhododendron mucronulatum Branch Extract (RMB), Taxifolin-3-O-Arabinopyranoside (Tax-G) and Taxifolin (Tax-A) on Muscle Apoptosis Biomarkers
2.4.1. Effects on H2O2-Induced Apoptosis in Myoblasts
2.4.2. Effects of RMB, Tax-G and Tax-A on Bax, Bcl-2, Cleaved Caspase-3, and Cleaved PARP Protein Expression
2.5. Effects of Rhododendron mucronulatum Branch Extract (RMB), Taxifolin-3-O-Arabinopyranoside (Tax-G) and Taxifolin (Tax-A) on Muscle-Synthesis- and Muscle-Degradation-Related Proteins and Gene Expression
2.5.1. Dexamethasone-Induced Myotube Atrophy
2.5.2. Expression of Atrogin-1, MuRF1, Myogenin, and MyoD Protein in Dexamethasone-Treated C2C12 Myotubes
2.5.3. Effects on Muscle-Degradation- and Synthesis-Related Gene Expression
2.5.4. Akt/mTOR/FoxO-Signaling-Pathway-Related Muscle Protein Expression Investigation
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Pilot-Scale Extraction of Branch of Rhododendron mucronulatum
4.3. Phytochemical Analysis
4.3.1. Standard Compound
4.3.2. Qualitative Analysis of RMB (TLC)
4.3.3. HPLC Quantitative Analysis and LC-MS/MS Analysis of RMB
4.3.4. NMR Analysis
4.4. Separation and Purification of Taxifolin Glycoside and Taxifolin Aglycon
4.4.1. Separation and Purification of Tax-G
4.4.2. Separation and Purification of Tax-A
4.5. Cell Culture and Treatments
4.5.1. Apoptosis Induction and Treatment
4.5.2. Muscle Atrophy Induction and Treatment
4.6. Cell Viability Assay
4.6.1. Measurement of C2C12 Myoblast Viability Using MTT Assay
4.6.2. Measurement of Protective Effects Against H2O2-Induced Myoblast Damage
4.6.3. Measurement of Protective Effects Against DEX-Induced Myotube Damage
4.7. Effects of Rhododendron mucronulatum Branch Extract (RMB), Taxifolin-3-O-Arabinopyranoside (Tax-G) and Taxifolin (Tax-A) on Muscle Apoptosis Biomarkers
4.7.1. Evaluation of Apoptosis in H2O2 Induced Myoblasts
4.7.2. Western Blot Analysis of Apoptosis Biomarkers in C2C12 Myoblasts
4.8. Effects of Rhododendron mucronulatum Branch Extract (RMB), Taxifolin-3-O-Arabinopyranoside (Tax-G) and Taxifolin (Tax-A) on Muscle-Synthesis- and Muscle-Degradation Biomarkers
4.8.1. Measurement of Myotube Diameter
4.8.2. Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR) Analysis
4.8.3. Western Blot Analysis of Muscle Synthesis- and Muscle Degradation-Related Proteins in C2C12 Myotubes
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| RMB | Rhododendron mucronulatum branch extract |
| Tax-G | Taxifolin-3-O-arabinopyranoside |
| Tax-A | Taxifolin |
| RF | Rich Fraction |
| ICD | International classification of diseases |
| NAFLD | Non-alcoholic fatty liver disease |
| TLC | Thin-layer chromatography |
| HPLC | High-performance liquid chromatography |
| MPLC | Medium pressure liquid chromatography |
| LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
| NMR | Nuclear magnetic resonance |
| MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
| Bax | Bcl-2-Associated X Protein |
| Bcl-2 | B-cell Lymphoma-2 |
| PARP | Poly(ADP-Ribose) Polymerase |
| RT-PCR | Real-time polymerase chain reaction |
| GAPDH | Glyceraldehyde-3-phosphate Dehydrogenase |
| MuRF1 | Muscle RING-finger Protein 1 |
| MyoD | Myoblast Determination Protein |
| Akt | Protein Kinase B |
| mTOR | Mammalian Target of Rapamycin |
| FoxO3α | Forkhead Box O3α |
| IGF-1 | Insulin-like Growth Factor-1 |
| ROS | Reactive oxygen species |
| DEX | Dexamethasone |
| MOMP | Mitochondria outer membrane pore |
| S.E.M. | Standard Error of the Mean |
References
- Frontera, W.R.; Ochala, J. Skeletal muscle: A brief review of structure and function. Calcif. Tissue Int. 2015, 96, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Kim, J.H. Impact of skeletal muscle mass on metabolic health. Endocrinol. Metab. 2020, 35, 1. [Google Scholar] [CrossRef] [PubMed]
- Sartori, R.; Romanello, V.; Sandri, M. Mechanisms of muscle atrophy and hypertrophy: Implications in health and disease. Nat. Commun. 2021, 12, 330. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Wang, L.; Guo, D.; Huang, Y.; Long, P.; Zhang, X.; Bai, L.; Liu, J.; Hu, X.; Pang, R.; Gou, X. Scientific landscape of oxidative stress in sarcopenia: From bibliometric analysis to hotspots review. Front. Med. 2024, 11, 1472413. [Google Scholar] [CrossRef]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Pinedo-Villanueva, R.; Westbury, L.D.; Syddall, H.E.; Sanchez-Santos, M.T.; Dennison, E.M.; Robinson, S.M.; Cooper, C. Health care costs associated with muscle weakness: A UK population-based estimate. Calcif. Tissue Int. 2019, 104, 137–144. [Google Scholar] [CrossRef]
- Goates, S.; Du, K.; Arensberg, M.; Gaillard, T.; Guralnik, J.; Pereira, S.L. Economic impact of hospitalizations in US adults with sarcopenia. J. Frailty Aging 2019, 8, 93–99. [Google Scholar] [CrossRef]
- World Health Organization. Package of Interventions for Rehabilitation. Module 2. Musculoskeletal Conditions; World Health Organization (WHO): Geneva, Switzerland, 2023. [Google Scholar]
- Baek, J.Y.; Jung, H.-W.; Kim, K.M.; Kim, M.; Park, C.Y.; Lee, K.-P.; Lee, S.Y.; Jang, I.-Y.; Jeon, O.H.; Lim, J.-Y. Korean Working Group on Sarcopenia guideline: Expert consensus on sarcopenia screening and diagnosis by the Korean Society of Sarcopenia, the Korean Society for Bone and Mineral Research, and the Korean Geriatrics Society. Ann. Geriatr. Med. Res. 2023, 27, 9. [Google Scholar] [CrossRef]
- Graf, C.E.; Herrmann, F.R.; Spoerri, A.; Makhlouf, A.-M.; Sørensen, T.I.; Ho, S.; Karsegard, V.L.; Genton, L. Impact of body composition changes on risk of all-cause mortality in older adults. Clin. Nutr. 2016, 35, 1499–1505. [Google Scholar] [CrossRef]
- Sorensen, J.C.; Cheregi, B.D.; Timpani, C.A.; Nurgali, K.; Hayes, A.; Rybalka, E. Mitochondria: Inadvertent targets in chemotherapy-induced skeletal muscle toxicity and wasting? Cancer Chemother. Pharmacol. 2016, 78, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Schakman, O.; Kalista, S.; Barbé, C.; Loumaye, A.; Thissen, J.-P. Glucocorticoid-induced skeletal muscle atrophy. Int. J. Biochem. Cell Biol. 2013, 45, 2163–2172. [Google Scholar] [CrossRef] [PubMed]
- Sandri, M. Signaling in muscle atrophy and hypertrophy. Physiology 2008, 23, 160–170. [Google Scholar] [CrossRef]
- Mankhong, S.; Kim, S.; Moon, S.; Kwak, H.-B.; Park, D.-H.; Kang, J.-H. Experimental models of sarcopenia: Bridging molecular mechanism and therapeutic strategy. Cells 2020, 9, 1385. [Google Scholar] [CrossRef] [PubMed]
- An, D.H.; Lee, C.H.; Kwon, Y.; Kim, T.H.; Kim, E.J.; Jung, J.I.; Min, S.; Cheong, E.J.; Kim, S.; Kim, H.K.; et al. Effects of Alnus japonica Hot Water Extract and Oregonin on Muscle Loss and Muscle Atrophy in C2C12 Murine Skeletal Muscle Cells. Pharmaceuticals 2024, 17, 1661. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, S.; Kwon, Y.; Kim, T.; Lee, C.H.; Jang, H.; Kim, E.J.; Jung, J.I.; Min, S.; Park, K.-H.; et al. Effects of Ulmus macrocarpa extract and catechin 7-O-β-D-apiofuranoside on muscle loss and muscle atrophy in C2C12 murine skeletal muscle cells. Curr. Issues Mol. Biol. 2024, 46, 8320–8339. [Google Scholar] [CrossRef]
- Lee, C.H.; Kwon, Y.; Park, S.; Kim, T.H.; Kim, M.S.; Kim, E.J.; Jung, J.I.; Min, S.; Park, K.-H.; Jeong, J.H.; et al. The Impact of Ulmus macrocarpa extracts on a model of sarcopenia-induced C57BL/6 mice. Int. J. Mol. Sci. 2024, 25, 6197. [Google Scholar] [CrossRef]
- Jang, H.D.; Lee, C.H.; Kwon, Y.E.; Kim, T.H.; Kim, E.J.; Jung, J.I.; Min, S.I.; Cheong, E.J.; Jang, T.Y.; Kim, H.K.; et al. Effects of Alnus japonica Pilot Scale Hot Water Extracts on a Model of Dexamethasone-Induced Muscle Loss and Muscle Atrophy in C57BL/6 Mice. Int. J. Mol. Sci. 2025, 26, 3656. [Google Scholar] [CrossRef]
- Seong, E.; Choe, H.; Heo, H.; Lee, H.; Kim, M.; Kim, Y.; Jeong, H.S.; Lee, J. Protective effect of Andrographis paniculata against oxidative damage in C2C12 skeletal muscle cells. J. Korean Soc. Food Sci. Nutr. 2022, 51, 1259–1265. [Google Scholar] [CrossRef]
- Yeon, M.; Choi, H.; Jun, H.-S. Preventive effects of Schisandrin A, a bioactive component of Schisandra chinensis, on dexamethasone-induced muscle atrophy. Nutrients 2020, 12, 1255. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-J.; Su, H.-G.; Peng, X.-R.; Bi, H.-C.; Qiu, M.-H. An updated review of the genus Rhododendron since 2010: Traditional uses, phytochemistry, and pharmacology. Phytochemistry 2024, 217, 113899. [Google Scholar] [CrossRef] [PubMed]
- Popescu, R.; Kopp, B. The genus Rhododendron: An ethnopharmacological and toxicological review. J. Ethnopharmacol. 2013, 147, 42–62. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Choi, S.E.; Lee, M.W.; Lee, C.S. Taxifolin glycoside inhibits dendritic cell responses stimulated by lipopolysaccharide and lipoteichoic acid. J. Pharm. Pharmacol. 2008, 60, 1465–1472. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Choi, S.E.; Jeong, M.S.; Park, K.H.; Moon, N.J.; Joo, S.S.; Lee, C.S.; Choi, Y.W.; Li, K.; Lee, M.K. Effect of taxifolin glycoside on atopic dermatitis-like skin lesions in NC/Nga mice. Phytother. Res. 2010, 24, 1071–1077. [Google Scholar] [CrossRef]
- Jang, S.S.; Lee, D.; Song, J.; Park, D.H.; Jeon, C.Y.; Hwang, G.S. Inhibitory Effect of Rhododendron mucronulatum Root Extract on Allergic Inflammation. J. Intern. Korean Med. 2022, 43, 68–78. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kwon, Y.U.; Park, S.M.; Jeong, Y.H.; Choi, S.E. Oxidative Stress-Inducing Muscle Reduction Inhibitory Effect of Rhododendron mucronulatum Root Extract. J. Korean Wood Sci. Technol. 2021, 56. [Google Scholar]
- Kim, T.H.; Kwon, Y.E.; Park, S.M.; Kim, M.S.; Jeong, Y.H.; Park, S.Y.; Bae, Y.-S.; Cheong, E.J.; He, Y.-C.; Gong, C. Chemotaxonomic significance of taxifolin-3-O-arabinopyranoside in Rhododendron species native to Korea. J. For. Environ. Sci. 2022, 38, 159–173. [Google Scholar]
- Kim, T.H.; Jang, H.D.; Kim, Y.J.; Kwon, Y.E.; Park, S.M.; Kim, M.S.; Lee, C.H. Chemotaxonomic Significance of Taxifolin-3-O-arabinopyranoside in Chinese Rhododendron genus. J. For. Environ. Sci. 2024, 40, 123–140. [Google Scholar]
- Kim, T.H.; Kwon, Y.E.; Park, S.M.; Kim, M.S.; Lee, C.H.; Kim, J.-K.; Kim, H.K.; Eun, C.S. Effects of Taxifolin-3-O-arabinopyranoside from Rhododendron mucronulatum Root Extracts on the Alleviation of Hair-Loss Symptoms. Korean J. Pharmacogn. 2024, 55, 79–88. [Google Scholar] [CrossRef]
- Kwon, Y.E.; Kim, T.-h.; Park, S.; Jeong, Y.H.; Kim, M.S.; Choi, S.E. Whitening and Anti-wrinkle Effect of Extract of High Contents Taxifolin Glycoside from Rhododendron mucronulatum Root. J. Korean Wood Sci. Technol. 2022, 55. [Google Scholar]
- Kim, T.-Y.; Kwon, H.-C.; Lee, C.-M.; Lee, K.-S.; Lee, K.-K. Anti-aging activity of taxifolin-3-O-alpha-L-arabinopyranoside isolated from Rhododendron mucronulatum root extract. Korean Soc. Cosmet. Cosmetol. 2018, 8, 339–344. [Google Scholar]
- Tang, Z.; Yang, C.; Zuo, B.; Zhang, Y.; Wu, G.; Wang, Y.; Wang, Z. Taxifolin protects rat against myocardial ischemia/reperfusion injury by modulating the mitochondrial apoptosis pathway. PeerJ 2019, 7, e6383. [Google Scholar] [CrossRef] [PubMed]
- Sunil, C.; Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry 2019, 166, 112066. [Google Scholar] [CrossRef]
- Yaşar, H.; Tanoglu, C.; Gulapoglu, M.; Suleyman, H.; Yazıcı, G.N.; Arslan, Y.K. A study to reveal the effectiveness of taxifolin in sunitinib-induced oxidative muscle damage in rats. Arch. Med. Sci. Civiliz. Dis. 2021, 6, 103–108. [Google Scholar] [CrossRef]
- Shibuya, S.; Watanabe, K.; Sakuraba, D.; Abe, T.; Shimizu, T. Natural Compounds That Enhance Motor Function in a Mouse Model of Muscle Fatigue. Biomedicines 2022, 10, 3073. [Google Scholar] [CrossRef]
- Li, Y.; Tao, L.; Xu, Y.; Guo, R. Taxifolin ameliorates abdominal aortic aneurysm by preventing inflammation and apoptosis and extracellular matrix degradation via inactivating TLR4/NF-κB axis. Int. Immunopharmacol. 2023, 119, 110197. [Google Scholar] [CrossRef]
- Mei, J.; Chen, X.; Wang, P.; Wu, Y.; Yi, Y.; Ying, G. Production of taxifolin from astilbin by fungal biotransformation. Catalysts 2022, 12, 1037. [Google Scholar] [CrossRef]
- Park, S.-M.; He, Y.-C.; Gong, C.; Gao, W.; Bae, Y.-S.; Si, C.; Park, K.-H.; Choi, S.-E. Effects of taxifolin from enzymatic hydrolysis of Rhododendron mucrotulatum on hair growth promotion. Front. Bioeng. Biotechnol. 2022, 10, 995238. [Google Scholar] [CrossRef]
- Moffat, A.; Nisbet, T.; Nicoll, B. Environmental Effects of Stump and Root Harvesting; Forestry Commission: Bristol, UK, 2011. [Google Scholar]
- Papageorgiou, D.; Bebeli, P.J.; Panitsa, M.; Schunko, C. Local knowledge about sustainable harvesting and availability of wild medicinal plant species in Lemnos island, Greece. J. Ethnobiol. Ethnomed. 2020, 16, 36. [Google Scholar] [CrossRef]
- Rabgyal, J.; Pelden, K. Sustainable Harvesting Practices for Endangered Medicinal Plants of Bhutan; Agriculture Research and Development Centre: Bajo, Indonesia, 2020. [Google Scholar]
- Lee, H.S.; Bang, S.J.; Paek, J.G.; An, D.H.; Jang, H.D.; Kwon, Y.E.; Kim, T.H.; Kim, M.S.; Jang, T.Y.; Cheong, E.J.; et al. Chemotaxonomic Significance of Taxifolin-3-O-arabinopyranoside in Vietnamese Rhododendron genus. J. For. Environ. Sci. 2025, 41, 292–303. [Google Scholar]
- Piskula, M.K. Factors affecting flavonoids absorption. Biofactors 2000, 12, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Zinchenko, V.; Kim, Y.A.; Tarakhovskii, Y.S.; Bronnikov, G. Biological activity of water-soluble nanostructures of dihydroquercetin with cyclodextrins. Biophysics 2011, 56, 418–422. [Google Scholar] [CrossRef]
- Yang, L.-J.; Chen, W.; Ma, S.-X.; Gao, Y.-T.; Huang, R.; Yan, S.-J.; Lin, J. Host–guest system of taxifolin and native cyclodextrin or its derivative: Preparation, characterization, inclusion mode, and solubilization. Carbohydr. Polym. 2011, 85, 629–637. [Google Scholar] [CrossRef]
- Sakushima, A.; Nishibe, S. Taxifolin 3-arabinoside from Trachelospermum jasminoides var. Pubescens. Phytochemistry 1988, 27, 948–950. [Google Scholar] [CrossRef]
- Chosson, E.; Chaboud, A.; Chulia, A.; Raynaud, J. Dihydroflavonol glycosides from Rhododendron ferrugineum. Phytochemistry 1998, 49, 1431–1433. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jeon, W.-J.; Yoo, E.-S.; Kim, C.-M.; Kwon, Y.-S. The chemical constituents and their antioxidant activity of the stem of Rhododendron mucronulatum. Nat. Prod. Sci. 2005, 11, 97–102. [Google Scholar]
- Leeuwenburgh, C. Role of apoptosis in sarcopenia. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, M999–M1001. [Google Scholar]
- Jodynis-Liebert, J.; Kujawska, M. Biphasic dose-response induced by phytochemicals: Experimental evidence. J. Clin. Med. 2020, 9, 718. [Google Scholar] [CrossRef]
- Martínez-Alonso, C.; Taroncher, M.; Castaldo, L.; Izzo, L.; Rodríguez-Carrasco, Y.; Ritieni, A.; Ruiz, M.-J. Effect of phenolic extract from red beans (Phaseolus vulgaris L.) on T-2 toxin-induced cytotoxicity in HepG2 cells. Foods 2022, 11, 1033. [Google Scholar] [CrossRef]
- Kim, E.J.; Jung, J.I.; Jeon, Y.E.; Lee, H.S. Aqueous extract of Petasites japonicus leaves promotes osteoblast differentiation via up-regulation of Runx2 and Osterix in MC3T3-E1 cells. Nutr. Res. Pract. 2021, 15, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Assessment of cytotoxicity and antioxidant properties of berry leaves as by-products with potential application in cosmetic and pharmaceutical products. Sci. Rep. 2021, 11, 3240. [Google Scholar] [CrossRef] [PubMed]
- Albulescu, L.; Suciu, A.; Neagu, M.; Tanase, C.; Pop, S. Differential Biological Effects of Trifolium pratense Extracts—In Vitro Studies on Breast Cancer Models. Antioxidants 2024, 13, 1435. [Google Scholar] [CrossRef] [PubMed]
- Cory, S.; Adams, J.M. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2002, 2, 647–656. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Zhang, Y.E.; Huang, G.Q.; Wu, B.; Lin, X.D.; Yang, W.Z.; Ke, Z.Y.; Liu, J. Hydrogen sulfide protects H9c2 cardiomyoblasts against H 2 O 2-induced apoptosis. Braz. J. Med. Biol. Res. 2019, 52, e7626. [Google Scholar] [CrossRef]
- Siu, P.M.; Wang, Y.; Alway, S.E. Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes. Life Sci. 2009, 84, 468–481. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, X.; Tian, Y.; Zhai, S.; Liu, Y.; Xiong, Z.; Chu, S. An insight into novel therapeutic potentials of taxifolin. Front. Pharmacol. 2023, 14, 1173855. [Google Scholar] [CrossRef]
- Zu, Y.; Wu, W.; Zhao, X.; Li, Y.; Wang, W.; Zhong, C.; Zhang, Y.; Zhao, X. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. Int. J. Pharm. 2014, 471, 366–376. [Google Scholar] [CrossRef]
- Nishimura, M.; Mikura, M.; Hirasaka, K.; Okumura, Y.; Nikawa, T.; Kawano, Y.; Nakayama, M.; Ikeda, M. Effects of dimethyl sulphoxide and dexamethasone on mRNA expression of myogenesis-and muscle proteolytic system-related genes in mouse myoblastic C2C12 cells. J. Biochem. 2008, 144, 717–724. [Google Scholar] [CrossRef]
- Orzechowski, A.; Grzelkowska, K.; Karlik, W.; Motyl, T. Effect of quercetin and DMSO on skeletal myogenesis from C2C12 skeletal muscle cells with special reference to PKB/Akt activity, myogenin and Bcl-2 expression. BAM PADOVA 2001, 11, 31–44. [Google Scholar]
- Ono, Y.; Sakamoto, K. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α. PLoS ONE 2017, 12, e0182040. [Google Scholar] [CrossRef] [PubMed]
- Yakabe, M.; Hosoi, T.; Sasakawa, H.; Akishita, M.; Ogawa, S. Kampo formula hochu-ekki-to (Bu-Zhong-Yi-Qi-Tang, TJ-41) ameliorates muscle atrophy by modulating atrogenes and AMPK in vivo and in vitro. BMC Complement. Med. Ther. 2022, 22, 341. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.-J.; Sun, L.; Li, Y.-L.; Muhammad, J.S.; Wang, Y.; Feng, Q.-W.; Zhang, Y.-Z.; Inadera, H.; Cui, Z.-G.; Wu, C.-A. Low-calorie sweetener D-psicose promotes hydrogen peroxide-mediated apoptosis in C2C12 myogenic cells favoring skeletal muscle cell injury. Mol. Med. Rep. 2021, 24, 536. [Google Scholar] [CrossRef]
- Kang, J.S.; Kim, D.J.; Kim, G.-Y.; Cha, H.-J.; Kim, S.; Kim, H.-S.; Park, C.; Hwang, H.J.; Kim, B.W.; Kim, C.M. Ethanol extract of Prunus mume fruit attenuates hydrogen peroxide-induced oxidative stress and apoptosis involving Nrf2/HO-1 activation in C2C12 myoblasts. Rev. Bras. De Farmacogn. 2016, 26, 184–190. [Google Scholar] [CrossRef]
- Eo, H.; Reed, C.H.; Valentine, R.J. Imoxin prevents dexamethasone-induced promotion of muscle-specific E3 ubiquitin ligases and stimulates anabolic signaling in C2C12 myotubes. Biomed. Pharmacother. 2020, 128, 110238. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kim, H.M.; Kim, J.H.; Lee, J.-H.; Zhang, K.; Guo, S.; Lee, D.H.; Gao, E.M.; Son, R.H.; Kim, S.-M. Preventive effects of the butanol fraction of Justicia procumbens L. against dexamethasone-induced muscle atrophy in C2C12 myotubes. Heliyon 2022, 8, e11597. [Google Scholar] [CrossRef]
- Lee, M.-K.; Ryu, H.; HAK JEONG, H.; Lee, B. Meroterpenoid-Rich Fraction of the Ethanol Extract from Sargassum Serratifolium Suppressed Muscle Atrophy Induced by Dexamethasone in C2C12 Myotubes and C57BL/6 Mice. Diabetes 2023, 72, 1639-P. [Google Scholar] [CrossRef]
- Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef]
















| DEX (5 μM) | RMB (μg/mL) | mRNA | |||
|---|---|---|---|---|---|
| Atrogin-1 | MuRF1 | MyoD1 | Myogenin | ||
| − | − | 6.36 ± 1.02 | 8.49 ± 0.85 | 344.21 ± 47.31 | 288.19 ± 28.07 |
| + | − | 100 ± 11.56 ** | 100 ± 10.46 *** | 100 ± 7.05 *** | 100 ± 10.23 *** |
| + | 50 | 88.46 ± 11.37 | 80.28 ± 18.88 | 125.65 ± 9.29 | 135.89 ± 24.66 |
| + | 100 | 50.59 ± 6.68 ## | 64.95 ± 5.06 # | 194.11 ± 21.03 ## | 181.69 ± 46.27 |
| + | 200 | 52.27 ± 9.07 ## | 35.62 ± 6.73 ### | 188.84 ± 18.80 ## | 170.43 ± 18.96 ## |
| DEX (5 μM) | Tax-G (μM) | mRNA | |||
|---|---|---|---|---|---|
| Atrogin-1 | MuRF1 | MyoD1 | Myogenin | ||
| − | − | 5.38 ± 0.42 | 4.86 ± 0.36 | 370.58 ± 55.35 | 270.98 ± 23.47 |
| + | − | 100 ± 17.32 *** | 100 ± 8.15 *** | 100 ± 19.46 *** | 100 ± 10.16 *** |
| + | 10 | 71.52 ± 11.93 | 82.29 ± 5.83 | 136.45 ± 13.77 | 144.47 ± 12.39 # |
| + | 50 | 66.12 ± 5.47 | 65.72 ± 8.07 # | 214.08 ± 33.48 # | 198.08 ± 23.77 ## |
| + | 100 | 50.87 ± 4.15 # | 55.61 ± 3.49 ### | 305.36 ± 54.58 ## | 248.93 ± 25.62 ### |
| DEX (5 μM) | Tax-A (μg/mL) | mRNA | |||
|---|---|---|---|---|---|
| Atrogin-1 | MuRF1 | MyoD1 | Myogenin | ||
| − | − | 5.96 ± 0.23 | 5.78 ± 0.76 | 315.42 ± 46.51 | 309.10 ± 25.80 |
| + | − | 100 ± 5.96 ** | 100 ± 11.46 *** | 100 ± 22.68 ** | 100 ± 17.27 ** |
| + | 5 | 76.12 ± 6.11 # | 100.94 ± 11.54 | 140.07 ± 11.58 | 150.26 ± 7.34 # |
| + | 10 | 70.86 ± 5.31 ## | 72.64 ± 3.96 # | 201.17 ± 20.49 ## | 181.10 ± 17.91 ## |
| + | 50 | 59.38 ± 6.08 ### | 62.65 ± 5.40 # | 217.63 ± 22.23 ## | 197.65 ± 21.57 ## |
| mRNA | Primer Sequences | Genebank No. | |
|---|---|---|---|
| Atrogin-1 | Forward | 5′-GCCCTCCACACTAGTTGACC-3′ | NM_026346.3 |
| Reverse | 5′-GACGGATTGACAGCCAGGAA-3′ | ||
| MuRF1 | Forward | 5′-GAGGGCCATTGACTTTGGGA-3′ | NM_001039048.2 |
| Reverse | 5′-TTTACCCTCTGTGGTCACGC-3′ | ||
| MyoD1 | Forward | 5′-GCACTACAGTGGCGACTCAGAT-3′ | NM_010866.2 |
| Reverse | 5′-TAGTAGGCGGTGTCGTAGCCAT-3′ | ||
| Myogenin | Forward | 5′-CCATCCAGTACATTGAGCGCCT-3′ | NM_031189.2 |
| Reverse | 5′-CTGTGGGAGTTGCATTCACTGG-3′ | ||
| GAPDH | Forward | 5′-TGGGTGTGAACCATGAGAAG-3′ | NM_008084.3 |
| Reverse | 5′-GCTAAGCAGTTGGTGGTGC-3′ | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lee, H.S.; Jang, H.D.; Kim, T.H.; An, D.H.; Kwon, Y.E.; Kim, E.J.; Jung, J.I.; Min, S.; Kim, H.K.; Park, K.-H.; et al. In Vitro Study on the Effects of Rhododendron mucronulatum Branch Extract, Taxifolin-3-O-Arabinopyranoside and Taxifolin on Muscle Loss and Muscle Atrophy in C2C12 Murine Skeletal Muscle Cells. Int. J. Mol. Sci. 2026, 27, 570. https://doi.org/10.3390/ijms27020570
Lee HS, Jang HD, Kim TH, An DH, Kwon YE, Kim EJ, Jung JI, Min S, Kim HK, Park K-H, et al. In Vitro Study on the Effects of Rhododendron mucronulatum Branch Extract, Taxifolin-3-O-Arabinopyranoside and Taxifolin on Muscle Loss and Muscle Atrophy in C2C12 Murine Skeletal Muscle Cells. International Journal of Molecular Sciences. 2026; 27(2):570. https://doi.org/10.3390/ijms27020570
Chicago/Turabian StyleLee, Hyun Seo, Hyeon Du Jang, Tae Hee Kim, Da Hyeon An, Ye Eun Kwon, Eun Ji Kim, Jae In Jung, Sangil Min, Hee Kyu Kim, Kwang-Hyun Park, and et al. 2026. "In Vitro Study on the Effects of Rhododendron mucronulatum Branch Extract, Taxifolin-3-O-Arabinopyranoside and Taxifolin on Muscle Loss and Muscle Atrophy in C2C12 Murine Skeletal Muscle Cells" International Journal of Molecular Sciences 27, no. 2: 570. https://doi.org/10.3390/ijms27020570
APA StyleLee, H. S., Jang, H. D., Kim, T. H., An, D. H., Kwon, Y. E., Kim, E. J., Jung, J. I., Min, S., Kim, H. K., Park, K.-H., Woo, H., & Choi, S. E. (2026). In Vitro Study on the Effects of Rhododendron mucronulatum Branch Extract, Taxifolin-3-O-Arabinopyranoside and Taxifolin on Muscle Loss and Muscle Atrophy in C2C12 Murine Skeletal Muscle Cells. International Journal of Molecular Sciences, 27(2), 570. https://doi.org/10.3390/ijms27020570

