Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (489)

Search Parameters:
Keywords = γ’ precipitates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5638 KiB  
Article
Influence of Heat Treatment on Precipitate and Microstructure of 38CrMoAl Steel
by Guofang Xu, Shiheng Liang, Bo Chen, Jiangtao Chen, Yabing Zhang, Xiaotan Zuo, Zihan Li, Bo Song and Wei Liu
Materials 2025, 18(15), 3703; https://doi.org/10.3390/ma18153703 - 6 Aug 2025
Abstract
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was [...] Read more.
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was computationally analyzed via the Thermo-Calc software, while the microstructure, fracture morphology, and precipitate characteristics were systematically investigated using a metallographic microscope (MM), a field-emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). Additionally, the effects of different holding times and cooling rates on the microstructure and precipitates of 38CrMoAl steel were also studied. The results show that the third brittle temperature region of 38CrMoAl steel is 645–1009 °C, and the fracture mechanisms can be classified into three types: (I) in the α single-phase region, the thickness of intergranular proeutectoid ferrite increases with rising temperature, leading to reduced hot ductility; (II) in the γ single-phase region, the average size of precipitates increases while the number density decreases with increasing temperature, thereby improving hot ductility; and (III) in the α + γ two-phase region, the precipitation of proeutectoid ferrite promotes crack propagation and the dense distribution of precipitates at grain boundaries causes stress concentration, further deteriorating hot ductility. Heat treatment experiments indicate that the microstructures of the specimen transformed under water cooling, air cooling, and furnace cooling conditions as follows: martensite + proeutectoid ferrite → bainite + ferrite → ferrite. The average size of precipitates first decreased, then increased, and finally decreased again with increasing holding time, while the number density exhibited the opposite trend. Therefore, when the holding time was the same, reducing the cooling rate could increase the average size of the precipitates and decrease their number density, thereby improving the hot ductility of 38CrMoAl steel. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

14 pages, 1588 KiB  
Case Report
Fatal Cytokine Collision: HLH–AIHA in Advanced AIDS—Case Report and Literature Review
by Xiaoyi Zhang, Maria Felix Torres Nolasco, Wing Fai Li, Toru Yoshino and Manasa Anipindi
Reports 2025, 8(3), 137; https://doi.org/10.3390/reports8030137 - 4 Aug 2025
Viewed by 247
Abstract
Background and Clinical Significance: Hemophagocytic lymphohistiocytosis (HLH) and autoimmune hemolytic anemia (AIHA) are both life-threatening hematologic syndromes that rarely present together outside of malignancy. Advanced acquired immunodeficiency syndrome (AIDS) creates a milieu of profound immune dysregulation and hyperinflammation, predisposing patients to atypical [...] Read more.
Background and Clinical Significance: Hemophagocytic lymphohistiocytosis (HLH) and autoimmune hemolytic anemia (AIHA) are both life-threatening hematologic syndromes that rarely present together outside of malignancy. Advanced acquired immunodeficiency syndrome (AIDS) creates a milieu of profound immune dysregulation and hyperinflammation, predisposing patients to atypical overlaps of these disorders. Case Presentation: A 30-year-old woman with poorly controlled AIDS presented with three weeks of jaundice, fever, and fatigue. Initial labs revealed pancytopenia, hyperbilirubinemia, and elevated ferritin level. Direct anti-globulin testing confirmed warm AIHA (IgG+/C3d+) with transient cold agglutinins. Despite intravenous immunoglobulin (IVIG), rituximab, and transfusions, she developed hepatosplenomegaly, extreme hyperferritinemia, and sIL-2R > 10,000 pg/mL, meeting HLH-2004 criteria. Bone marrow biopsy excluded malignancy; further work-up revealed Epstein–Barr virus (EBV) viremia and cytomegalovirus (CMV) reactivation. Dexamethasone plus reduced-dose etoposide transiently reduced soluble interleukin-2 receptor (sIL-2R) but precipitated profound pancytopenia, Acute respiratory distress syndrome (ARDS) from CMV/parainfluenza pneumonia, bilateral deep vein thrombosis (DVT), and an ST-elevation myocardial infarction (STEMI). She ultimately died of hemorrhagic shock after anticoagulation despite maximal supportive measures. Conclusions: This case underscores the diagnostic challenges of HLH-AIHA overlap in AIDS, where cytopenias and hyperferritinemia mask the underlying cytokine storm. Pathogenesis likely involved IL-6/IFN-γ overproduction, impaired cytotoxic T-cell function, and molecular mimicry. While etoposide remains a cornerstone of HLH therapy, its myelotoxicity proved catastrophic in this immunocompromised host, highlighting the urgent need for cytokine-targeted agents to mitigate treatment-related mortality. Full article
(This article belongs to the Section Allergy/Immunology)
Show Figures

Figure 1

14 pages, 5622 KiB  
Article
Molecular Dynamics Simulations on the Deformation Behaviors and Mechanical Properties of the γ/γ′ Superalloy with Different Phase Volume Fractions
by Xinmao Qin, Wanjun Yan, Yilong Liang and Fei Li
Crystals 2025, 15(8), 706; https://doi.org/10.3390/cryst15080706 - 31 Jul 2025
Viewed by 175
Abstract
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, [...] Read more.
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, high-strain-rate service environments. Our investigation revealed that the tensile behavior of the superalloy depends critically on the Vγ. When the Vγ increased from 13.5 to 67%, the system’s tensile strength exhibited a non-monotonic response, peaking at Vγ = 40.3% before progressively decreasing. Conversely, the maximum uniform plastic strain decreased linearly and significantly when Vγ increased. These results establish an atomistically informed framework that elucidates the composition–microstructure–property relationships in γ(Ni)/γ(Ni3Al) superalloys, specifically addressing how Vγ governs variations in deformation mechanisms and mechanical performance. Furthermore, this work provides quantitative design paradigm for optimizing γ(Ni3Al) precipitate architecture and compositional tuning in the Ni-based γ(Ni)/γ(Ni3Al) superalloy. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

24 pages, 5129 KiB  
Article
On the Solidification and Phase Stability of Re-Bearing High-Entropy Superalloys with Hierarchical Microstructures
by Wei-Che Hsu, Takuma Saito, Mainak Saha, Hideyuki Murakami, Taisuke Sasaki and An-Chou Yeh
Metals 2025, 15(8), 820; https://doi.org/10.3390/met15080820 - 22 Jul 2025
Viewed by 430
Abstract
This study presents the design and microstructural investigation of a single-crystal (SX) Re-bearing high-entropy superalloy (HESA-X1) featuring a thermally stable γ–γ′–γ hierarchical microstructure. The alloy exhibits FCC γ nanoparticles embedded within L12-ordered γ′ precipitates, themselves distributed in a γ matrix, with [...] Read more.
This study presents the design and microstructural investigation of a single-crystal (SX) Re-bearing high-entropy superalloy (HESA-X1) featuring a thermally stable γ–γ′–γ hierarchical microstructure. The alloy exhibits FCC γ nanoparticles embedded within L12-ordered γ′ precipitates, themselves distributed in a γ matrix, with the suppression of detrimental topologically close-packed (TCP) phases. To elucidate solidification behavior and phase stability, Scheil–Gulliver and TC-PRISMA simulations were conducted alongside SEM and XRD analyses. Near-atomic scale analysis in 3D using Atom Probe Tomography (APT) revealed pronounced elemental partitioning, with Re strongly segregating to the γ matrix, while Al and Ti were preferentially enriched in the γ′ phase. Notably, Re demonstrated a unique partitioning behavior compared to conventional superalloys, facilitating the formation and stabilization of γ nanoparticles during two-step aging (Ag-2). These γ nanoparticles significantly contribute to improved mechanical properties. Long-term aging (up to 200 h) at 750–850 °C confirmed exceptional phase stability, with minimal coarsening of γ′ and retention of γ nanoparticles. The coarsening rate constant K of γ′ at 750 °C was significantly lower than that of Re-free HESA, confirming the diffusion-suppressing effect of Re. These findings highlight critical roles of Re in enhancing microstructural stability by reducing atomic mobility, enabling the development of next-generation HESAs with superior thermal and mechanical properties for high-temperature applications. Full article
(This article belongs to the Special Issue Solidification and Casting of Metals and Alloys (2nd Edition))
Show Figures

Figure 1

15 pages, 6762 KiB  
Article
Influence of Annealing on the Properties of Fe62Ni18P13C7 Alloy
by Aleksandra Małachowska, Łukasz Szczepański, Andrzej Żak, Anna Kuś, Łukasz Żrodowski, Łukasz Maj and Wirginia Pilarczyk
Materials 2025, 18(14), 3376; https://doi.org/10.3390/ma18143376 - 18 Jul 2025
Viewed by 285
Abstract
In this study, the influence of annealing on the phase evolution and mechanical properties of the Fe62Ni18P13C7 (at.%) alloy was investigated. Ribbons produced via melt-spinning were annealed at various temperatures, and their structural transformations and hardness [...] Read more.
In this study, the influence of annealing on the phase evolution and mechanical properties of the Fe62Ni18P13C7 (at.%) alloy was investigated. Ribbons produced via melt-spinning were annealed at various temperatures, and their structural transformations and hardness were evaluated. The alloy exhibited a narrow supercooled liquid region (ΔTx ≈ 22 °C), confirming its low glass-forming ability (GFA). Primary crystallization began at approximately 380 °C with the formation of α-(Fe,Ni) and Fe2NiP, followed by the emergence of γ-(Fe,Ni) phase at higher temperatures. A significant increase in hardness was observed after annealing up to 415 °C, primarily due to nanocrystallization and phosphide precipitation. Further heating resulted in a hardness plateau, followed by a noticeable decline. Additionally, samples were produced via selective laser melting (SLM). The microstructure of the SLM-processed material revealed extensive cracking and the coexistence of phosphorus-rich regions corresponding to Fe2NiP and iron-rich regions associated with γ-(Fe,Ni). Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

11 pages, 9979 KiB  
Article
The Microstructure Evolution of a Ni-Based Superalloy Turbine Blade at Elevated Temperature
by Xuyang Wang, Yanna Cui, Yang Zhou, Ze Li, Yuzhu Zhao and Jun Wang
Coatings 2025, 15(7), 835; https://doi.org/10.3390/coatings15070835 - 17 Jul 2025
Viewed by 290
Abstract
GTD 111 has been employed in first-stage blades in different gas turbines. The study of microstructural evolution is essential for the lifetime assessment and development of turbine blades. The microstructural stability of a 130 MW gas turbine first-stage blade at 800 °C was [...] Read more.
GTD 111 has been employed in first-stage blades in different gas turbines. The study of microstructural evolution is essential for the lifetime assessment and development of turbine blades. The microstructural stability of a 130 MW gas turbine first-stage blade at 800 °C was studied. The microstructure’s evolution was analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermodynamic calculation. As thermal exposure time increases, the shape of γ′ precipitates changes from square to spherical. During thermal exposure, MC particles formed and coarsened along the grain boundaries, and primary MC carbide decomposed into the η phase and M23C6. The stability of MC carbide at the grain boundaries was lower than that within the grains. MC carbide precipitated at the grain boundaries tends to grow along the boundaries and eventually forms elongated carbide. High-resolution transmission electron microscopy (HRTEM) images indicate that the orientation of the γ′ precipitate changes during the coarsening process. The GTD 111 alloy can be deformed through dislocation shearing at 800 °C. The hardness value initially increases, then decreases with further exposure, which is related to the reduced precipitation strengthening by γ′ precipitates and the reduction in the hardness of the γ matrix. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

25 pages, 14812 KiB  
Article
The Effect of Yttrium Addition on the Solidification Microstructure and Sigma Phase Precipitation Behavior of S32654 Super Austenitic Stainless Steel
by Jun Xiao, Geng Tian, Di Wang, Shaoguang Yang, Kuo Cao, Jianhua Wei and Aimin Zhao
Metals 2025, 15(7), 798; https://doi.org/10.3390/met15070798 - 15 Jul 2025
Viewed by 265
Abstract
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect [...] Read more.
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect of the rare earth element yttrium (Y) on the solidification microstructure and σ phase precipitation behavior of SASS. The results show that the microstructure of SASS consists of austenite dendrites and interdendritic eutectoid structures. The eutectoid structures mainly comprise the σ phase and the γ2 phase, exhibiting lamellar or honeycomb-like morphologies. Regarding elemental distribution, molybdenum displays a “concave” distribution pattern within the dendrites, with lower concentrations at the center and higher concentrations at the sides; when Mo locally exceeds beyond a certain threshold, it easily induces the formation of eutectoid structures. Mo is the most significant segregating element, with a segregation ratio as high as 1.69. The formation mechanism of the σ phase is attributed to the solid-state phase transformation of austenite (γ → γ2 + σ). In the late stages of solidification, the concentration of chromium and Mo in the residual liquid phase increases, and due to insufficient diffusion, there are significant compositional differences between the interdendritic regions and the matrix. The enriched Cr and Mo cause the interdendritic austenite to become supersaturated, leading to solid-state phase transformation during subsequent cooling, thereby promoting σ phase precipitation. The overall phase transformation process can be summarized as L → L + γ → γ → γ + γ2 + σ. Y microalloying has a significant influence on the solidification process. The addition of Y increases the nucleation temperature of austenite, raises nucleation density, and refines the solidification microstructure. However, Y addition also leads to an increased amount of eutectoid structures. This is primarily because Y broadens the solidification temperature range of the alloy and prolongs grain growth perio, which aggravates the microsegregation of elements such as Cr and Mo. Moreover, Y raises the initial precipitation temperature of the σ phase and enhances atomic diffusion during solidification, further promoting σ phase precipitation during the subsequent eutectoid transformation. Full article
(This article belongs to the Special Issue Synthesis, Processing and Applications of New Forms of Metals)
Show Figures

Figure 1

12 pages, 7669 KiB  
Article
Precipitation Dynamics and Mechanical Properties Analysis of a Nickel-Based Superalloy Cooled Under Different Rates
by Jinhe Shi, Liwei Xie, Shengyu Liu, Baojin Chen, Lei Zhao and Kailun Zheng
Metals 2025, 15(7), 781; https://doi.org/10.3390/met15070781 - 10 Jul 2025
Viewed by 290
Abstract
The solid solution cooling heat treatment of powder, high-temperature alloys is a crucial part of the process for ensuring the strength of materials during the forging processing. The influence of the γ′ phase and other microstructures in high-temperature alloy forgings on their macroscopic [...] Read more.
The solid solution cooling heat treatment of powder, high-temperature alloys is a crucial part of the process for ensuring the strength of materials during the forging processing. The influence of the γ′ phase and other microstructures in high-temperature alloy forgings on their macroscopic mechanical properties has been confirmed in numerous studies. Among them, the performance of the γ′ phase during the solid solution cooling process varies significantly depending on the cooling rate. This study uses the FGH99 nickel-based high-temperature alloy as the research material. It examines the precipitation and microstructure evolution law of the material under different cooling rates and its impact on the macroscopic mechanical properties of the material. Additionally, a prediction model of the organizational properties based on the cooling rate is constructed. The research findings indicate that there is a distinct positive correlation between the yield strength of the material and the cooling rate. As the cooling rate increases, the yield strength rises from 910.8 MPa to 1025.4 MPa, showing an increase of 12.6%. Moreover, an increase in the cooling rate has an evident promoting effect on the refinement of the precipitation phase. When the cooling rate is elevated from 50 °C/min to 250 °C/min, the average size of the γ′ phase decreases from 106 nm to 82.1 nm, and its morphology transforms from an irregular state to a spherical shape. For the microstructure of the material, such as the size of the precipitated phase and dislocation density, the maximum prediction error of the heat treatment organization performance prediction model established in this study is 2.97%. Moreover, the prediction error of the yield strength is 1.76%. Full article
Show Figures

Figure 1

20 pages, 4923 KiB  
Article
Effect of Oxygen and Zirconium on Oxidation and Mechanical Behavior of Fully γ Ti52AlxZr Alloys
by Michal Kuris, Maria Tsoutsouva, Marc Thomas, Thomas Vaubois, Pierre Sallot, Frederic Habiyaremye and Jean-Philippe Monchoux
Metals 2025, 15(7), 745; https://doi.org/10.3390/met15070745 - 2 Jul 2025
Viewed by 291
Abstract
This work provides a comprehensive investigation into the synergistic effects of zirconium and oxygen on the microstructural evolution, high-temperature oxidation resistance, and mechanical properties of γ-phase Ti52AlxZr alloys (x = 0, 0.5, 1, and 2 at.%) under systematically controlled oxygen concentrations. Unlike prior [...] Read more.
This work provides a comprehensive investigation into the synergistic effects of zirconium and oxygen on the microstructural evolution, high-temperature oxidation resistance, and mechanical properties of γ-phase Ti52AlxZr alloys (x = 0, 0.5, 1, and 2 at.%) under systematically controlled oxygen concentrations. Unlike prior studies that have examined these alloying elements in isolation, this study uniquely decouples the contributions of interstitial (oxygen) and substitutional (zirconium) solutes by employing low (LOx) and high (HOx) oxygen levels. Alloys were synthesized via vacuum arc melting and subsequently subjected to homogenization annealing at 1250 °C for 100 h to ensure phase and microstructural stability. Characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) were employed to elucidate phase constitution and grain morphology. Zirconium addition was found to stabilize the γ-TiAl matrix, suppress α2-phase formation, and promote grain coarsening in LOx specimens. Conversely, elevated oxygen concentrations led to α2-phase precipitation along grain boundaries. Mechanical testing, comprising Vickers hardness and uniaxial compression at ambient and elevated temperatures (800 °C), revealed that both zirconium and oxygen significantly enhanced strength and hardness, with Ti52Al2Zr delivering optimal mechanical performance. Moreover, zirconium substantially improved oxidation resistance by promoting the formation of a thinner, adherent Al2O3 scale while simultaneously inhibiting TiO2 growth. Collectively, the findings demonstrate the critical role of zirconium in engineering advanced γ-TiAl-based intermetallics with superior high-temperature structural integrity and oxidation resistance. Full article
(This article belongs to the Section Crystallography and Applications of Metallic Materials)
Show Figures

Figure 1

14 pages, 6081 KiB  
Article
Investigation on Tensile Behavior of Solid Solution-Strengthened Ni-Co-Cr-Based Superalloy During Long-Term Aging
by Wanqi Hou, Xianjun Guan, Jiaqi Wang, Jinrong Wu, Lanzhang Zhou and Zheng Jia
Crystals 2025, 15(7), 617; https://doi.org/10.3390/cryst15070617 - 30 Jun 2025
Viewed by 216
Abstract
This study investigated how long-term aging (750 °C and 950 °C) affects the microstructure and room-temperature tensile properties of the Ni-Co-Cr superalloy GH3617. Characterization (SEM, EDS, EBSD) showed that initial aging (750 °C, 500 h) formed discontinuous M23C6 carbides, pinning [...] Read more.
This study investigated how long-term aging (750 °C and 950 °C) affects the microstructure and room-temperature tensile properties of the Ni-Co-Cr superalloy GH3617. Characterization (SEM, EDS, EBSD) showed that initial aging (750 °C, 500 h) formed discontinuous M23C6 carbides, pinning grain boundaries and improving strength. Prolonged aging (750 °C, 5000 h) caused M23C6 to coarsen into brittle chain-like structures (width up to 1.244 μm) and precipitated M6C carbides, degrading grain boundaries. Aging at 950 °C accelerated this coarsening via LSW kinetics (rate constant: 6.83 × 10−2 μm3/s), with Mo segregation promoting M6C formation. Tensile properties resulted from competing γ′ precipitation strengthening (post-aging strength increased up to 23.3%) and grain boundary degradation (elongation dropped from 70.1% to 43.3%). Fracture shifted from purely intergranular (cracks along M23C6/γ interfaces at 750 °C) to mixed mode (cracks initiated by M6C fragmentation at 950 °C). These insights support superalloy microstructure optimization and lifetime prediction. Full article
(This article belongs to the Special Issue Crystal Plasticity (4th Edition))
Show Figures

Figure 1

16 pages, 5230 KiB  
Article
In Situ Capture of High-Temperature Precipitate Phases in Ti-48Al-2Cr-2Nb Alloy Using Convolutional Neural Networks
by Xiaolei Li, Chuanqing Huang, Sen Zhao, Linlin Cui, Shirui Guo, Bo Zheng, Yinghao Cui, Yongqian Chen, Yue Zhao, Lujun Cui and Chunjie Xu
Crystals 2025, 15(6), 577; https://doi.org/10.3390/cryst15060577 - 18 Jun 2025
Viewed by 238
Abstract
TiAl intermetallic alloy is a crucial high-performance material, and its microstructure evolution at high temperatures is closely related to the process parameters. Observing the lamellar structure is key to exploring growth kinetics, and the feature extraction of precipitate phases can provide an effective [...] Read more.
TiAl intermetallic alloy is a crucial high-performance material, and its microstructure evolution at high temperatures is closely related to the process parameters. Observing the lamellar structure is key to exploring growth kinetics, and the feature extraction of precipitate phases can provide an effective basis for subsequent evolution studies and process parameter settings. Traditional observation methods struggle to promptly grasp the growth state of lamellar structures, and conventional object detection has certain limitations for clustered lamellar structures. This paper introduces a novel method for high-temperature precipitate phase feature extraction based on the YOLOv5-obb rotational object detection network, and a corresponding precipitate phase dataset was created. The improved YOLOv5-obb network was compared with other detection networks. The results show that the proposed YOLOv5-obb network model achieved a precision rate of 93.6% on the validation set for detecting and identifying lamellar structures, with a detection time of 0.02 s per image. It can effectively and accurately identify γ lamellar structures, providing a reference for intelligent morphology detection of alloy precipitate phases under high-temperature conditions. This method achieved good detection performance and high robustness. Additionally, the network can obtain precise positional information for target structures, thus determining the true length of the lamellar structure, which provides strong support for subsequent growth rate calculations. Full article
Show Figures

Figure 1

12 pages, 3510 KiB  
Article
Anomalous Precipitation of the γ-Fe Phase in Fe-Based Nanocrystalline Alloys and Its Impact on Soft Magnetic Properties
by You Wu, Lingxiang Shi, Ranbin Wang, Jili Jia, Wenhui Guo, Yunshuai Su, Hengtong Bu, Siqi Xiang, Weihong Yang, Mingli Fu, Yang Shao and Kefu Yao
Materials 2025, 18(12), 2867; https://doi.org/10.3390/ma18122867 - 17 Jun 2025
Viewed by 429
Abstract
High-Cu-content (Cu-content > 1.3 at.%) nanocrystalline alloys exhibit wide heat-treatment windows and favorable soft magnetic properties due to the presence of pre-existing α-Fe nanocrystals. By fabricating ribbons with varying thicknesses to tailor cooling rates, distinct structural characteristics were achieved in Fe82B [...] Read more.
High-Cu-content (Cu-content > 1.3 at.%) nanocrystalline alloys exhibit wide heat-treatment windows and favorable soft magnetic properties due to the presence of pre-existing α-Fe nanocrystals. By fabricating ribbons with varying thicknesses to tailor cooling rates, distinct structural characteristics were achieved in Fe82B16.5Cu1.5 alloy ribbons. Notably, the face-centered cubic (fcc) γ-Fe phase was identified in Fe-based nanocrystalline alloys. The precipitation of the fcc γ-Fe phase originates from a phase-selection mechanism under specific cooling conditions, while its retention in the as-quenched ribbon with a thickness of 27 μm is attributed to kinetic suppression during rapid cooling and the nanoscale stabilization effect. The formation of the fcc γ-Fe phase significantly reduced the saturation flux density (Bs) and increased coercivity (Hc), concurrently destabilizing the residual amorphous matrix. By suppressing the precipitation of the γ-Fe and Fe3B phases through precise control of ribbon thickness and annealing parameters, the alloy ribbon with a thickness of 16 μm achieved an optimal combination of Bs (1.82 T) and Hc (8.3 A/m). These findings on anomalous fcc γ-Fe phase precipitation provide novel insights into metastable phase engineering and offer structural design guidelines for alloys containing pre-existing α-Fe nanocrystals. Full article
Show Figures

Figure 1

12 pages, 1401 KiB  
Article
Isolation and Preliminary X-Ray Crystallographic Characterisation of the Periplasmic Ligand-Binding Domain of the Chemoreceptor Tlp3 from Campylobacter hepaticus
by Diana Kovaleva, Yue Xin, Mohammad F. Khan, Yu H. Chin and Anna Roujeinikova
Crystals 2025, 15(6), 542; https://doi.org/10.3390/cryst15060542 - 6 Jun 2025
Viewed by 621
Abstract
The Campylobacter genus includes many pathogenic species, with Campylobacter hepaticus primarily implicated in spotty liver disease in poultry. Chemotaxis is one of the well-established mechanisms of pathogenesis of Campylobacter. The chemoreceptor Tlp3, previously studied in C. jejuni, mediates responses to diverse [...] Read more.
The Campylobacter genus includes many pathogenic species, with Campylobacter hepaticus primarily implicated in spotty liver disease in poultry. Chemotaxis is one of the well-established mechanisms of pathogenesis of Campylobacter. The chemoreceptor Tlp3, previously studied in C. jejuni, mediates responses to diverse ligands. Differences between the ligand-binding pockets of Tlp3s in C. hepaticus and C. jejuni may influence ligand specificity and niche adaptation. Here, we report a method for production of the ligand-binding domain of C. hepaticus Tlp3 (Ch Tlp3-LBD) in Escherichia coli inclusion bodies that yields crystallisable protein. Size-exclusion chromatography analysis showed Ch Tlp3-LBD is a monomer in solution. Ch Tlp3-LBD was crystallised using PEG 6000 and LiCl as the precipitants. The crystal lattice symmetry was P2221, with unit cell geometry of a = 82.0, b = 137.7, c = 56.1 Å, and α = β = γ = 90°. X-ray diffraction data have been acquired to 1.6 Å resolution using synchrotron radiation. Estimation of the Matthews coefficient (VM = 2.8 Å3 Da−1) and the outcome of molecular replacement suggested the asymmetric unit is composed of two protein molecules. This work lays the foundation for studies towards understanding the structural basis of ligand recognition by C. hepaticus Tlp3 and its role in pathogenesis. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

24 pages, 6654 KiB  
Article
The Capabilities of Optical and C-Band Radar Satellite Data to Detect and Understand Faba Bean Phenology over a 6-Year Period
by Frédéric Baup, Rémy Fieuzal, Clément Battista, Herivanona Ramiakatrarivony, Louis Tournier, Serigne-Fallou Diarra, Serge Riazanoff and Frédéric Frappart
Remote Sens. 2025, 17(11), 1933; https://doi.org/10.3390/rs17111933 - 3 Jun 2025
Viewed by 657
Abstract
This study analyzes the potential of optical and radar satellite data to monitor faba bean (Vicia faba L.) phenology over six years (2016–2021) in southwestern France. Using Sentinel-1, Sentinel-2, and Landsat-8 data, temporal variations in NDVI and radar backscatter coefficients (γ0 [...] Read more.
This study analyzes the potential of optical and radar satellite data to monitor faba bean (Vicia faba L.) phenology over six years (2016–2021) in southwestern France. Using Sentinel-1, Sentinel-2, and Landsat-8 data, temporal variations in NDVI and radar backscatter coefficients (γ0VV, γ0VH, and γ0VH/VV) are examined to assess crop growth, detect anomalies, and evaluate the impact of climatic conditions and sowing strategies. The results show that NDVI and the radar ratio (γ0VH/VV) were suited to monitor faba bean phenology, with distinct growth phases observed annually. NDVI provides a clear seasonal pattern but is affected by cloud cover, while radar backscatter offers continuous monitoring, making their combination highly beneficial. The signal γ0VH/VV exhibits well-marked correlations with NDVI (r = 0.81) and LAI (r = 0.83), particularly in orbit 30, which provides greater sensitivity to vegetation changes. The analysis of individual fields (inter-field approach) reveals variations in sowing strategies, with both autumn and spring plantings detected. Fields sown in autumn show early NDVI (and γ0VH/VV) increases, while spring-sown fields display delayed growth patterns. This study also highlights the impact of climatic factors, such as precipitation and temperature, on inter-annual variability. Moreover, faba beans used as an intercropping species exhibit a shorter and more intense growth cycle, with a rapid NDVI (and γ0VH/VV) increase and an earlier end of the vegetative cycle compared to standard rotations. Double logistic modeling successfully reconstructs temporal trends, achieving high accuracy (r > 0.95 and rRMSE < 9% for γ0VH/VV signals and r > 0.89 and rRMSE < 15% for NDVI). These double logistic functions are capable of reproducing the differences in phenological development observed between fields and years, providing a reference set of functions that can be used to monitor the phenological development of faba beans in real time. Future applications could extend this methodology to other crops and explore alternative radar systems for improved monitoring (such as TerraSAR-X, Cosmos-SkyMed, ALOS-2/PALSAR, NISAR, ROSE-L…). Full article
(This article belongs to the Special Issue Advances in Detecting and Understanding Land Surface Phenology)
Show Figures

Figure 1

16 pages, 6146 KiB  
Article
Co-Deformation Process of Cu and Fe Phases in Cu-10Fe Alloy During Cold Rolling
by Wei Chen, Xiaona Hu, Jiawei Wang, Qiuxiang Liu, Dan Wu, Jiang Jiang, Qiang Hu, Deping Lu and Jin Zou
Materials 2025, 18(11), 2547; https://doi.org/10.3390/ma18112547 - 28 May 2025
Viewed by 390
Abstract
Cu-Fe in situ composites often face challenges in achieving high strength during cold rolling due to the inefficient transformation of partial Fe phases into fibrous structures. To uncover the underlying mechanisms, this study systematically investigates the co-deformation behavior of Cu and Fe phases [...] Read more.
Cu-Fe in situ composites often face challenges in achieving high strength during cold rolling due to the inefficient transformation of partial Fe phases into fibrous structures. To uncover the underlying mechanisms, this study systematically investigates the co-deformation behavior of Cu and Fe phases in a Cu-10Fe alloy subjected to cold rolling at various strains. Through microstructure characterization, texture analysis, and mechanical property evaluation, we reveal that the Cu matrix initially accommodates most applied strain (εvm < 1.0), forming shear bands, while Fe phases (dendrites and spherical particles) exhibit negligible deformation. At intermediate strains (1.0 < εvm < 4.0), Fe phases begin to deform: dendrites elongate along the rolling direction, and spherical particles evolve into tadpole-like morphologies under localized shear. Concurrently, dynamic recrystallization occurs near Fe phases in the Cu matrix, generating ultrafine grains. Under high strains (εvm > 4.0), Fe dendrites progressively transform into filaments, whereas spherical Fe particles develop long-tailed tadpole-like structures. Texture evolution indicates that Cu develops a typical copper-type rolling texture, while Fe forms α/γ-fiber textures, albeit with sluggish texture development in Fe. The low efficiency of Fe fiber formation is attributed to the insufficient strength of the Cu matrix and the elongation resistance of spherical Fe particles. To optimize rolled Cu-Fe in situ composites, we propose strengthening the Cu matrix (via alloying/precipitation) and suppressing spherical Fe phases through solidification control. This work provides critical insights into enhancing Fe fiber formation in rolled Cu-Fe systems for high-performance applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

Back to TopTop