Co-Deformation Process of Cu and Fe Phases in Cu-10Fe Alloy During Cold Rolling
Abstract
:1. Introduction
2. Experimental Procedures
3. Results
3.1. Morphological Evolution of Cu and Fe Phases
3.2. Texture Development in Cu and Fe Phases
3.3. Microhardness Variations in Cu and Fe Phases
4. Discussion
4.1. Co-Deformation Process of Cu and Fe Phases
4.2. Deformation Mechanism of Fe Phase
4.3. Possible Methods to Promote Fe Fiber Formation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, J.S.; Hong, S.I.; Kim, H.S. Heavily drawn Cu-Fe-Ag and Cu-Fe-Cr microcomposites. J. Mater. Process. Technol. 2001, 113, 610–616. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, W.; Kang, Z.; Jia, Y.; Wu, Y.; Zhang, R.; Xu, G.; Wang, M. High strength and high electrical conductivity Cu–Cr system alloys manufactured by hot rolling–quenching process and thermomechanical treatments. Mater. Sci. Eng. A 2012, 538, 295–301. [Google Scholar] [CrossRef]
- Chen, W.; Hu, X.; Guo, W.; Zou, J.; Liu, K.; Lu, D.; Tan, D. Effects of C addition on the microstructures of as-cast Cu–Fe–P alloys. Materials 2019, 12, 2772. [Google Scholar] [CrossRef] [PubMed]
- Bevk, J.; Harbison, J.P.; Bell, J.L. Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites. J. Appl. Phys. 1978, 49, 6031–6038. [Google Scholar] [CrossRef]
- Biselli, C.; Morris, D. Microstructure and strength of Cu-Fe in situ composites after very high drawing strains. Acta Mater. 1996, 44, 493–504. [Google Scholar] [CrossRef]
- Liu, K.; Sheng, X.; Li, Q.; Zhang, M.; Han, N.; He, G.; Zou, J.; Chen, W.; Atrens, A. Microstructure and Strengthening Model of Cu–Fe In-Situ Composites. Materials 2020, 13, 3464. [Google Scholar] [CrossRef]
- Liu, K.; Lu, D.; Zhou, H.; Atrens, A.; Chen, Z.; Zou, J.; Zeng, S. Influence of Ag micro-alloying on the microstructure and properties of Cu–7Cr in situ composite. J. Alloys Compd. 2010, 500, L22–L25. [Google Scholar] [CrossRef]
- Li, Y.; Yi, D.; Zhang, J. Comparative study of the influence of Ag on the microstructure and mechanical properties of Cu-10Fe in situ composites. J. Alloys Compd. 2015, 647, 413–418. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Shu, D.; Sun, B. Microstructure and properties of Cu-11Fe-6Ag in situ composite after thermo-mechanical treatments. J. Alloys Compd. 2007, 438, 268–273. [Google Scholar] [CrossRef]
- Heringhaus, F.; Schneider-Muntau, H.-J.; Gottstein, G. Analytical modeling of the electrical conductivity of metal matrix composites: Application to Ag–Cu and Cu–Nb. Mater. Sci. Eng. A 2003, 347, 9–20. [Google Scholar] [CrossRef]
- Biselli, C.; Morris, D.G. Microstructure and strength of Cu-Fe in situ composites obtained from prealloyed Cu-Fe powders. Acta Metall. Mater. 1994, 42, 163–176. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, Y.; Li, Z.; Xiao, Z.; Gong, S.; Qiu, W.; Lei, Q. Microstructure evolution and deformation behaviour of Cu-10 wt%Fe alloy during cold rolling. Mater. Sci. Eng. A 2021, 801, 140379. [Google Scholar] [CrossRef]
- Sauvage, X.; Wetscher, F.; Pareige, P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu–Fe composite. Acta Mater. 2005, 53, 2127–2135. [Google Scholar] [CrossRef]
- Sauvage, X.; Pippan, R. Nanoscaled structure of a Cu–Fe composite processed by high-pressure torsion. Mater. Sci. Eng. A 2005, 410–411, 345–347. [Google Scholar] [CrossRef]
- Choi, Y.C.; Kim, H.S.; Hong, S.I. The effects of alloying and pressing routes in equal channel angular pressing of Cu-Fe-Cr and Cu-Fe-Cr-Ag composites. Met. Mater. Int. 2009, 15, 733–739. [Google Scholar] [CrossRef]
- Verhoeven, J.D.; Chueh, S.C.; Gibson, E.D. Strength and conductivity ofin situ Cu-Fe alloys. J. Mater. Sci. 1989, 24, 1748–1752. [Google Scholar] [CrossRef]
- Hong, S.I.; Song, J.S. Strength and conductivity of Cu-9Fe-1.2X (X = Ag or Cr) filamentary microcomposite wires. Met. Mater. Trans. A 2001, 32, 985–991. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Sun, B. Effect of Ag on the thermal stability of deformation processed Cu–Fe in situ composites. J. Alloys Compd. 2009, 469, 580–586. [Google Scholar] [CrossRef]
- Huang, J.S.; Yao, D.W.; Meng, L. Microstructure and properties of heavily drawn Cu-Ag-Fe composites. Met. Mater. Int. 2013, 19, 225–230. [Google Scholar] [CrossRef]
- Liu, S.; Jie, J.; Guo, Z.; Yin, G.; Wang, T.; Li, T. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions. J. Alloys Compd. 2018, 742, 99–106. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, R.; Xiao, Z.; Gong, S.; Jiang, Y.; Li, Z. Microstructure and properties of Cu-10 wt%Fe alloy produced by double melt mixed casting and multi-stage thermomechanical treatment. J. Alloys Compd. 2020, 820, 153323. [Google Scholar] [CrossRef]
- Zou, J.; Zhai, Q.-J.; Liu, F.-Y.; Liu, K.-M.; Lu, D.-P. Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field. Met. Mater. Int. 2018, 24, 1275–1284. [Google Scholar] [CrossRef]
- Yuan, D.; Xiao, X.; Luo, X.; Wang, H.; Han, B.; Liu, B.; Yang, B. Effect of multi-stage thermomechanical treatment on Fe phase evolution and properties of Cu-6.5Fe-0.3Mg alloy. Mater. Charact. 2022, 185, 111707. [Google Scholar] [CrossRef]
- Hong, S.I.; Song, J.S.; Kim, H.S. Thermo-mechanical processing and properties of Cu-9Fe-1.2Co microcomposite wires. Scr. Mater. 2001, 45, 1295–1300. [Google Scholar] [CrossRef]
- Hong, S.I.; Kim, H.S.; Hill, M.A. Strength and ductility of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents. Met. Mater. Trans. A 2000, 31, 2457–2462. [Google Scholar] [CrossRef]
- Go, Y.S.; Spitzig, W.A. Strengthening in deformation-processed Cu-20% Fe composites. J. Mater. Sci. 1991, 26, 163–171. [Google Scholar] [CrossRef]
- Yoo, T.H.; Thool, K.; Choi, S.H. Simulation of the Extrusion Process of Cu-10wt%Fe Alloy using Finite Element Analysis. Trans. Mater. Process. 2024, 33, 50–54. [Google Scholar]
- Gupta, A.; Park, K.-S.; Yoo, T.-H.; Singh, A.K.; Lee, D.; Heo, Y.-U.; Choi, S.-H. Unraveling the self-annealing behavior of cryo-rolled Cu-Fe-P alloy sheets: Evidence and implications. Int. J. Plast. 2023, 167, 103672. [Google Scholar] [CrossRef]
- Song, J.S.; Ahn, J.H.; Kim, H.S.; Hong, S.I. Comparison of microstructure and strength in wire-drawn and rolled Cu-9 Fe-1.2 Ag filamentary microcomposite. J. Mater. Sci. 2001, 36, 5881–5884. [Google Scholar] [CrossRef]
- Zhang, P.; Lei, Q.; Yuan, X.; Sheng, X.; Jiang, D.; Li, Y.; Li, Z. Microstructure and mechanical properties of a Cu-Fe-Nb alloy with a high product of the strength times the elongation. Mater. Today Commun. 2020, 25, 101353. [Google Scholar] [CrossRef]
- Engler, O.; Hirsch, J.; Lucke, K. Texture development in Al 1.8wt% Cu depending on the precipitation state—I. Rolling textures. Acta Metall. 1989, 37, 2743–2753. [Google Scholar] [CrossRef]
- Kestens, L.A.I.; Pirgazi, H. Texture formation in metal alloys with cubic crystal structures. Mater. Sci. Technol. 2016, 32, 1303–1315. [Google Scholar] [CrossRef]
- Sinclair, C.; Embury, J.; Weatherly, G. Basic aspects of the co-deformation of bcc/fcc materials. Mater. Sci. Eng. A 1999, 272, 90–98. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Kuznetsov, A.V.; Salishchev, G.A.; Khlebova, N.E.; Pantsyrny, V.I. Evolution of microstructure and mechanical properties in Cu–14%Fe alloy during severe cold rolling. Mater. Sci. Eng. A 2013, 564, 264–272. [Google Scholar] [CrossRef]
- Pourrahimi, S.; Nayeb-Hashemi, H.; Foner, S. Strength and microstructure of powder metallurgy processed restacked Cu-Nb microcomposites. Met. Trans. A 1992, 23, 573–586. [Google Scholar] [CrossRef]
- Engler, O.; Hirsch, J.; Luecke, K. Texture Development in Dual Phase a/B-Brass—Part I: Rolling Textures. Z. Metallk. 1995, 86, 465–474. [Google Scholar] [CrossRef]
- Yuan, D.; Zeng, H.; Xiao, X.; Wang, H.; Han, B.; Liu, B.; Yang, B. Effect of Mg addition on Fe phase morphology, distribution and aging kinetics of Cu-6.5Fe alloy. Mater. Sci. Eng. A 2021, 812, 141064. [Google Scholar] [CrossRef]
- Liu, K.M.; Lu, D.P.; Zhou, H.T.; Atrens, A.; Zou, J.; Yang, Y.L.; Zeng, S.M. Effect of Ag micro-alloying on the microstructure and properties of Cu-14Fe in situ composite. Mater. Sci. Eng. A 2010, 527, 4953–4958. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Shu, D.; Sun, B. Effect of Ag on the aging characteristics of Cu–Fe in situ composites. Scr. Mater. 2006, 54, 1931–1935. [Google Scholar] [CrossRef]
- Jeong, Y.B.; Jo, H.R.; Kim, J.T.; Hong, S.H.; Kim, K.B. A study on the micro-evolution of mechanical property and microstructures in (Cu-30Fe)-2X alloys with the addition of minor alloying elements. J. Alloys Compd. 2019, 786, 341–345. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Hu, X.; Wang, J.; Liu, Q.; Wu, D.; Jiang, J.; Hu, Q.; Lu, D.; Zou, J. Co-Deformation Process of Cu and Fe Phases in Cu-10Fe Alloy During Cold Rolling. Materials 2025, 18, 2547. https://doi.org/10.3390/ma18112547
Chen W, Hu X, Wang J, Liu Q, Wu D, Jiang J, Hu Q, Lu D, Zou J. Co-Deformation Process of Cu and Fe Phases in Cu-10Fe Alloy During Cold Rolling. Materials. 2025; 18(11):2547. https://doi.org/10.3390/ma18112547
Chicago/Turabian StyleChen, Wei, Xiaona Hu, Jiawei Wang, Qiuxiang Liu, Dan Wu, Jiang Jiang, Qiang Hu, Deping Lu, and Jin Zou. 2025. "Co-Deformation Process of Cu and Fe Phases in Cu-10Fe Alloy During Cold Rolling" Materials 18, no. 11: 2547. https://doi.org/10.3390/ma18112547
APA StyleChen, W., Hu, X., Wang, J., Liu, Q., Wu, D., Jiang, J., Hu, Q., Lu, D., & Zou, J. (2025). Co-Deformation Process of Cu and Fe Phases in Cu-10Fe Alloy During Cold Rolling. Materials, 18(11), 2547. https://doi.org/10.3390/ma18112547