Fatal Cytokine Collision: HLH–AIHA in Advanced AIDS—Case Report and Literature Review
Abstract
1. Introduction and Clinical Significance
2. Materials and Methods
2.1. Laboratory Investigations
2.2. Literature Review Strategy
3. Case Presentation
4. Discussion
5. Literature Review
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berentsen, S.; Barcellini, W. Autoimmune Hemolytic Anemias. N. Engl. J. Med. 2021, 385, 1407–1419. [Google Scholar] [CrossRef]
- Lebrun, D.; Hentzien, M.; Cuzin, L.; Rey, D.; Joly, V.; Cotte, L.; Allavena, C.; Dellamonica, P.; Servettaz, A.; Bani-Sadr, F. Epidemiology of autoimmune and inflammatory diseases in a French nationwide HIV cohort. Aids 2017, 31, 2159–2166. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.F.; Lan, Y.C.; Huang, C.T.; Jen, I.A.; Chen, M.; Lee, C.Y.; Chuang, P.H.; Lee, Y.; Morisky, D.E.; Chen, Y.A. Human Immunodeficiency Virus Infection Increases the Risk of Incident Autoimmune Hemolytic Anemia: A Population-Based Cohort Study in Taiwan. J. Infect. Dis. 2017, 216, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Fattizzo, B.; Ferraresi, M.; Giannotta, J.; Barcellini, W. Secondary Hemophagocytic Lymphohistiocytosis and Autoimmune Cytopenias: Case Description and Review of the Literature. J. Clin. Med. 2021, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Toumeh, N.; Abu-Zeinah, K.F.; Godby, R.C. Hemophagocytic lymphohistiocytosis (HLH): A narrative review of the pathogenesis, clinical presentation, diagnosis, treatment, and prognosis. Ann. Blood 2025, 10, 8. [Google Scholar] [CrossRef]
- Henter, J.I.; Horne, A.; Aricó, M.; Egeler, R.M.; Filipovich, A.H.; Imashuku, S.; Ladisch, S.; McClain, K.; Webb, D.; Winiarski, J.; et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 2007, 48, 124–131. [Google Scholar] [CrossRef]
- Hoover, J. Hemophagocytic Lymphohistiocytosis. N. Engl. J. Med. 2025, 392, 1558–1559. [Google Scholar] [CrossRef]
- Brisse, E.; Wouters, C.H.; Andrei, G.; Matthys, P. How Viruses Contribute to the Pathogenesis of Hemophagocytic Lymphohistiocytosis. Front. Immunol. 2017, 8, 1102. [Google Scholar] [CrossRef]
- Behrens, E.M.; Canna, S.W.; Slade, K.; Rao, S.; Kreiger, P.A.; Paessler, M.; Kambayashi, T.; Koretzky, G.A. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J. Clin. Invest. 2011, 121, 2264–2277. [Google Scholar] [CrossRef]
- Thoden, J.; Rieg, S.; Venhoff, N.; Wennekes, V.; Schmitt-Graeff, A.; Wagner, D.; Kern, W.V. Fatal hemophagocytic syndrome in a patient with a previously well-controlled asymptomatic HIV infection after EBV reactivation. J. Infect. 2012, 64, 110–112. [Google Scholar] [CrossRef]
- Elliott, R.P.; Freeman, B.P.; Meier, J.L.; El-Herte, R. Acute Cytomegalovirus Illness in an Immunocompetent Adult Causing Intr avascular Hemolysis and Suspected Hemophagocytic Lymphohistiocytosis. Case Rep. Infect. Dis. 2022, 2022, 7949471. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Piriou, E.R.; van Dort, K.; Nanlohy, N.M.; van Oers, M.H.; Miedema, F.; van Baarle, D. Novel method for detection of virus-specific CD41+ T cells indicates a decreased EBV-specific CD4+ T cell response in untreated HIV-infected subjects. Eur. J. Immunol. 2005, 35, 796–805. [Google Scholar] [CrossRef]
- Legoff, J.; Amiel, C.; Calisonni, O.; Fromentin, D.; Rajoely, B.; Abuaf, N.; Tartour, E.; Rozenbaum, W.; Bélec, L.; Nicolas, J.-C. Early Impairment of CD8+ T Cells Immune Response Against Epstein–Barr Virus (EBV) Antigens Associated with High Level of Circulating Mononuclear EBV DNA Load in HIV Infection. J. Clin. Immunol. 2004, 24, 125–134. [Google Scholar] [CrossRef]
- Kostense, S.; Otto, S.A.; Knol, G.J.; Manting, E.H.; Nanlohy, N.M.; Jansen, C.; Lange, J.M.A.; Oers, M.H.J.V.; Miedema, F.; Baarle, D.V. Functional restoration of human immunodeficiency virus and Epstein-Barr virus-specific CD8+ T cells during highly active antiretroviral therapy is associated with an increase in CD4+ T cells. Eur. J. Immunol. 2002, 32, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- La Rosée, P.; La Rosée, F. HLH: Diagnostics revisited and improved. Blood 2024, 144, 2274–2275. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.B.; Allen, C.E.; Greenberg, J.; Henry, M.; Hermiston, M.L.; Kumar, A.; Hines, M.; Eckstein, O.; Ladisch, S.; Nichols, K.E.; et al. Challenges in the diagnosis of hemophagocytic lymphohistiocytosis: Recommendations from the North American Consortium for Histiocytosis (NAC HO). Pediatr. Blood Cancer 2019, 66, e27929. [Google Scholar] [CrossRef] [PubMed]
- Debaugnies, F.; Mahadeb, B.; Nagant, C.; Meuleman, N.; De Bels, D.; Wolff, F.; Gottignies, P.; Salaroli, A.; Borde, P.; Voué, M.; et al. Biomarkers for Early Diagnosis of Hemophagocytic Lymphohistiocytosis in Critically Ill Patients. J. Clin. Immunol. 2021, 41, 658–665. [Google Scholar] [CrossRef]
- Liu, M.; Brodeur, K.E.; Bledsoe, J.R.; Harris, C.N.; Joerger, J.; Weng, R.; Hsu, E.E.; Lam, M.T.; Rimland, C.A.; LeSon, C.E.; et al. Features of hyperinflammation link the biology of Epstein-Barr virus infection and cytokine storm syndromes. J. Allergy Clin. Immunol. 2025, 155, 1346–1356.e9. [Google Scholar] [CrossRef]
- Petrara, M.R.; Cattelan, A.M.; Zanchetta, M.; Sasset, L.; Freguja, R.; Gianesin, K.; Cecchetto, M.G.; Carmona, F.; De Rossi, A. Epstein-Barr Virus load and immune activation in Human Immunodeficiency Virus type 1-infected patients. J. Clin. Virol. 2012, 53, 195–200. [Google Scholar] [CrossRef]
- Zhang, L. A common mechanism links Epstein-Barr virus infections and autoimmune diseases. J. Med. Virol. 2022, 95, e28363. [Google Scholar] [CrossRef]
- Boisseau, M.; Lambotte, O.; Galicier, L.; Lerolle, N.; Marzac, C.; Aumont, C.; Coppo, P.; Fardet, L. Epstein–Barr virus viral load in human immunodeficiency virus-positive patients with reactive hemophagocytic syndrome. Infect. Dis. 2015, 47, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Humblet-Baron, S.; Franckaert, D.; Dooley, J.; Bornschein, S.; Cauwe, B.; Schönefeldt, S.; Bossuyt, X.; Matthys, P.; Baron, F.; Wouters, C.; et al. IL-2 consumption by highly activated CD8 T cells induces regulatory T-cell dysfunction in patients with hemophagocytic lymphohistiocytosis. J. Allergy Clin. Immunol. 2016, 138, 200–209.e8. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.J.; Cao, Y.; Vittayawacharin, P.; É’Leima, G.; Rezk, S.; Reid, J.; Brem, E.A.; Ciurea, S.O.; Kongtim, P. Anakinra versus etoposide-based therapy added to high-dose steroids for the treatment of secondary hemophagocytic lymphohistiocytosis. Eur. J. Haematol. 2023, 111, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.P.; Pal, P.; Ghosh, A.; Sinha, R. Infection-associated haemophagocytic lymphohistiocytosis: A case series using steroids only protocol for management. Rheumatol. Int. 2013, 33, 1363–1366. [Google Scholar] [CrossRef]
- Chellapandian, D.; Das, R.; Zelley, K.; Wiener, S.J.; Zhao, H.; Teachey, D.T.; Nichols, K.E.; Group, E.H.R.S. Treatment of Epstein Barr virus-induced haemophagocytic lymphohistiocytosis with rituximab-containing chemo-immunotherapeutic regimens. Br. J. Haematol. 2013, 162, 376–382. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Zhou, X.; Xie, Y.; Xiang, D.; Wan, Z.; Huang, Y.; Zhu, B. Case report: Ruxolitinib as first-line therapy for secondary hemophagocytic lymphohistiocytosis in patients with AIDS. Front. Immunol. 2022, 13, 1012643. [Google Scholar] [CrossRef]
- Bai, H.; Wang, Y.; Shen, L.; Luo, Y.; Tang, G.; Wang, F.; Sun, Z.; Hou, H. The signature and predictive value of immune parameters in patients with secondary hemophagocytic lymphohistiocytosis. Immunobiology 2023, 228, 152759. [Google Scholar] [CrossRef]
- Valade, S.; Joly, B.S.; Veyradier, A.; Fadlallah, J.; Zafrani, L.; Lemiale, V.; Launois, A.; Stepanian, A.; Galicier, L.; Fieschi, C.; et al. Coagulation disorders in patients with severe hemophagocytic lymphohistiocytosis. PLoS ONE 2021, 16, e0251216. [Google Scholar] [CrossRef]
- Croden, J.; Bilston, L.; Taparia, M.; Grossman, J.; Sun, H.L. Incidence of bleeding and thromboembolism and impact on overall survival in adult patients with hemophagocytic lymphohistiocytosis: A 20-year provincial retrospective cohort study. J. Thromb. Haemost. 2022, 20, 671–683. [Google Scholar] [CrossRef]
- Posas-Mendoza, T.F.; McLeod, C.; Davis, W.; Zakem, J.; Quinet, R. Etiologies and management of haemophagocytic lymphohistiocytosis: Is it time for an updated protocol and targeted treatments? Rheumatology 2020, 60, 2927–2933. [Google Scholar] [CrossRef]
- Merrill, S.A.; Naik, R.; Streiff, M.B.; Shanbhag, S.; Lanzkron, S.; Braunstein, E.M.; Moliterno, A.M.; Brodsky, R.A. A prospective quality improvement initiative in adult hemophagocytic lymphohistiocytosis to improve testing and a framework to facilitate trigger identification and mitigate hemorrhage from retrospective analysis. Medicine 2018, 97, e11579. [Google Scholar] [CrossRef]
- Migaud, P.; Müller, M.; Arastéh, K.; Hentrich, M.; Stocker, H. Hemophagocytic lymphohistiocytosis in HIV-associated lymphoproliferative disorders. Ann. Hematol. 2022, 101, 2281–2287. [Google Scholar] [CrossRef] [PubMed]
- Abdelhay, A.; Mahmoud, A.; Mostafa, M.; Jain, T.; Elseidy, S.; Fahmawi, S.; Alkasem, M.; Ammari, O. Delay in treatment of adult hemophagocytic lymphohistiocytosis is associated with worse in-hospital outcomes. Ann. Hematol. 2023, 102, 2989–2996. [Google Scholar] [CrossRef] [PubMed]
- Merli, P.; Algeri, M.; Gaspari, S.; Locatelli, F. Novel Therapeutic Approaches to Familial HLH (Emapalumab in FHL). Front. Immunol. 2020, 11, 608492. [Google Scholar] [CrossRef] [PubMed]
- Lao, K.; Sharma, N.; Gajra, A.; Vajpayee, N. Hemophagocytic Lymphohistiocytosis and Bone Marrow Hemophagocytosis: A 5-Year Institutional Experience at a Tertiary Care Hospital. South. Med. J. 2016, 109, 655–660. [Google Scholar] [CrossRef]
- Qureshi, Z.; Altaf, F.; Jamil, A.; Siddique, R. Rituximab as a Therapeutic Strategy in Hemophagocytic Lymphohistiocytosis: Efficacy, Outcomes, and Survival—Insights from a Systematic Review. Am. J. Clin. Oncol. 2024, 47, 498–508. [Google Scholar] [CrossRef]
- Pei, Y.; Zhu, J.; Yao, R.; Cao, L.; Wang, Z.; Liang, R.; Jia, Y.; Su, Y. Prognostic factors in patients with secondary hemophagocytic lymphohistiocytosis in a Chinese cohort. Ann. Hematol. 2024, 103, 695–703. [Google Scholar] [CrossRef]
- Pérez-Lazo, G.; Maquera-Afaray, J.; Mejia, C.R.; Castillo, R. Disseminated histoplasmosis and HIV infection: Case series in a Peruvian hospital. Rev. Chil. Infectol. 2017, 34, 365–369. [Google Scholar] [CrossRef]
- Henderson, L.A.; Cron, R.Q. Macrophage Activation Syndrome and Secondary Hemophagocytic Lymphohistiocytosis in Childhood Inflammatory Disorders: Diagnosis and Management. Pediatr. Drugs 2020, 22, 29–44. [Google Scholar] [CrossRef]
- Zhang, K.; Astigarraga, I.; Bryceson, Y.; Lehmberg, K.; Machowicz, R.; Marsh, R.; Sieni, E.; Wang, Z.; Nichols, K.E. Familial Hemophagocytic Lymphohistiocytosis; Adam, M.P., Feldman, J., Mirzaa, G.M., Eds.; University of Washington: Seattle, WA, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1444/ (accessed on 12 July 2025).
- Liang, H.; Liu, Y.; Guo, J.; Dou, M.; Zhang, X.; Hu, L.; Chen, J. Progression in immunotherapy for advanced prostate cancer. Front. Oncol. 2023, 13, 1126752. [Google Scholar] [CrossRef]
- Liang, H.; Yang, Q.; Zhang, Y.; Sun, H.; Fu, Q.; Diao, T.; Wang, J.; Huang, W.; Xu, Y.; Ge, N.; et al. Development and validation of a predictive model for the diagnosis of bladder tumors using narrow band imaging. J. Cancer Res. Clin. Oncol. 2023, 149, 15867–15877. [Google Scholar] [CrossRef] [PubMed]
- Chinnici, A.; Beneforti, L.; Pegoraro, F.; Trambusti, I.; Tondo, A.; Favre, C.; Coniglio, M.L.; Sieni, E. Approaching hemophagocytic lymphohistiocytosis. Front. Immunol. 2023, 14, 1210041. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, F.; Anusim, N.; Zimmer, M.; Jaiyesimi, I. Venous thromboembolism prophylaxis in hospitalized sickle cell disease and sickle cell trait patients. Eur. J. Haematol. 2022, 109, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Rukerd, M.R.Z.; Mirkamali, H.; Nakhaie, M.; Alizadeh, S.D. GATA2 deficiency and hemophagocytic lymphohistiocytosis (HLH): A systematic review of reported cases. BMC Infect. Dis. 2024, 24, 1239. [Google Scholar] [CrossRef]
- Hayden, A.; Lin, M.; Park, S.; Pudek, M.; Schneider, M.; Jordan, M.B.; Mattman, A.; Chen, L.Y.C. Soluble interleukin-2 receptor is a sensitive diagnostic test in adult HLH. Blood Adv. 2017, 1, 2529–2534. [Google Scholar] [CrossRef]
- Allen, C.E.; Yu, X.; Kozinetz, C.A.; McClain, K.L. Highly elevated ferritin levels and the diagnosis of hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 2007, 50, 1227–1235. [Google Scholar] [CrossRef]
- Arcenas, R.C.; Widen, R. Epstein-Barr virus reactivation after superinfection of the BJAB-B1 and P3HR-1 cell lines with cytomegalovirus. BMC Microbiology 2002, 2, 20. [Google Scholar] [CrossRef]
- Rocco, J.M.; Laidlaw, E.; Galindo, F.; Anderson, M.; Rupert, A.; Higgins, J.; Sortino, O.; Ortega-Villa, A.M.; Sheikh, V.; Roby, G.; et al. Severe Mycobacterial Immune Reconstitution Inflammatory Syndrome (IRIS) in Advanced Human Immunodeficiency Virus (HIV) Has Features of Hemophagocytic Lymphohistiocytosis and Requires Prolonged Immune Suppression. Clin. Infect. Dis. 2022, 76, e561–e570. [Google Scholar] [CrossRef]
- Leone, F.; Cotugno, N.; Casamento Tumeo, C.; Zangari, P.; Palomba, P.; Adorisio, R.; De Benedetti, F.; Bracaglia, C.; Papoff, P.; Ajassa, C.; et al. Hyperinflammatory syndrome in a paediatric patient with a recent diagnosis of HIV/AIDS infection: Hemophagocytic lymphohistiocytosis or immune reconstitution syndrome? BMC Infect. Dis. 2023, 23, 477. [Google Scholar] [CrossRef]
- Knauft, J.; Schenk, T.; Ernst, T.; Schnetzke, U.; Hochhaus, A.; La Rosée, P.; Birndt, S. Lymphoma-associated hemophagocytic lymphohistiocytosis (LA-HLH): A scoping review unveils clinical and diagnostic patterns of a lymphoma subgroup with poor prognosis. Leukemia 2024, 38, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Dupont, T.; Darmon, M.; Mariotte, E.; Lemiale, V.; Fadlallah, J.; Mirouse, A.; Zafrani, L.; Azoulay, E.; Valade, S. Etoposide treatment in secondary hemophagocytic syndrome: Impact on healthcare-associated infections and survival. Ann. Intensive Care 2022, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Arca, M.; Fardet, L.; Galicier, L.; Rivière, S.; Marzac, C.; Aumont, C.; Lambotte, O.; Coppo, P. Prognostic factors of early death in a cohort of 162 adult haemophagocytic syndrome: Impact of triggering disease and early treatment with etoposide. Br. J. Haematol. 2014, 168, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Bergsten, E.; Horne, A.; Aricó, M.; Astigarraga, I.; Egeler, R.M.; Filipovich, A.H.; Ishii, E.; Janka, G.; Ladisch, S.; Lehmberg, K.; et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: Long-term results of the cooperative HLH-2004 study. Blood 2017, 130, 2728–2738. [Google Scholar] [CrossRef]
- Baverez, C.; Grall, M.; Gerfaud-Valentin, M.; De Gail, S.; Belot, A.; Perpoint, T.; Weber, E.; Reynaud, Q.; Sève, P.; Jamilloux, Y. Anakinra for the Treatment of Hemophagocytic Lymphohistiocytosis: 21 Cases. J. Clin. Med. 2022, 11, 5799. [Google Scholar] [CrossRef]
- Naymagon, L. Anakinra for the treatment of adult secondary HLH: A retrospective experience. Int. J. Hematol. 2022, 116, 947–955. [Google Scholar] [CrossRef]
- Locatelli, F.; Jordan, M.B.; Allen, C.; Cesaro, S.; Rizzari, C.; Rao, A.; Degar, B.; Garrington, T.P.; Sevilla, J.; Putti, M.-C.; et al. Emapalumab in Children with Primary Hemophagocytic Lymphohistiocytosis. N. Engl. J. Med. 2020, 382, 1811–1822. [Google Scholar] [CrossRef]
- Vallurupalli, M.; Berliner, N. Emapalumab for the treatment of relapsed/refractory hemophagocytic lymphohistiocytosis. Blood 2019, 134, 1783–1786. [Google Scholar] [CrossRef]
- Hansen, S.; Alduaij, W.; Biggs, C.M.; Belga, S.; Luecke, K.; Merkeley, H.; Chen, L.Y.C. Ruxolitinib as adjunctive therapy for secondary hemophagocytic lymphohistiocytosis: A case series. Eur. J. Haematol. 2021, 106, 654–661. [Google Scholar] [CrossRef]
- Maschalidi, S.; Sepulveda, F.E.; Garrigue, A.; Fischer, A.; de Saint Basile, G. Therapeutic effect of JAK1/2 blockade on the manifestations of hemophagocytic lymphohistiocytosis in mice. Blood 2016, 128, 60–71. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Wu, L.; Wang, X.; Jin, Z.; Gao, Z.; Wang, Z. Ruxolitinib for refractory/relapsed hemophagocytic lymphohistiocytosis. Haematologica 2020, 105, e210–e212. [Google Scholar] [CrossRef]
- Fehniger, T.A.; Larson, S.; Trinkaus, K.; Siegel, M.J.; Cashen, A.F.; Blum, K.A.; Fenske, T.S.; Hurd, D.D.; Goy, A.; Schneider, S.E.; et al. A phase 2 multicenter study of lenalidomide in relapsed or refractory classical Hodgkin lymphoma. Blood 2011, 118, 5119–5125. [Google Scholar] [CrossRef]
- Lim, S.H.; Vaughan, A.T.; Ashton-Key, M.; Williams, E.L.; Dixon, S.V.; Chan, H.T.C.; Beers, S.A.; French, R.R.; Cox, K.L.; Davies, A.J.; et al. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood 2011, 118, 2530–2540. [Google Scholar] [CrossRef]
- Beers, S.A.; French, R.R.; Chan, H.T.C.; Lim, S.H.; Jarrett, T.C.; Vidal, R.M.; Wijayaweera, S.S.; Dixon, S.V.; Kim, H.; Cox, K.L.; et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: Implications for antibody selection. Blood 2010, 115, 5191–5201. [Google Scholar] [CrossRef]
- Taylor, R.P.; Lindorfer, M.A. Antigenic Modulation and Rituximab Resistance. Semin. Hematol. 2010, 47, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-L.; Xu, X.-J.; Tang, Y.-M.; Song, H.; Xu, W.-Q.; Zhao, F.-Y.; Shen, D.-Y. Associations between inflammatory cytokines and organ damage in pediatric patients with hemophagocytic lymphohistiocytosis. Cytokine 2016, 85, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, A.; Nakazawa, Y.; Ishii, E. Hemophagocytic lymphohistiocytosis: Pathogenesis, diagnosis, and management. Pediatr. Int. 2016, 58, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Hostallero, D.E.; El Khili, M.R.; Fonseca, G.J.; Milette, S.; Noorah, N.; Guay-Belzile, M.; Spicer, J.; Daneshtalab, N.; Sirois, M.; et al. A network-informed analysis of SARS-CoV-2 and hemophagocytic lymphohistiocytosis genes’ interactions points to Neutrophil extracellular traps as mediators of thrombosis in COVID-19. PLoS Comput. Biol. 2021, 17, e1008810. [Google Scholar] [CrossRef]
- Jesudas, R.; Takemoto, C.M. Where have all the platelets gone? HIT, DIC, or something else? Hematology 2023, 2023, 43–50. [Google Scholar] [CrossRef]
- Held, N.; Jung, B.; Baumann Kreuziger, L. Management of cancer-associated thrombosis with thrombocytopenia: Impact of the ISTH guidance statement. Res. Pract. Thromb. Haemost. 2022, 6, e12726. [Google Scholar] [CrossRef]
- Lee, C.Y.; Wills, B.; Vardhana, S.A.; Moskowitz, A.J. Clinical characteristics and outcomes of adult lymphoma-associated hemophagocytic lymphohistiocytosis (HLH). J. Clin. Oncol. 2021, 39, e19526. [Google Scholar] [CrossRef]
- Al-Samkari, H.; Berliner, N. Hemophagocytic Lymphohistiocytosis. Annu. Rev. Pathol. Mech. Dis. 2018, 13, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Nacher, M.; Epelboin, L.; Melzani, A.; Demar, M.; Blanchet, D.; Blaizot, R.; Drak Alsibai, K.; Abboud, P.; Djossou, F.; et al. Hemophagocytic Lymphohistiocytosis During HIV Infection in Cayenne Hospital 2012–2015: First Think Histoplasmosis. Front. Cell. Infect. Microbiol. 2020, 10, 574584. [Google Scholar] [CrossRef] [PubMed]
- Piriou, E.; Jansen, C.A.; Dort, K.v.; De Cuyper, I.; Nanlohy, N.M.; Lange, J.M.A.; van Oers, M.H.J.; Miedema, F.; van Baarle, D. Reconstitution of EBV Latent but Not Lytic Antigen-Specific CD4+ and C D8+ T Cells After HIV Treatment with Highly Active Antiretroviral Therapy. J. Immunol. 2005, 175, 2010–2017. [Google Scholar] [CrossRef]
- Keenan, C.; Nichols, K.E.; Albeituni, S. Use of the JAK Inhibitor Ruxolitinib in the Treatment of Hemophagocytic Lymphohistiocytosis. Front. Immunol. 2021, 12, 614704. [Google Scholar] [CrossRef]
- Albeituni, S.; Verbist, K.C.; Tedrick, P.E.; Tillman, H.; Picarsic, J.; Bassett, R.; Nichols, K.E. Mechanisms of action of ruxolitinib in murine models of hemophagocytic lymphohistiocytosis. Blood 2019, 134, 147–159. [Google Scholar] [CrossRef]
- Gálvez Acosta, S.; Javalera Rincón, M. Ruxolitinib as first-line therapy in secondary hemophagocytic lymphohistiocytosis and HIV infection. Int. J. Hematol. 2020, 112, 418–421. [Google Scholar] [CrossRef]
Date | EBV VCA IgM (U/mL) | EBV VCA IgG (U/mL) | EBV EA IgG (U/mL) | EBNA IgG (U/mL) | EBV DNA (IU mL−1) | CMV IgM (AU/mL) | CMV PCR (IU mL−1) | CMV IgG Ab (U/mL) |
---|---|---|---|---|---|---|---|---|
13 October 2024 | Negative | >750 (positive) | 45.8 (positive) | Negative | - | Negative | Negative | 2.24 (Positive) |
13 November 2024 | - | - | - | - | 3,310 | 44.3 (poositive) | Detectable (<34.5) | >10 (positive) |
23 November 2024 | >160 (positive) | >750 (positive) | 48.4 (positive) | >600 (positive) | - | - | - | - |
23 December 2024 | - | - | - | - | 1,850 | - | 41,200 | - |
Date | Treatment | Blood Counts | Biochemistry | ||||||
---|---|---|---|---|---|---|---|---|---|
Platelet | Hemoglobin | ANC | Ferritin | sIL-2R | Bilirubin | LDH | Triglycerides | ||
(×103/µL) | (g/dL) | (×103/µL) | (ng/mL) | (pg/mL) | (mg/dL) | (U/L) | (mg/dL) | ||
Normal Range | 150–450 | 12.0–16.0 | 1.5–8.0 | 30–400 | 175–858 | 0.1–1.2 | 140–280 | <200 | |
18 October 2024 | Baseline | 141 | 9.2 | 3.01 | 61.73 | — | 3.57 | 193 | 222 |
11 December 2024 | Pre-treatment | 86 | 5.3 | 1.01 | 16,375 | — | 15.1 | 362 | 1114 |
13 December 2024 | Dexamethasone Start; Etoposide #1 | 116 | 5.1 | 1.02 | — | 10,765 | 18.5 | 418 | — |
15 December 2024 | Dex ongoing | 113 | 4.9 | 1.11 | 34,046 | — | 24.6 | 426 | — |
16 December 2024 | Etoposide #2 | 92 | 3.6 | 2.1 | 39,099 | — | 23 | — | — |
17 December 2024 | Dex ongoing | 99 | 4.4 | 2.07 | 52,129 | — | 24.5 | 450 | — |
19 December 2024 | Vincristine | 97 | 5.6 | 2 | 46,018 | 9264 | 21.8 | 395 | — |
20 December 2024 | Etoposide #3 | 57 | 5.1 | 1.19 | 44,226 | — | 17.9 | 385 | — |
26 December 2024 | Dex ongoing | 8 | 4.6 | 0.01 | 25,529 | — | 10.7 | 492 | 368 |
28 December 2024 | Dexamethasone End | 16 | 5.4 | 0.01 | 19,859 | — | 9.4 | 485 | — |
31 December 2024 | - | 18 | 4.8 | 0.76 | — | 7663 | 9.1 | 1272 | 974 |
3 January 2025 | STEMI | 12 | 4.3 | 1.75 | — | — | 11.8 | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Torres Nolasco, M.F.; Li, W.F.; Yoshino, T.; Anipindi, M. Fatal Cytokine Collision: HLH–AIHA in Advanced AIDS—Case Report and Literature Review. Reports 2025, 8, 137. https://doi.org/10.3390/reports8030137
Zhang X, Torres Nolasco MF, Li WF, Yoshino T, Anipindi M. Fatal Cytokine Collision: HLH–AIHA in Advanced AIDS—Case Report and Literature Review. Reports. 2025; 8(3):137. https://doi.org/10.3390/reports8030137
Chicago/Turabian StyleZhang, Xiaoyi, Maria Felix Torres Nolasco, Wing Fai Li, Toru Yoshino, and Manasa Anipindi. 2025. "Fatal Cytokine Collision: HLH–AIHA in Advanced AIDS—Case Report and Literature Review" Reports 8, no. 3: 137. https://doi.org/10.3390/reports8030137
APA StyleZhang, X., Torres Nolasco, M. F., Li, W. F., Yoshino, T., & Anipindi, M. (2025). Fatal Cytokine Collision: HLH–AIHA in Advanced AIDS—Case Report and Literature Review. Reports, 8(3), 137. https://doi.org/10.3390/reports8030137