Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (421)

Search Parameters:
Authors = Zhen Wen ORCID = 0000-0001-9780-6876

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7479 KiB  
Article
Development and Validation of a Custom-Built System for Real-Time Monitoring of In Vitro Rumen Gas Fermentation
by Zhen-Shu Liu, Bo-Yuan Chen, Jacky Peng-Wen Chan and Po-Wen Chen
Animals 2025, 15(15), 2308; https://doi.org/10.3390/ani15152308 - 6 Aug 2025
Abstract
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To [...] Read more.
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To evaluate its performance and reproducibility relative to the Ankom RF system (Ankom Technology, Macedon, NY, USA), in vitro rumen fermentation experiments were conducted under strictly controlled and identical conditions. Whole rumen contents were collected approximately 2 h post-feeding from individual mid- or late-lactation dairy cows and immediately transported to the laboratory. Each fermenter received 50 mL of processed rumen fluid, 100 mL of anaerobically prepared artificial saliva buffer, and 1.2 g of the donor cow’s diet. Bottles were sealed with the respective system’s pressure sensors, flushed with CO2, and incubated in a 50 L water bath maintained at 39 °C. FerME (New Taipei City, Taiwan) and Ankom RF fermenters were placed side-by-side to ensure uniform thermal conditions. To assess the effect of filter bag use, an additional trial employed Ankom F57 filter bags (Ankom Technology, Macedon, NY, USA; 25 μm pore size). Trial 1 revealed no significant differences in cumulative gas production, volatile fatty acids (VFAs), NH3-N, or pH between systems (p > 0.05). However, the use of filter bags reduced gas output and increased propionate concentrations (p < 0.05). Trial 2, which employed filter bags in both systems, confirmed comparable results, with the FerME system demonstrating improved precision (CV: 4.8% vs. 13.2%). Gas composition (CH4 + CO2: 76–82%) and fermentation parameters remained consistent across systems (p > 0.05). Importantly, with 12 pressure sensors, the total cost of FerME was about half that of the Ankom RF system. Collectively, these findings demonstrate that FerME is a reliable, low-cost alternative for real-time rumen fermentation monitoring and could be suitable for studies in animal nutrition, methane mitigation, and related applications. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Graphical abstract

16 pages, 2848 KiB  
Article
Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae)
by Tian-Hao Zhang, Zheng-Zhong Huang, Lei Jiang, Shen-Zhen Lv, Wen-Tao Zhu, Chao-Fan Zhang, Yi-Shi Shi and Si-Qin Ge
Biomimetics 2025, 10(8), 513; https://doi.org/10.3390/biomimetics10080513 - 6 Aug 2025
Abstract
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to [...] Read more.
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to blue, green, and yellow light, with reduced response to red. Behavioral assays demonstrated robust positive phototaxis to blue light and negative phototaxis to yellow. Using these findings, we built a wireless microcontroller-based backpack emitting directional blue light to induce steering. The beetles reliably turned toward the activated light, achieving angular deflections over 60° within seconds. This approach enables repeatable, trauma-free insect control and establishes a new paradigm for biohybrid locomotion systems. Full article
(This article belongs to the Special Issue Functional Morphology and Biomimetics: Learning from Insects)
Show Figures

Figure 1

20 pages, 35728 KiB  
Article
Prestack Depth Migration Imaging of Permafrost Zone with Low Seismic Signal–Noise Ratio Based on Common-Reflection-Surface (CRS) Stack
by Ruiqi Liu, Zhiwei Liu, Xiaogang Wen and Zhen Zhao
Geosciences 2025, 15(8), 276; https://doi.org/10.3390/geosciences15080276 - 22 Jul 2025
Viewed by 220
Abstract
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to [...] Read more.
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to some extent reducing the reliability of conventional seismic imaging and structural interpretation. To address this, the common-reflection-surface (CRS) stack method, derived from optical paraxial ray theory, is implemented to transcend horizontal layer model constraints, offering substantial improvements in high-SNR prestack gather generation and prestack depth migration (PSDM) imaging, notably for permafrost zones. Using 2D seismic data from the basin, we detailedly compare the CRS stack with conventional SNR enhancement techniques—common midpoint (CMP) FlexBinning, prestack random noise attenuation (PreRNA), and dip moveout (DMO)—evaluating both theoretical foundations and practical performance. The result reveals that CRS-processed prestack gathers yield superior SNR optimization and signal preservation, enabling more robust PSDM velocity model building, while comparative imaging demonstrates enhanced diffraction energy—particularly at medium (20–40%) and long (40–60%) offsets—critical for resolving faults and stratigraphic discontinuities in PSDM. This integrated validation establishes CRS stacking as an effective preprocessing foundation for the depth-domain imaging of complex permafrost geology, providing critical improvements in seismic structural resolution and reduced interpretation uncertainty for hydrocarbon exploration in permafrost-bearing basins. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

13 pages, 489 KiB  
Article
Serum Uric Acid Level as an Estimated Parameter That Predicts All-Cause Mortality in Patients with Hemodialysis
by Sheng-Wen Niu, I-Ching Kuo, Yen-Yi Zhen, Eddy Essen Chang, Li-Yun Chang, Chung-Ting Cheng, Hugo You-Hsien Lin, Yi-Wen Chiu, Jer-Ming Chang, Shang-Jyh Hwang and Chi-Chih Hung
J. Pers. Med. 2025, 15(7), 305; https://doi.org/10.3390/jpm15070305 - 11 Jul 2025
Viewed by 314
Abstract
Background: Serum uric acid (UA) in end-stage kidney disease (ESKD) patients serves as a critical indicator for nutrition and inflammation, showing a U-shaped association with all-cause mortality. Methods: Our study assessed UA’s survival predictive value in 2615 ESKD patients, stratified by [...] Read more.
Background: Serum uric acid (UA) in end-stage kidney disease (ESKD) patients serves as a critical indicator for nutrition and inflammation, showing a U-shaped association with all-cause mortality. Methods: Our study assessed UA’s survival predictive value in 2615 ESKD patients, stratified by the Charlson Comorbidity Index (CCI) into groups of <4 (n = 1107) and ≥4 (n = 1508). Results: Cox regression revealed distinct patterns. For ESKD patients with CCI < 4, UA levels > 8.6 mg/dL were a mortality risk factor (HR: 1.61, 95% CI: 1.01–2.38) compared to 7.1–7.7 mg/dL. Conversely, in patients with CCI ≥ 4, UA levels < 5.8 mg/dL were a mortality risk factor (HR: 1.53, 95% CI: 1.20–1.95) compared to >8.6 mg/dL. Conclusions: Higher serum UA in ESKD patients with high comorbidities (CCI ≥ 4) is not a risk factor. Low UA should be prevented across all ESKD patients. A personalized approach using CCI and corresponding serum UA levels offers a key reference for managing UA in hemodialysis patients. Full article
Show Figures

Figure 1

11 pages, 1373 KiB  
Article
High-Performance Multilevel and Ambipolar Nonvolatile Organic Transistor Memory Using Small-Molecule SFDBAO and PS as Charge Trapping Elements
by Lingzhi Jin, Wenjuan Xu, Yangzhou Qian, Tao Ji, Kefan Wu, Liang Huang, Feng Chen, Nanchang Huang, Shu Xing, Zhen Shao, Wen Li, Yuyu Liu and Linghai Xie
Nanomaterials 2025, 15(14), 1072; https://doi.org/10.3390/nano15141072 - 10 Jul 2025
Viewed by 300
Abstract
Organic nonvolatile transistor memories (ONVMs) using a hybrid spiro [fluorene-9,7′-dibenzo [c, h] acridine]-5′-one (SFDBAO)/polystyrene (PS) film as bulk-heterojunction-like tunneling and trapping elements were fabricated. From the characterization of the 10% SFDBAO/PS based on ONVM, a sterically hindered small-molecule SFDBAO with rigid orthogonal configuration [...] Read more.
Organic nonvolatile transistor memories (ONVMs) using a hybrid spiro [fluorene-9,7′-dibenzo [c, h] acridine]-5′-one (SFDBAO)/polystyrene (PS) film as bulk-heterojunction-like tunneling and trapping elements were fabricated. From the characterization of the 10% SFDBAO/PS based on ONVM, a sterically hindered small-molecule SFDBAO with rigid orthogonal configuration and a donor–acceptor (D-A) structure as a molecular-scale charge storage element demonstrated significantly higher charge trapping ability than other small-molecule materials such as C60 and Alq3. The ONVM based on 10% SFDBAO/PS presents ambipolar memory behaviors with a wide memory window (146 V), a fast-switching speed (20 ms), an excellent retention time (over 5 × 104 s), and stable reversibility (36 cycles without any noticeable decay). By applying different gate voltages, the above ONVM shows reliable four-level data storage characteristics. The investigation demonstrates that the strategical bulk-heterojunction-like tunneling and trapping elements composed of small-molecule materials and polymers exhibit promising potential for high-performance ambipolar ONVMs. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

23 pages, 2363 KiB  
Article
Spatiotemporal Evolution and Driving Factors of LULC Change and Ecosystem Service Value in Guangdong: A Perspective of Food Security
by Bo Wen, Biao Zeng, Yu Dun, Xiaorui Jin, Yuchuan Zhao, Chao Wu, Xia Tian and Shijun Zhen
Agriculture 2025, 15(14), 1467; https://doi.org/10.3390/agriculture15141467 - 8 Jul 2025
Viewed by 253
Abstract
Amid global efforts to balance sustainable development and food security, ecosystem service value (ESV), a critical bridge between natural systems and human well-being, has gained increasing importance. This study explores the spatiotemporal dynamics and driving factors of land use changes and ESV from [...] Read more.
Amid global efforts to balance sustainable development and food security, ecosystem service value (ESV), a critical bridge between natural systems and human well-being, has gained increasing importance. This study explores the spatiotemporal dynamics and driving factors of land use changes and ESV from a food security perspective, aiming to inform synergies between ecological protection and food production for regional sustainability. Using Guangdong Province as a case study, we analyze ESV patterns and spatial correlations from 2005 to 2023 based on three-phase land use and socioeconomic datasets. Key findings: I. Forestland and cropland dominate Guangdong’s land use, which is marked by the expansion of construction land and the shrinking of agricultural and forest areas. II. Overall ESV declined slightly: northern ecological zones remained stable, while eastern/western regions saw mild decreases, with cropland loss threatening grain self-sufficiency. III. Irrigation scale, forestry output, and fertilizer use exhibited strong interactive effects on ESV, whereas urban hierarchy influenced ESV independently. IV. ESV showed significant positive spatial autocorrelation, with stable agglomeration patterns across the province. The research provides policy insights for optimizing cropland protection and enhancing coordination between food production spaces and ecosystem services, while offering theoretical support for land use regulation and agricultural resilience in addressing regional food security challenges. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

14 pages, 2642 KiB  
Article
Prognosis of Pediatric Dilated Cardiomyopathy: Nomogram and Risk Score Models for Predicting Death/Heart Transplantation
by Bowen Xu, Yue Yuan, Lu Gao, Zhiyuan Wang, Zhenyu Lv, Wen Yu, Hongfang Jin, Zhen Zhen, Zhihui Zhao, Jia Na, Aihua Hu and Yanyan Xiao
Children 2025, 12(7), 880; https://doi.org/10.3390/children12070880 - 3 Jul 2025
Viewed by 345
Abstract
Background: This study aimed to develop a predictive model to assess risk factors and prognoses in pediatric patients with dilated cardiomyopathy (DCM). Methods: A total of 233 pediatric patients with DCM who were hospitalized between January 2019 and June 2024 were enrolled. The [...] Read more.
Background: This study aimed to develop a predictive model to assess risk factors and prognoses in pediatric patients with dilated cardiomyopathy (DCM). Methods: A total of 233 pediatric patients with DCM who were hospitalized between January 2019 and June 2024 were enrolled. The children were followed up and categorized into two groups: the death/heart transplantation (D/HT) group and the non-D/HT group. Univariate and multivariate analyses identified risk factors. A nomogram model and a scoring system were developed. The performance of these models was evaluated using the H-L test, ROC analysis, and internal validation. Results: The results demonstrated that the age of onset, cardiac functional classification III–IV, moderate-to-severe mitral regurgitation, low voltage in limb leads on an ECG, and the need for vasoactive drugs are independent predictors of D/HT risk in children with DCM. A nomogram model was developed, achieving an AUC of 0.804 (95% CI: 0.734–0.874), a sensitivity of 80.3%, and a specificity of 66.7%. A scoring system was established: 1 point for age of onset, 10 points for cardiac functional classification III–IV, 2.5 points for moderate-to-severe mitral regurgitation, 4 points for low voltage in limb leads on an ECG, 3 points for the need for vasoactive drugs, or 0 points if none of these criteria were met. When the cumulative score was ≥ 13.25, the sensitivity and specificity increased to 68.9% and 73.9%, respectively. Conclusions: We developed both a nomogram and a scoring system model, which are capable of rapidly and accurately predicting the risk of D/HT in children with DCM. Full article
(This article belongs to the Section Pediatric Cardiology)
Show Figures

Figure 1

20 pages, 617 KiB  
Article
The Influence Mechanism of Government Venture Capital on the Innovation of Specialized and Special New “Little Giant” Enterprises
by Qilin Cao, Tianyun Wang, Shiyu Wen, Lingyue Zhou and Weili Zhen
Systems 2025, 13(7), 535; https://doi.org/10.3390/systems13070535 - 1 Jul 2025
Viewed by 391
Abstract
Specialized and special new “little giant” enterprises are characterized by specialization, refinement, uniqueness, and innovation. They have relatively strong innovation capabilities and enterprise vitality. However, they also face problems such as high innovation costs, long investment recovery cycles, and high risks of investment [...] Read more.
Specialized and special new “little giant” enterprises are characterized by specialization, refinement, uniqueness, and innovation. They have relatively strong innovation capabilities and enterprise vitality. However, they also face problems such as high innovation costs, long investment recovery cycles, and high risks of investment returns, which lead to information asymmetry and financing difficulties. Government venture capital is a policy fund provided by the government and established with the participation of local governments, financial institutions, and private capital. They can utilize fiscal policies to attract market funds and support the development of key industries. Therefore, in this study, the first through sixth batches of specialized and special new “little giant” enterprises listed on the A-share and New Third Board from 2013 to 2023 were taken as samples, and their investment behavior and investment effects were empirically studied using the multiple linear regression method. The investment behavior of government venture capital tends to target strategic emerging industries. The intervention of government venture capital can enhance the innovation of “little giant” enterprises and has an impact through the intermediary mechanism of R&D investment. This paper draws conclusions and puts forward relevant policy suggestions for supporting the development of “little giant” enterprises. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

24 pages, 11109 KiB  
Review
Review of Self-Powered Wireless Sensors by Triboelectric Breakdown Discharge
by Shuzhe Liu, Jixin Yi, Guyu Jiang, Jiaxun Hou, Yin Yang, Guangli Li, Xuhui Sun and Zhen Wen
Micromachines 2025, 16(7), 765; https://doi.org/10.3390/mi16070765 - 29 Jun 2025
Viewed by 570
Abstract
This review systematically examines recent advances in self-powered wireless sensing technologies based on triboelectric nanogenerators (TENGs), focusing on innovative methods that leverage breakdown discharge effects to achieve high-precision and long-distance signal transmission. These methods offer novel technical pathways and theoretical frameworks for next-generation [...] Read more.
This review systematically examines recent advances in self-powered wireless sensing technologies based on triboelectric nanogenerators (TENGs), focusing on innovative methods that leverage breakdown discharge effects to achieve high-precision and long-distance signal transmission. These methods offer novel technical pathways and theoretical frameworks for next-generation wireless sensing systems. To address the core limitations of conventional wireless sensors, such as a restricted transmission range, high power consumption, and suboptimal integration, this analysis elucidates the mechanism of the generation of high-frequency electromagnetic waves through localized electric field ionization induced by breakdown discharge. Key research directions are synthesized to enhance TENG-based sensing capabilities, including novel device architectures, the optimization of RLC circuit models, the integration of machine learning algorithms, and power management strategies. While current breakdown discharge sensors face challenges such as energy dissipation, multimodal coupling complexity, and signal interpretation barriers, future breakthroughs in material engineering and structural design are anticipated to drive advancements in efficiency, miniaturization, and intelligent functionality in this field. Full article
Show Figures

Figure 1

16 pages, 4134 KiB  
Article
Oral Administration of Heat-Killed Multi-Strain Probiotics Confers Durable Protection Against Antibiotic-Resistant Primary and Recurrent Urinary Tract Infections in a Murine Model
by Bo-Yuan Chen, Zhen-Shu Liu, Yu-Syuan Lin, Hsiao Chin Lin and Po-Wen Chen
Antibiotics 2025, 14(7), 634; https://doi.org/10.3390/antibiotics14070634 - 21 Jun 2025
Viewed by 664
Abstract
Background/Objectives: Alternative therapies for urinary tract infections (UTIs) have been explored, but their efficacy remains inconsistent. With rising antibiotic resistance, this study aimed to evaluate simplified postbiotic formulations derived from heat-killed probiotics for long-term protection against primary and recurrent UTIs in a [...] Read more.
Background/Objectives: Alternative therapies for urinary tract infections (UTIs) have been explored, but their efficacy remains inconsistent. With rising antibiotic resistance, this study aimed to evaluate simplified postbiotic formulations derived from heat-killed probiotics for long-term protection against primary and recurrent UTIs in a murine model. Methods: We compared a multi-strain (seven-strain) versus a single-strain postbiotic in preventing Escherichia coli-induced UTIs and recurrent polymicrobial UTIs, assessed protection persistence after treatment discontinuation, and established a novel sustained UTI model via intravesical co-inoculation of three uropathogens. Mice were allocated to three experimental groups: a placebo group (PBS), Postbiotic I group (a seven-strain heat-killed probiotic formulation), and Postbiotic II group (a single-strain heat-killed probiotic). After two weeks of treatment, mice were challenged with uropathogenic E. coli (UPEC) and treated for seven days. Following a 14-day washout and bacterial clearance, they were rechallenged with multidrug-resistant UPEC, Klebsiella pneumoniae, and Staphylococcus pseudintermedius. Results: Both postbiotics significantly accelerated bacterial clearance in primary UTIs (p < 0.05). In recurrent UTIs, placebo-treated mice exhibited persistent bacteriuria, while Postbiotic I maintained a significantly higher sterile urine rate (50–80%, p < 0.01) post-treatment. Histopathological analysis confirmed reduced bladder and kidney inflammation (p < 0.05) with Postbiotic I. Conclusions: These findings demonstrate the superior efficacy of Postbiotic I in mitigating UTIs, with sustained protection post-treatment, supporting its potential as a long-term, non-antibiotic strategy. Additionally, our reproducible chronic UTI model, achieved through the co-inoculation of three uropathogens, provides a valuable tool for future research on chronic UTI pathogenesis and treatment. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Biofilm-Associated Infections)
Show Figures

Graphical abstract

16 pages, 3499 KiB  
Article
Physical and Electrical Properties of Silicon Nitride Thin Films with Different Nitrogen–Oxygen Ratios
by Wen-Jie Chen, Yang-Chao Liu, Zhen-Yu Wang, Lin Gu, Yi Shen and Hong-Ping Ma
Nanomaterials 2025, 15(13), 958; https://doi.org/10.3390/nano15130958 - 20 Jun 2025
Viewed by 576
Abstract
Silicon oxynitride (SiOxNy, hereafter denoted as SiON) thin films represent an intermediate phase between silicon dioxide (SiO2) and silicon nitride (Si3N4). Through systematic compositional ratio adjustments, the refractive index can be precisely tuned [...] Read more.
Silicon oxynitride (SiOxNy, hereafter denoted as SiON) thin films represent an intermediate phase between silicon dioxide (SiO2) and silicon nitride (Si3N4). Through systematic compositional ratio adjustments, the refractive index can be precisely tuned across a wide range from 1.45 to 2.3. However, the underlying mechanism governing the influence of elemental composition on film structural quality remains insufficiently understood. To address this knowledge gap, we systematically investigate the effects of key industrial plasma-enhanced chemical vapor deposition (PECVD) parameters—including precursor gas selection and flow rate ratios—on SiON film properties. Our experimental measurements reveal that stoichiometric SiOxNy (x = y) achieves a minimum surface roughness of 0.18 nm. As oxygen content decreases and nitrogen content increases, progressive replacement of Si-O bonds by Si-N bonds correlates with increased structural defect density within the film matrix. Capacitance–voltage (C-V) characterization demonstrates a corresponding enhancement in device capacitance following these compositional modifications. Recent studies confirm that controlled modulation of film stoichiometry enables precise tailoring of dielectric properties and capacitive behavior, as demonstrated in SiON-based power electronics, thereby advancing applications in related fields. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

19 pages, 3804 KiB  
Article
Peptide-Engineered Seliciclib Nanomedicine for Brain-Targeted Delivery and Neuroprotection
by Guan Zhen He and Wen Jen Lin
Int. J. Mol. Sci. 2025, 26(12), 5768; https://doi.org/10.3390/ijms26125768 - 16 Jun 2025
Viewed by 326
Abstract
Seliciclib, a cyclin-dependent kinase 5 (CDK5) inhibitor, has demonstrated neuroprotective potential. However, its therapeutic application is limited by poor permeability across the blood–brain barrier (BBB). In this study, polymeric nanoparticles (NPs) modified with a BBB-targeting peptide ligand (His-Ala-Ile-Tyr-Pro-Arg-His) were employed to encapsulate seliciclib. [...] Read more.
Seliciclib, a cyclin-dependent kinase 5 (CDK5) inhibitor, has demonstrated neuroprotective potential. However, its therapeutic application is limited by poor permeability across the blood–brain barrier (BBB). In this study, polymeric nanoparticles (NPs) modified with a BBB-targeting peptide ligand (His-Ala-Ile-Tyr-Pro-Arg-His) were employed to encapsulate seliciclib. In vitro transport studies showed that the peptide-modified NPs exhibited significantly greater translocation across a bEnd.3 cell monolayer compared to unmodified NPs. Furthermore, in vivo biodistribution analysis revealed that the brain accumulation of peptide-modified NPs was 3.38-fold higher than that of unmodified NPs. Notably, the peptide-conjugated, seliciclib-loaded NPs demonstrated a significant neuroprotective effect against the neurotoxin 1-methyl-4-phenylpyridinium (MPP⁺) in differentiated SH-SY5Y cells. Full article
(This article belongs to the Special Issue Multifunctional Nanocomposites for Bioapplications)
Show Figures

Figure 1

17 pages, 3567 KiB  
Article
Tripterhyponoid A from Tripterygium hypoglaucum Inhibiting MRSA by Multiple Mechanisms
by Yan-Yan Zhu, Qiong Jin, Zhao-Jie Wang, Mei-Zhen Wei, Wen-Biao Zu, Zhong-Shun Zhou, Bin-Yuan Hu, Yun-Li Zhao, Xu-Jie Qin and Xiao-Dong Luo
Molecules 2025, 30(12), 2539; https://doi.org/10.3390/molecules30122539 - 10 Jun 2025
Viewed by 533
Abstract
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) and its biofilm-forming ability underscore the limitations of current antibiotics. In this study, a new compound named tripterhyponoid A was found to effectively combat MRSA, with an MIC of 2.0 μg/mL. It inhibited biofilm formation by [...] Read more.
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) and its biofilm-forming ability underscore the limitations of current antibiotics. In this study, a new compound named tripterhyponoid A was found to effectively combat MRSA, with an MIC of 2.0 μg/mL. It inhibited biofilm formation by downregulating genes related to the quorum sensing (QS) pathway (sarA, agrA, agrB, agrC, agrD, and hld) and eradicated mature biofilms. Furthermore, it induced DNA damage by binding to bacterial DNA, enhancing its efficiency against MRSA. Therefore, its anti-MRSA properties with multiple mechanisms of action make it less prone to developing resistance over 20 days. In addition, it reduced the bacterial load and regulated the levels of inflammatory cytokines IL-6 and IL-10 at the wound site in a mouse skin infection model. This paper provides the first in-depth investigation of the mechanisms of triterpenoids against MRSA by inhibiting the expression of QS system genes and binding to DNA. Full article
Show Figures

Graphical abstract

15 pages, 4266 KiB  
Article
Co-Catalyst-Free Al6Si2O13/Cd8.05Zn1.95S10 Nanocomposites for Visible-Light-Driven Stable H2 Evolution and DDVP Degradation
by Zhenhua Li, Aoyun Meng, Wen Li, Guoyuan Xiong, Mingfu Ye, Yaqiang Meng and Zhen Li
Catalysts 2025, 15(6), 564; https://doi.org/10.3390/catal15060564 - 5 Jun 2025
Viewed by 506
Abstract
The design of efficient and stable visible-light-driven photocatalysts is paramount for sustainable hydrogen (H2) evolution and the degradation of organophosphorus pesticides, exemplified by dichlorvos (DDVP). In this work, we synthesized a co-catalyst-free nanocomposite photocatalyst composed of Al6Si2O [...] Read more.
The design of efficient and stable visible-light-driven photocatalysts is paramount for sustainable hydrogen (H2) evolution and the degradation of organophosphorus pesticides, exemplified by dichlorvos (DDVP). In this work, we synthesized a co-catalyst-free nanocomposite photocatalyst composed of Al6Si2O13 (ASO) and Cd8.05Zn1.95S10 (ZCS). By constructing a Type-I heterojunction, the optimized ASO/ZCS-1 nanocomposite (ASO loading ratio: 30%) enhanced visible-light-driven H2 evolution activity (5.1 mmol g−1 h−1), nearly doubling that of pristine ZCS (2.7 mmol g−1 h−1). Stability assessments revealed catalytic durability for ASO/ZCS-1 over five successive cycles, whereas the activity of pure ZCS precipitously declined to 59.7% of its initial level. Additionally, ASO, ZCS, and ASO/ZCS-2 (ASO loading ratio: 50%) demonstrated notable photocatalytic efficiency toward DDVP degradation without any co-catalyst, reducing DDVP concentration to 56.2% (ASO), 18.9% (ASO/ZCS-2), and 38.4% (ZCS), with corresponding degradation stability of 93.8%, 95.1%, and 93.8%, respectively. These results underscore the superior photocatalytic activity and stability of ASO, ZCS, and ASO/ZCS in the remediation of organophosphorus pesticides, with the Type-I heterojunction structure of ASO/ZCS enhancing both degradation activity and stability. Comprehensive characterizations by X-ray photoelectron spectroscopy (XPS), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS), and differential charge density analyses verified the Type-I heterojunction charge-transfer mechanism, effectively suppressing charge recombination and thus improving photocatalytic performance. Consequently, ASO/ZCS nanocomposites exhibit significant promise for broad applications in sustainable H2 production, pollutant degradation, and ensuring food and agricultural product safety. Full article
(This article belongs to the Special Issue Recent Developments in Photocatalytic Hydrogen Production)
Show Figures

Graphical abstract

16 pages, 7830 KiB  
Article
Regulation of WDFY1 Expression by miRNAs, Transcription Factors, and IL-6 in Murine Mesangial Cells
by David E. Adams, Siru Li, Yuxuan Zhen, Ahmet Kaynak, Xiaoyang Qi, Jane J. Yu and Wen-Hai Shao
Cells 2025, 14(11), 798; https://doi.org/10.3390/cells14110798 - 29 May 2025
Viewed by 565
Abstract
WD40 repeat and FYVE containing protein 1 (WDFY1) functions in membrane trafficking and protein complex scaffolding. WDFY1 has been studied in the immune system and in different oncogenic conditions. Therefore, comprehensive understanding of WDFY1 regulation mechanisms is much desired. In this study, we [...] Read more.
WD40 repeat and FYVE containing protein 1 (WDFY1) functions in membrane trafficking and protein complex scaffolding. WDFY1 has been studied in the immune system and in different oncogenic conditions. Therefore, comprehensive understanding of WDFY1 regulation mechanisms is much desired. In this study, we analyzed the promoter and 5′- and 3′-untranslated regions (UTRs) of wdfy1 and identified critical sequence elements, transcription factors (TFs), and miRNAs that collaboratively regulate wdfy1 gene expression. A 3.5 kb segment of the mouse wdfy1 promoter and 5′-UTR was cloned into a luciferase expression vector and transfected into HeLa cells. Luciferase assays of promoter deletion mutants revealed approximately four-fold increased activity attributed by a 500 bp distal fragment upstream of the wdfy1 5′-UTR. Four TFs (Sp1, Ap-1, Hes1, and TCF7) were found to be critical for wdfy1 expression with binding sites spread throughout the promoter and 5′-UTR regions. Cloning of a 3.2 kb fragment of wdfy1 3′-UTR into the luciferase expression vector led to an ~3.5-fold decrease in luciferase activity. Complementary siRNA and luciferase assays mutually confirmed our findings. Most importantly, IL-6, a critical cytokine in organ inflammation, was found to promote WDFY1 expression through the upregulation of Sp1 in primary renal mesangial cells. We, therefore, identified a potential inflammation-driven WDFY1 upregulation in mice. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

Back to TopTop