Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Animals
2.2. ERG Measurement of Compound Eyes
2.3. Phototactic Behavioral Test
2.4. Data Analysis
3. Results
3.1. Electroretinogram
3.2. Behavioral Responses Under Different Wavelength
3.3. Construct and Test of Light-Guided Cyborg Beetle
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holzer, R.; Shimoyama, I. Locomotion control of a bio-robotic system via electric stimulation. In Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS ’97, Grenoble, France, 11 September 1997; pp. 1514–1519. [Google Scholar]
- Erickson, J.C.; Herrera, M.; Bustamante, M.; Shingiro, A.; Bowen, T. Effective stimulus parameters for directed locomotion in Madagascar hissing cockroach biobot. PLoS ONE 2015, 10, e0134348. [Google Scholar] [CrossRef]
- Sato, H.; Berry, C.W.; Peeri, Y.; Baghoomian, E.; Casey, B.E.; Lavella, G.; VandenBrooks, J.M.; Harrison, J.F.; Maharbiz, M.M. Remote radio control of insect flight. Front. Integr. Neurosci. 2009, 3, 784. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, C.; Choo, H.Y.; Sato, H. Insect-machine hybrid robot: Insect walking control by sequential electrical stimulation of leg muscles. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4576–4582. [Google Scholar]
- Ma, S.; Liu, P.; Liu, S.; Li, Y.; Li, B. Launching of a cyborg locust via co-contraction control of hindleg muscles. IEEE Trans. Robot. 2022, 38, 2208–2219. [Google Scholar] [CrossRef]
- Bozkurt, A.; Paul, A.; Pulla, S.; Ramkumar, A.; Blossey, B.; Ewer, J.; Gilmour, R.; Lal, A. Microprobe microsystem platform inserted during early metamorphosis to actuate insect flight muscle. In Proceedings of the 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), Hyogo, Japan, 21–25 January 2007; pp. 405–408. [Google Scholar]
- Bozkurt, A.; Gilmour, R.F.; Sinha, A.; Stern, D.; Lal, A. Insect-machine interface based neurocybernetics. IEEE Trans. Biomed. Eng. 2009, 56, 1727–1733. [Google Scholar] [CrossRef]
- Lin, Q.; Li, R.; Zhang, F.; Kai, K.; Ong, Z.C.; Chen, X.; Sato, H. Resilient conductive membrane synthesized by in-situ polymerisation for wearable non-invasive electronics on moving appendages of cyborg insect. NPJ Flex. Electron. 2023, 7, 42. [Google Scholar] [CrossRef]
- Katsuki, M.; Arikawa, K.; Wakakuwa, M.; Omae, Y.; Okada, K.; Sasaki, R.; Shinoda, K.; Miyatake, T. Which wavelength does the cigarette beetle, Lasioderma serricorne (Coleoptera: Anobiidae), prefer? Electrophysiological and behavioral; studies using light-emitting diodes (LEDs). Appl. Entomol. Zool. 2013, 48, 547–551. [Google Scholar] [CrossRef]
- Bentley, M.T.; Kaufman, P.E.; Kline, D.L.; Hogsette, J.A. Response of adult mosquitoes to light-emitting diodes placed in resting boxes and in the field. J. Am. Mosq. Control Assoc. 2009, 25, 285–291. [Google Scholar] [CrossRef]
- Yao, H.; Shu, L.; Yang, F.; Jin, Y.; Yang, Y. The phototactic rhythm of pests for the Solar Insecticidal Lamp: A review. Front. Plant Sci. 2023, 13, 1018711. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; Huang, Q.Y.; Lei, C.L. Advances in insect phototaxis and application to pest management: A review. Pest Manag. Sci. 2019, 75, 3135–3143. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, M.; Honda, K. Insect reactions to light and its applications to pest management. Appl. Entomol. Zool. 2013, 48, 413–421. [Google Scholar] [CrossRef]
- Khan, A.; Hasan, W.; Bisht, K.; Khan, R.M.; Chattopadhyay, D.; Majumder, J.; Khan, I.; Rabeek, S.M.; Ahmad, S. Insect phototaxis mechanisms innovations in pest control strategies and applications. Uttar Pradesh J. Zool. 2024, 45, 169–180. [Google Scholar] [CrossRef]
- Kim, K.N.; Song, H.S.; Li, C.S.; Huang, Q.Y.; Lei, C.L. Effect of several factors on the phototactic response of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). J. Asia-Pac. Entomol. 2018, 21, 952–957. [Google Scholar] [CrossRef]
- Sambaraju, K.R.; Phillips, T.W. Responses of adult Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) to light and combinations of attractants and light. J. Insect Behav. 2008, 21, 422–439. [Google Scholar] [CrossRef]
- Cowan, T.; Gries, G. Ultraviolet and violet light: Attractive orientation cues for the Indian meal moth, Plodia interpunctella. Entomol. Exp. Appl. 2009, 131, 148–158. [Google Scholar] [CrossRef]
- Fan, W.L.; Liu, X.K.; Zhang, T.H.; Liang, Z.L.; Jiang, L.; Zong, L.; Li, C.Q.; Du, Z.; Liu, H.Y.; Yang, Y.X.; et al. The morphology and spectral characteristics of the compound eye of Agasicles hygrophila (Selman & Vogt, 1971) (Coleoptera, Chrysomelidae, Galerucinae, Alticini). ZooKeys 2023, 1177, 23. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, T.; Wu, F.; Liang, Z.; Liu, X.; Jacob, M.; Fan, W.; Jiang, L.; Zhang, L.; Ge, S.; et al. The structure of the compound eyes and phototaxis in two phenotypes of the bean pest Callosobruchus maculatus (Coleoptera: Bruchinae). Zool. Syst. 2023, 48, 193–205. [Google Scholar]
- Huang, J.P.; Morgan, B. Evolution of adult male horn developmental phenotypes and character displacement in Xylotrupes beetles (Scarabaeidae). Ecol. Evol. 2021, 11, 5503–5510. [Google Scholar] [CrossRef]
- Yan, Y.; Song, F.; Wang, W.; Xu, N.; Zhu, H.; Sun, J. Structural dynamics analysis of Endebius florensis’ hindwing. In Proceedings of the 2023 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Chengdu, China, 31 July–4 August 2023; pp. 180–183. [Google Scholar]
- Jiang, Y.L.; Guo, Y.Y.; Wu, Y.Q.; Li, T.; Duan, Y.; Miao, J.; Gong, Z.J.; Huang, Z.J. Spectral sensitivity of the compound eyes of Anomala corpulenta Motschulsky (Coleoptera: Scarabaeoidea). J. Integr. Agric. 2015, 14, 706–713. [Google Scholar] [CrossRef]
- Döring, T.F.; Skellern, M.; Watts, N.; Cook, S.M. Colour choice behaviour in the pollen beetle Meligethes aeneus (Coleoptera: Nitidulidae). Physiol. Entomol. 2012, 37, 360–378. [Google Scholar] [CrossRef]
- Said, A.E.; Fatahuddin; Asman; Nasruddin, A. Effect of sticky trap color and height on the capture of adult oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) on chili pepper. Am. J. Agric. Biol. Sci. 2017, 12, 13–17. [Google Scholar] [CrossRef]
- Yang, J.Y.; Kim, M.G.; Lee, H.S. Phototactic behavior: Attractive effects of Spodoptera litura (Lepidoptera: Noctuidae), tobacco cutworm, to high-power light-emitting diodes. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 809–811. [Google Scholar] [CrossRef]
- Cho, K.S.; Lee, H.S. Visual preference of diamondback moth, Plutella xylostella, to light-emitting diodes. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 681–684. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Tan, P.Z.; Sato, H.; Vo-Doan, T.T. Sideways walking control of a cyborg beetle. IEEE Trans. Med. Robot. Bionics 2020, 2, 331–337. [Google Scholar] [CrossRef]
- Sanchez, C.J.; Chiu, C.W.; Zhou, Y.; González, J.M.; Vinson, S.B.; Liang, H. Locomotion control of hybrid cockroach robots. J. R. Soc. Interface 2015, 12, 20141363. [Google Scholar] [CrossRef] [PubMed]
- Latif, T.; Bozkurt, A. Line following terrestrial insect biobots. In Proceedings of the 2012 annual international conference of the IEEE engineering in medicine and biology society, San Diego, CA, USA, 28 August–1 September 2012; pp. 972–975. [Google Scholar]
- Liu, P.; Ma, S.; Liu, S.; Li, Y.; Li, B. Collaborative turning and jumping control of a cyborg locust via sensory stimulation. In Proceedings of the 2021 3rd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), Kuala Lumpur, Malaysia, 27 November 2021; pp. 1–7. [Google Scholar]
- Giampalmo, S.L.; Absher, G.F.; Bourne, W.T.; Steves, L.E.; Vodenski, V.V.; O’Donnel, P.M.; Erickson, J.C. Generation of complex motor patterns in american grasshopper via current-controlled thoracic electrical interfacing. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 1275–1278. [Google Scholar]
- Tsang, W.M.; Stone, A.; Aldworth, Z.; Otten, D.; Akinwande, A.I.; Daniel, T.; Hildebrand, J.G.; Levine, R.B.; Voldman, J. Remote control of a cyborg moth using carbon nanotube-enhanced flexible neuroprosthetic probe. In Proceedings of the 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, China, 24–28 January 2010; pp. 39–42. [Google Scholar]
- Bozkurt, A.; Gilmour, R.; Stern, D.; Lal, A. MEMS based bioelectronic neuromuscular interfaces for insect cyborg flight control. In Proceedings of the 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, Tucson, AZ, USA, 13–17 January 2008; pp. 160–163. [Google Scholar]
- Vo-Doan, T.T.; Kolev, S.; Anh, H.N.; Chao, Z.; Massey, T.L.; Abbeel, P.; Maharbiz, M.M.; Sato, H. Insect-machine hybrid system. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 2816–2819. [Google Scholar]
- Lin, Q.; Kai, K.; Nguyen, H.D.; Sato, H. A newly developed chemical locomotory booster for cyborg insect to sustain its activity and to enhance covering performance. Sens. Actuators B Chem. 2024, 399, 134774. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.-H.; Huang, Z.-Z.; Jiang, L.; Lv, S.-Z.; Zhu, W.-T.; Zhang, C.-F.; Shi, Y.-S.; Ge, S.-Q. Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae). Biomimetics 2025, 10, 513. https://doi.org/10.3390/biomimetics10080513
Zhang T-H, Huang Z-Z, Jiang L, Lv S-Z, Zhu W-T, Zhang C-F, Shi Y-S, Ge S-Q. Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae). Biomimetics. 2025; 10(8):513. https://doi.org/10.3390/biomimetics10080513
Chicago/Turabian StyleZhang, Tian-Hao, Zheng-Zhong Huang, Lei Jiang, Shen-Zhen Lv, Wen-Tao Zhu, Chao-Fan Zhang, Yi-Shi Shi, and Si-Qin Ge. 2025. "Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae)" Biomimetics 10, no. 8: 513. https://doi.org/10.3390/biomimetics10080513
APA StyleZhang, T.-H., Huang, Z.-Z., Jiang, L., Lv, S.-Z., Zhu, W.-T., Zhang, C.-F., Shi, Y.-S., & Ge, S.-Q. (2025). Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae). Biomimetics, 10(8), 513. https://doi.org/10.3390/biomimetics10080513