Serum Uric Acid Level as an Estimated Parameter That Predicts All-Cause Mortality in Patients with Hemodialysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Collection of Demographic, Medical, and Laboratory Data
2.3. Measurements
2.4. Outcomes
2.5. Statistical Analysis
2.6. Ethics Declaration
3. Results
3.1. Patient Characteristics by UA Quintiles
3.2. Multivariate Linear Regression for UA
3.3. UA Quintiles, Sextiles, and Clinical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UA | Uric acid |
ESKD | End-stage kidney disease |
CCI | Charlson Comorbidity Index |
HR | Hazard ratio |
CI | Confidence interval |
PEW | Protein-energy wasting |
CKD | Chronic kidney disease |
HD | Hemodialysis |
WBC | White blood cell |
Hb | Hemoglobin |
HbA1c | Hemoglobin A1c |
LDL | Low-density lipoprotein cholesterol |
AMP | Adenosine monophosphate |
MIA | Malnutrition–inflammation–atherosclerosis |
MS | Metabolic syndrome |
DM | Diabetes mellitus |
BW | Body weight |
UF | Ultrafiltration |
BUN | Blood urea nitrogen |
nPCR | Normalized protein catabolic rate |
AC | Ante cibum |
K | Potassium |
Ca | Calcium |
P | Phosphate |
URR | Urea reduction ratio |
CTR | Cardiac/thoracic ratio |
PTH | Parathyroid |
eGFR | Estimated glomerular filtration rate |
NHI | National Health Insurance |
OR | Odds ratio |
RAAS | Renin–angiotensin–aldosterone system |
ROS | Oxygen free radicals |
BSA | Body surface area |
KDIGO | Kidney Disease: Improving Global Outcomes |
CHF | Congestive heart failure |
BCG | Bromocresol green |
KDOQI | Kidney Disease Outcomes Quality Initiative |
SD | Standard deviation |
SPSS | Statistical Product and Service Solutions |
References
- Sabatino, A.; Regolisti, G.; Karupaiah, T.; Sahathevan, S.; Singh, B.S.; Khor, B.; Salhab, N.; Karavetian, M.; Cupisti, A.; Fiaccadori, E. Protein-energy wasting and nutritional supplementation in patients with end-stage renal disease on hemodialysis. Clin. Nutr. 2017, 36, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Wei, C.; Hu, H.; Wan, Q. Association of the serum albumin level with prognosis in chronic kidney disease patients. Int. Urol. Nephrol. 2022, 54, 2421–2431. [Google Scholar] [CrossRef]
- Alves, F.C.; Sun, J.; Qureshi, A.R.; Dai, L.; Snaedal, S.; Barany, P.; Heimbürger, O.; Lindholm, B.; Stenvinkel, P. The higher mortality associated with low serum albumin is dependent on systemic inflammation in end-stage kidney disease. PLoS ONE 2018, 13, e0190410. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Zambrano, E.; Pedraza-Chaverri, J.; López-Santos, A.L.; Medina-Campos, O.N.; Cruz-Rivera, C.; Bueno-Hernández, F.; Espinosa-Cuevas, A. Association between serum uric acid levels, nutritional and antioxidant status in patients on hemodialysis. Nutrients 2020, 12, 2600. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.; Vassy, J.L.; Ho, Y.L.; Song, R.J.; Gagnon, D.R.; Cho, K.; Wilson, P.W.; Phillips, L.S. Diabetes mellitus–related all-cause and cardiovascular mortality in a national cohort of adults. J. Am. Heart Assoc. 2019, 8, e011295. [Google Scholar] [CrossRef]
- Chiu, H.; Wu, P.-Y.; Huang, J.-C.; Tu, H.-P.; Lin, M.-Y.; Chen, S.-C.; Chang, J.-M. There is a U shaped association between non high density lipoprotein cholesterol with overall and cardiovascular mortality in chronic kidney disease stage 3–5. Sci. Rep. 2020, 10, 12749. [Google Scholar] [CrossRef]
- Zawada, A.M.; Carrero, J.J.; Wolf, M.; Feuersenger, A.; Stuard, S.; Gauly, A.; Winter, A.C.; Ramos, R.; Fouque, D.; Canaud, B. Serum uric acid and mortality risk among hemodialysis patients. Kidney Int. Rep. 2020, 5, 1196–1206. [Google Scholar] [CrossRef]
- Maraj, M.; Kuśnierz-Cabala, B.; Dumnicka, P.; Gala-Błądzińska, A.; Gawlik, K.; Pawlica-Gosiewska, D.; Ząbek-Adamska, A.; Mazur-Laskowska, M.; Ceranowicz, P.; Kuźniewski, M. Malnutrition, inflammation, atherosclerosis syndrome (MIA) and diet recommendations among end-stage renal disease patients treated with maintenance hemodialysis. Nutrients 2018, 10, 69. [Google Scholar] [CrossRef]
- Park, C.; Obi, Y.; Streja, E.; Rhee, C.M.; Catabay, C.J.; Vaziri, N.D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum uric acid, protein intake and mortality in hemodialysis patients. Nephrol. Dial. Transpl. 2017, 32, 1750–1757. [Google Scholar] [CrossRef]
- Niu, S.-W.; Lin, H.Y.-H.; Kuo, I.; Zhen, Y.-Y.; Chang, E.-E.; Shen, F.-C.; Chiu, Y.-W.; Chang, J.-M.; Hung, C.-C.; Hwang, S.-J. Hyperuricemia, a Non-Independent Component of Metabolic Syndrome, Only Predicts Renal Outcome in Chronic Kidney Disease Patients without Metabolic Syndrome or Diabetes. Biomedicines 2022, 10, 1719. [Google Scholar] [CrossRef]
- Niu, S.-W.; Hung, C.-C.; Lin, H.Y.-H.; Kuo, I.-C.; Huang, J.-C.; He, J.-S.; Wen, Z.-H.; Liang, P.-I.; Chiu, Y.-W.; Chang, J.-M. Reduced Incidence of Stroke in Patients with Gout Using Benzbromarone. J. Pers. Med. 2022, 12, 28. [Google Scholar] [CrossRef]
- Soleymanian, T.; Ghaziani, Z. Charlson Comorbidity Index as a Strong Predictor of Mortality in Patients with Chronic Hemodialysis. Umsha 2018, 25, 151–158. [Google Scholar] [CrossRef]
- Daugirdas, J.T. Second Generation Logarithmic Estimates of Single-Pool Variable Volume Kt/V: An Analysis of Error. J. Am. Soc. Nephrol. 1993, 4, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Churchill, B.M.; Patri, P. The nitty-gritties of Kt/Vurea calculations in Hemodialysis and Peritoneal Dialysis. Indian J. Nephrol. 2021, 31, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, W.; Wang, Y.; Zhou, R. Gender-specific association between uric acid level and chronic kidney disease in the elderly health checkup population in China. Ren. Fail. 2019, 41, 197–203. [Google Scholar] [CrossRef]
- Doualla, M.; Nkeck, J.R.; Halle, M.P.; Kamdem, F.; Agouak, A.I.; Essouma, M.; Lobe, Y.B.; Ashuntantang, G. Assessment of the efficacy of hemodialysis on uric acid clearance in a sub-Saharan African population at the end stage kidney disease. BMC Nephrol. 2020, 21, 1–8. [Google Scholar] [CrossRef]
- Kumthekar, G.V.; Mondhe, S.D.; Hedau, S.; Naidu, S.; Chakravarthi, R.M. Reverse Epidemiology for Lipid Disorders in Hemodialysis-Dependent Patients: Role of Dilutional Hypolipidemia. Indian J. Nephrol. 2022, 32, 104–109. [Google Scholar] [CrossRef]
- Saito, Y.; Tanaka, A.; Node, K.; Kobayashi, Y. Uric acid and cardiovascular disease: A clinical review. J. Cardiol. 2021, 78, 51–57. [Google Scholar] [CrossRef]
- Gherghina, M.E.; Peride, I.; Tiglis, M.; Neagu, T.P.; Niculae, A.; Checherita, I.A. Uric Acid and Oxidative Stress-Relationship with Cardiovascular, Metabolic, and Renal Impairment. Int. J. Mol. Sci. 2022, 23, 3188. [Google Scholar] [CrossRef]
- Ali, N.; Rahman, S.; Islam, S.; Haque, T.; Molla, N.H.; Sumon, A.H.; Kathak, R.R.; Asaduzzaman, M.; Islam, F.; Mohanto, N.C. The relationship between serum uric acid and lipid profile in Bangladeshi adults. BMC Cardiovasc. Disord. 2019, 19, 1–7. [Google Scholar] [CrossRef]
- Shashar, M.; Francis, J.; Chitalia, V. Thrombosis in the uremic milieu--emerging role of “thrombolome”. Semin. Dial. 2015, 28, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Yang, Y.M.; Kim, H.Y.; Cho, H.; Nam, S.W.; Kim, S.M.; Kwon, S.K. Predialysis Urea Nitrogen Is a Nutritional Marker of Hemodialysis Patients. Chonnam Med. J. 2022, 58, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Allawi, A.A.D. Malnutrition, inflamation and atherosclerosis (MIA syndrome) in patients with end stage renal disease on maintenance hemodialysis (a single centre experience). Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 91–97. [Google Scholar] [CrossRef] [PubMed]
UA (Pre-Dialysis) | ||||||||
---|---|---|---|---|---|---|---|---|
Variables | All | <5.8 | 5.8–6.5 | 6.5–7.1 | 7.1–7.7 | 7.7–8.6 | >8.6 | p Value |
Demographics | - | |||||||
No. of patients | 2615 | 428 (16.4%) | 448 (17.1%) | 446 (17.1%) | 436 (16.7%) | 425 (16.3%) | 432 (16.5%) | |
Age (years) | 59.1 (14.2) | 64.9 (14.1) | 61.7 (14.0) | 59.4 (13.9) | 57.7 (13.9) | 56.5 (13.5) | 54.0 (13.1) | <0.001 * |
Gender (female %) | 1317 (50.4%) | 247 (57.7%) | 267 (59.6%) | 220 (49.3%) | 197 (45.2%) | 191 (44.9%) | 195 (45.1%) | <0.001 * |
Hepatitis | 361 (13.8%) | 58 (13.6%) | 58 (12.9%) | 70 (15.7%) | 63 (14.4%) | 58 (13.6%) | 54 (12.5%) | 0.753 |
CHF | 850 (32.5%) | 121 (28.3%) | 158 (35.3%) | 151 (33.9%) | 115 (26.4%) | 149 (35.1%) | 156 (36.1%) | 0.107 |
IHD | 439 (16.8%) | 61 (14.3%) | 63 (14.1%) | 86 (19.3%) | 67 (15.4%) | 86 (20.2%) | 76 (17.6%) | 0.038 * |
Stroke | 194 (7.4%) | 32 (7.5%) | 37 (8.3%) | 40 (9.0%) | 28 (6.4%) | 30 (7.1%) | 27 (6.3%) | 0.239 |
Cancer | 161 (6.2%) | 25 (5.8%) | 34 (7.6%) | 32 (7.2%) | 25 (5.7%) | 23 (5.4%) | 22 (5.1%) | 0.219 |
DM | 1261 (48.2%) | 206 (48.1%) | 232 (51.8%) | 238 (53.4%) | 207 (47.5%) | 206 (48.5%) | 172 (39.8%) | 0.004 * |
Hypertension | 1831 (70.0%) | 261 (61.0%) | 315 (70.3%) | 327 (73.3%) | 305 (70.0%) | 314 (73.9%) | 309 (71.5%) | 0.001 * |
CCI | 3.9 (1.7) | 3.9 (1.7) | 4.0 (1.8) | 4.1 (1.8) | 3.8 (1.6) | 4.0 (1.7) | 3.7 (1.5) | <0.001 * |
Laboratory data | ||||||||
WBCs (×1000/uL) | 7.0 (2.3) | 7.1 (2.5) | 7.0 (2.4) | 7.0 (2.3) | 7.0 (2.1) | 6.9 (2.1) | 7.0 (2.3) | 0.871 |
Hb (g/dL) | 9.9 (1.2) | 9.6 (1.1) | 9.9 (1.2) | 10.0 (1.2) | 10.1 (1.2) | 10.0 (1.3) | 9.6 (1.2) | <0.001 * |
Albumin (g/dL) | 3.7 (0.4) | 3.5 (0.5) | 3.7 (0.4) | 3.8 (0.4) | 3.8 (0.4) | 3.8 (0.3) | 3.8 (0.4) | <0.001 * |
Cholesterol (mg/dL) | 187.0 (45.1) | 174.7 (44.1) | 183.0 (42.3) | 184.4 (45.5) | 190.1 (44.2) | 192.1 (43.7) | 198.1 (47.2) | <0.001 * |
Glucose [AC] (mg/dL) | 136.4 (60.8) | 139.7 (64.8) | 137.6 (59.2) | 138.4 (60.0) | 134.3 (57.5) | 136.0 (59.0) | 132.5 (63.9) | 0514 |
Creatinine (mg/dL) | 9.2 (2.8) | 7.2 (2.4) | 8.2 (2.4) | 9.2 (2.5) | 9.7 (2.5) | 10.1 (2.7) | 11.2 (2.7) | <0.001 * |
K (mEq/L) | 4.7 (0.7) | 4.5 (0.7) | 4.5 (0.7) | 4.6 (0.7) | 4.7 (0.6) | 4.8 (0.6) | 4.8 (0.7) | <0.001 * |
Ca (mg/dL) | 9.3 (0.8) | 9.3 (0.9) | 9.3 (0.7) | 9.3 (0.7) | 9.3 (0.8) | 9.3 (0.8) | 9.4 (0.9) | 0.486 |
P (mg/dL) | 5.0 (1.2) | 4.2 (1.2) | 4.7 (1.1) | 4.9 (1.1) | 5.2 (1.1) | 5.2 (1.2) | 5.7 (1.2) | <0.001 * |
BW post-dialysis (kg) | 56.7 (11.7) | 51.7 (10.3) | 54.2 (10.5) | 56.3 (10.4) | 57.2 (11.8) | 59.6 (11.8) | 61.2 (12.6) | <0.001 * |
UF/BW ratio (%) | 3.8 (1.5) | 3.6 (1.5) | 3.7 (1.5) | 3.9 (1.6) | 3.9 (1.4) | 3.9 (1.5) | 3.9 (1.5) | 0.0030 * |
BUN pre-HD (mg/dL) | 70.3 (18.1) | 59.2 (17.1) | 65.4 (17.0) | 68.0 (15.4) | 72.2 (15.8) | 74.8 (17.0) | 82.5 (17.3) | <0.001 * |
URR | 0.7 (0.1) | 0.7 (0.1) | 0.7 (0.1) | 0.7 (0.1) | 0.7 (0.1) | 0.7 (0.1) | 0.7 (0.1) | <0.001 * |
Kt/V (Gotch) | 1.3 (0.2) | 1.3 (0.2) | 1.3 (0.2) | 1.3 (0.2) | 1.3 (0.2) | 1.3 (0.2) | 1.2 (0.2) | <0.001 * |
nPCR | 1.2 (0.3) | 1.1 (0.3) | 1.1 (0.3) | 1.1 (0.3) | 1.2 (0.3) | 1.2 (0.3) | 1.2 (0.3) | <0.001 * |
CTR (%) | 50.3 (6.5) | 51.5 (6.7) | 50.8 (6.5) | 50.2 (6.3) | 49.7 (6.6) | 49.4 (6.5) | 50.2 (6.2) | <0.001 * |
Outcomes | ||||||||
All-cause mortality | 1115 (42.6%) | 247 (57.7%) | 198 (44.2%) | 198 (44.4%) | 162 (37.2%) | 165 (38.8%) | 145 (33.6%) | <0.001 * |
Variables | β Coefficient | 95% CI β Coefficient | p |
---|---|---|---|
Gender (female vs. male) | −0.164 | −0.283 to −0.045 | 0.007 |
Age at dialysis (year) | −0.008 | −0.012 to −0.004 | <0.001 |
Entry year (late vs. early) | −0.211 | −0.324 to −0.099 | <0.001 |
Hepatitis | −0.070 | −0.215 to 0.075 | 0.347 |
CHF | 0.032 | −0.079 to 0.144 | 0.568 |
Cancer | 0.092 | −0.115 to 0.298 | 0.385 |
DM | −0.188 | −0.307 to −0.070 | 0.002 |
Hypertension | 0.051 | −0.062 to 0.164 | 0.377 |
Post-dialytic body weight (kg) | 0.012 | 0.007 to 0.017 | <0.001 |
Kt/V (Gotch) | −0.524 | −0.804 to −0.243 | <0.001 |
UF/BW ratio100 | 0.026 | −0.009 to 0.061 | 0.147 |
nPCR | 0.612 | 0.420 to 0.804 | <0.001 |
W.B.C. (1000/uL) | 0.016 | −0.007 to 0.040 | 0.176 |
Hemoglobin (g/dL) | −0.007 | −0.052 to 0.038 | 0.745 |
Albumin (g/dL) | 0.256 | 0.102 to 0.409 | 0.001 |
Cholesterol log | 1.361 | 0.839 to 1.883 | <0.001 |
Glucose [AC] (mg/dL) | 0.000 | −0.001 to 0.001 | 0.761 |
P (mg/dL) | 0.267 | 0.220 to 0.314 | <0.001 |
Total Ca (mg/dL) | −0.008 | −0.074 to 0.058 | 0.814 |
PTH hormone log | 0.123 | 0.044 to 0.202 | 0.002 |
UA | ||||||
---|---|---|---|---|---|---|
Sextile | 1 | 2 | 3 | 4 | 5 | 6 |
Variables | <5.8 | 5.8–6.5 | 6.5–7.1 | 7.1–7.7 | 7.7–8.6 | >8.6 |
Number | 428 | 448 | 446 | 436 | 425 | 432 |
Total (n = 2615) | ||||||
unadjusted | 2.22 (1.83–2.69) ** | 1.57 (1.29–1.92) ** | 1.48 (1.21–1.81) ** | 1.20 (0.98–1.48) | 1.25 (1.02–1.54) * | 1 (reference) |
fully adjusted | 1.31 (1.06–1.63) * | 1.09 (0.88–1.36) | 1.21 (0.98–1.49) | 1.07 (0.86–1.32) | 1.20 (0.97–1.48) | 1 (reference) |
Charlson ≥ 4 (n = 1507) | ||||||
unadjusted | 2.67 (2.15–3.32) ** | 1.72 (1.38–2.15) ** | 1.64 (1.32–2.06) ** | 1.39 (1.11–1.76) * | 1.38 (1.10–1.74) * | 1 (reference) |
fully adjusted | 1.53 (1.20–1.95) ** | 1.19 (0.93–1.51) | 1.37 (1.08–1.72) * | 1.22 (0.96–1.55) | 1.34 (1.06–1.69) * | 1 (reference) |
Charlson < 4 (n = 1108) | ||||||
unadjusted | 1.88 (1.20–2.94) * | 1.54 (0.97–2.45) | 1.27 (0.79–2.06) | 1 (reference) | 0.96 (0.57–1.63) | 1.27 (0.79–2.04) |
fully adjusted | 1.21 (0.75–1.95) | 1.51 (0.94–2.43) | 1.35 (0.82–2.23) | 1 (reference) | 1.18 (0.69–2.04) | 1.61 (1.01–2.38) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, S.-W.; Kuo, I.-C.; Zhen, Y.-Y.; Chang, E.E.; Chang, L.-Y.; Cheng, C.-T.; Lin, H.Y.-H.; Chiu, Y.-W.; Chang, J.-M.; Hwang, S.-J.; et al. Serum Uric Acid Level as an Estimated Parameter That Predicts All-Cause Mortality in Patients with Hemodialysis. J. Pers. Med. 2025, 15, 305. https://doi.org/10.3390/jpm15070305
Niu S-W, Kuo I-C, Zhen Y-Y, Chang EE, Chang L-Y, Cheng C-T, Lin HY-H, Chiu Y-W, Chang J-M, Hwang S-J, et al. Serum Uric Acid Level as an Estimated Parameter That Predicts All-Cause Mortality in Patients with Hemodialysis. Journal of Personalized Medicine. 2025; 15(7):305. https://doi.org/10.3390/jpm15070305
Chicago/Turabian StyleNiu, Sheng-Wen, I-Ching Kuo, Yen-Yi Zhen, Eddy Essen Chang, Li-Yun Chang, Chung-Ting Cheng, Hugo You-Hsien Lin, Yi-Wen Chiu, Jer-Ming Chang, Shang-Jyh Hwang, and et al. 2025. "Serum Uric Acid Level as an Estimated Parameter That Predicts All-Cause Mortality in Patients with Hemodialysis" Journal of Personalized Medicine 15, no. 7: 305. https://doi.org/10.3390/jpm15070305
APA StyleNiu, S.-W., Kuo, I.-C., Zhen, Y.-Y., Chang, E. E., Chang, L.-Y., Cheng, C.-T., Lin, H. Y.-H., Chiu, Y.-W., Chang, J.-M., Hwang, S.-J., & Hung, C.-C. (2025). Serum Uric Acid Level as an Estimated Parameter That Predicts All-Cause Mortality in Patients with Hemodialysis. Journal of Personalized Medicine, 15(7), 305. https://doi.org/10.3390/jpm15070305