Spatiotemporal Evolution and Driving Factors of LULC Change and Ecosystem Service Value in Guangdong: A Perspective of Food Security
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Research Method
2.2.1. Land Use Type Transfer Matrix
2.2.2. ESV
2.2.3. Ecological Sensitivity Analysis of ESV
2.2.4. Geodetector
2.2.5. Spatial Autocorrelation Analysis
2.3. Data Source and Description
3. Results and Analysis
3.1. Analysis of Land Use Change
3.1.1. Overall Analysis of Land Use Change
3.1.2. Analysis of Land Use Change in Various Cities
3.2. ESV Analysis Results
3.2.1. ESV Temporal Change Analysis
3.2.2. ESV Spatial Change Analysis
3.3. Sensitivity Analysis of Ecosystem Service Value
3.4. Results of Geographic Detector Analysis
3.4.1. Single-Factor Detection Results
3.4.2. Interactive Factor Detection Results
3.4.3. Ecological Risk Factor Detection Results
3.5. Spatial Autocorrelation Test Results
4. Discussion
4.1. Research Marginal Contribution
4.2. Theoretical and Practical Significance
4.3. Policy Recommendations
4.4. Research Limitations
4.5. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Sloggy, M.R.; Dhiaulhaq, A.; Escobedo, F.J.; Rasheed, A.R.; Sánchez, J.J.; Yang, W.; Yu, F.; Meng, Z. Boundary of ecosystem services: Guiding future development and application of the ecosystem service concepts. J. Environ. Manag. 2023, 344, 118752. [Google Scholar] [CrossRef]
- Zhao, B.; Kreuter, U.; Li, B.; Ma, Z.; Chen, J.; Nakagoshi, N. An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy 2004, 21, 139–148. [Google Scholar] [CrossRef]
- Holt, A.R.; Alix, A.; Thompson, A.; Maltby, L. Food production, ecosystem services and biodiversity: We can’t have it all everywhere. Sci. Total. Environ. 2016, 573, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Pan, Y.; Zhu, W.; Liu, X.; Zhu, X. Measurement of terrestrial ecosystem service value in China. Chin. J. Appl. Ecol. 2005, 16, 1122–1127. [Google Scholar]
- Zeng, B.; Wen, B.; Zhang, X.; Zhao, S.; Shang, G.; An, S.; Li, Z. Analysis on Spatiotemporal Variation in Soil Drought and Its Influencing Factors in Hebei Province from 2001 to 2020. Agriculture 2025, 15, 1109. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.; Gao, H. A Sharpe ratio-integrated indicator system for land use changes ecological risks: Within coupled disaster-economic assessment frameworks. Ecol. Indic. 2025, 176, 113704. [Google Scholar] [CrossRef]
- Mataveli, G.; Maure, L.A.; Sanchez, A.; Dutra, D.J.; de Oliveira, G.; Jones, M.W.; Amaral, C.; Artaxo, P.; Aragão, L.E.O.C. Forest Degradation Is Undermining Progress on Deforestation in the Amazon. Glob. Chang. Biol. 2025, 31, e70209. [Google Scholar] [CrossRef]
- Sugden, A.M.; Funk, M. Degradation exceeds deforestation. Science 2020, 369, 1335–1336. [Google Scholar] [CrossRef]
- Yeni, F.; Alpas, H. Vulnerability of global food production to extreme climatic events. Food Res. Int. 2017, 96, 27–39. [Google Scholar] [CrossRef]
- Gaupp, F.; Hall, J.; Hochrainer-Stigler, S.; Dadson, S. Changing risks of simultaneous global breadbasket failure. Nat. Clim. Chang. 2019, 10, 54–57. [Google Scholar] [CrossRef]
- Kärvemo, S.; Björkman, C.; Johansson, T.; Weslien, J.; Hjältén, J.; Lewis, O. Forest restoration as a double-edged sword: The conflict between biodiversity conservation and pest control. J. Appl. Ecol. 2017, 54, 1658–1668. [Google Scholar] [CrossRef]
- Sekulic, G.; Rempel, C.B. Evaluating the Role of Seed Treatments in Canola/Oilseed Rape Production: Integrated Pest Management, Pollinator Health, and Biodiversity. Plants 2016, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Anik, A.R. Productivity and efficiency impact of climate change and agroecology on Bangladesh agriculture. Land Use Policy 2020, 94, 104507. [Google Scholar] [CrossRef]
- Geijzendorffer, I.R.; Cohen-Shacham, E.; Cord, A.F.; Cramer, W.; Guerra, C.; Martín-López, B. Ecosystem services in global sustainability policies. Environ. Sci. Policy 2017, 74, 40–48. [Google Scholar] [CrossRef]
- Yuan, M.-H.; Lo, S.-L. Ecosystem services and sustainable development: Perspectives from the food-energy-water Nexus. Ecosyst. Serv. 2020, 46, 101217. [Google Scholar] [CrossRef]
- Lv, L.; Luo, H.; Zhang, B. Relationship between electricity consumption and economic growth of Guangdong Province in China. Front. Energy 2012, 6, 351–355. [Google Scholar]
- Xiao, Y.; Zhao, J.; Zhang, Y.; Wang, S. Grain Self-Sufficiency in Guangdong, China: Current Trends and Future Perspectives. Foods 2025, 14, 1126. [Google Scholar] [CrossRef]
- Wen, B.; Liu, F. The evolution and configuration mechanism of spatial correlation network in China’s innovation ecosystem. Environ. Technol. Innov. 2025, 38, 104157. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Wu, Q.; Huang, J.; Ling, F.; Wang, L. Characteristics of spatial and temporal changes in ecosystem service value and threshold effect in Henan along the Yellow River, China. Ecol. Indic. 2024, 166, 112531. [Google Scholar] [CrossRef]
- Vargas, L.; Willemen, L.; Hein, L. Assessing the Capacity of Ecosystems to Supply Ecosystem Services Using Remote Sensing and An Ecosystem Accounting Approach. Environ. Manag. 2018, 63, 1–15. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Y.; Zhang, Y.; Wang, J.; Xue, Z.; Tan, X.; Jia, W. Research on ecosystem service value and landscape ecological risk prediction and zoning: Taking Fujian province as an example. Ecol. Model. 2025, 507, 111173. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Li, Q.; Yang, L.; Jiao, H.; He, Q. Spatiotemporal Analysis of the Impacts of Land Use Change on Ecosystem Service Value: A Case from Guiyang, China. Land 2024, 13, 211. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, X.; Li, X.; Song, B.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecol. Indic. 2019, 111, 106004. [Google Scholar] [CrossRef]
- Ai, M.; Chen, X.; Yu, Q. Spatial correlation analysis between human disturbance intensity (HDI) and ecosystem services value (ESV) in the Chengdu-Chongqing urban agglomeration. Ecol. Indic. 2024, 158, 111555. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, D.; Deng, L. Landscape pattern simulation for ecosystem service value regulation of Three Gorges Reservoir Area, China. Environ. Impact Assess. Rev. 2022, 95, 106798. [Google Scholar] [CrossRef]
- Ding, T.; Chen, J.; Fang, Z.; Wang, Y. Exploring the differences of ecosystem service values in different functional areas of metropolitan areas. Sustain. Prod. Consum. 2023, 38, 341–355. [Google Scholar] [CrossRef]
- Jiang, T.; Qu, Y.; Zhang, X.; Jing, L.; Feng, K.; Zhang, G.; Han, Y. Evaluating Ecological Drought Vulnerability from Ecosystem Service Value Perspectives in North China. Remote. Sens. 2024, 16, 3733. [Google Scholar] [CrossRef]
- Ling, H.; Yan, J.; Xu, H.; Guo, B.; Zhang, Q. Estimates of shifts in ecosystem service values due to changes in key factors in the Manas River basin, northwest China. Sci. Total. Environ. 2018, 659, 177–187. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Chakraborti, S.; Joshi, P.K.; Keesstra, S.; Sen, S.; Paul, S.K.; Kreuter, U.P.; Sutton, P.C.; Jha, S.; Dang, K.B. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Chen, X. Spatiotemporal change in ecosystem service value in response to land use change in Guizhou Province, southwest China. Ecol. Indic. 2022, 144, 109514. [Google Scholar] [CrossRef]
- Han, X.; Yu, J.; Shi, L.; Zhao, X.; Wang, J. Spatiotemporal evolution of ecosystem service values in an area dominated by vegetation restoration: Quantification and mechanisms. Ecol. Indic. 2021, 131, 108191. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, T.; Yan, D.; Liu, S.; Feng, J.; Wang, Q.; Liu, H.; Gao, H. Analysis of the evolution of ecosystem service value and its driving factors in the Yellow River Source Area, China. Ecol. Indic. 2023, 158, 111344. [Google Scholar] [CrossRef]
- Haque, N.; Mahi, M.M.; Sharif, S.; Rudra, R.R.; Sharifi, A. Changes in the economic value of ecosystem services in rapidly growing urban areas: The case of Dhaka, Bangladesh. Environ. Sci. Pollut. Res. 2023, 30, 52321–52339. [Google Scholar] [CrossRef]
- Du, H.; Zhao, L.; Zhang, P.; Li, J.; Yu, S. Ecological compensation in the Beijing-Tianjin-Hebei region based on ecosystem services flow. J. Environ. Manag. 2023, 331, 117230. [Google Scholar] [CrossRef]
- Liu, J.; Pei, X.; Zhu, W.; Jiao, J. Understanding the intricate tradeoffs among ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration across spatiotemporal features. Sci. Total. Environ. 2023, 898, 165453. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhai, G.; Yu, Z.; Lu, Z.; Chen, Y.; Liu, J. Coupling coordination between urbanization and ecosystem services value in the Beijing-Tianjin-Hebei urban agglomeration. Sustain. Cities Soc. 2024, 113, 105715. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S. Assessing Ecosystem Services of Rice–Fish Co-Culture and Rice Monoculture in Thailand. Agronomy 2022, 12, 1241. [Google Scholar] [CrossRef]
- Bommarco, R.; Vico, G.; Hallin, S. Exploiting ecosystem services in agriculture for increased food security. Glob. Food Secur. 2018, 17, 57–63. [Google Scholar] [CrossRef]
- Cruz-Garcia, G.S.; Sachet, E.; Vanegas, M.; Piispanen, K. Are the major imperatives of food security missing in ecosystem services research? Ecosyst. Serv. 2016, 19, 19–31. [Google Scholar] [CrossRef]
- Pan, Y.; Bai, J.; Turner, S. History in Points, Lines and Polygons: Time Depth in the Landscape of Guangdong Province, Southern China. Land 2023, 12, 1979. [Google Scholar] [CrossRef]
- Ye, Y.-Q.; Qin, Z.; Zhang, J.-E.; Xiao, H.-S. Time-series analysis of grain production characteristics in Guangdong Province from 1949 to 2006. Chin. J. Eco-Agric. 2010, 17, 765–769. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, C.; Ma, L.; Li, N. Ecological effects of land use and land cover change in the typical ecological functional zones of Egypt. Ecol. Indic. 2024, 168, 112747. [Google Scholar] [CrossRef]
- Aslam, R.W.; Shu, H.; Tariq, A.; Naz, I.; Ahmad, M.N.; Quddoos, A.; Javid, K.; Mustafa, F.; Aeman, H. Monitoring Landuse Change in Uchhali and Khabeki Wetland Lakes, Pakistan using Remote Sensing Data. Gondwana Res. 2024, 129, 252–267. [Google Scholar] [CrossRef]
- De Rosa, M.; Odgaard, M.V.; Staunstrup, J.K.; Knudsen, M.T.; Hermansen, J.E. Identifying Land Use and Land-Use Changes (LULUC): A Global LULUC Matrix. Environ. Sci. Technol. 2017, 51, 7954–7962. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the valuation method for ecosystem services based on the value equivalent factor per unit area. J. Nat. Resour. 2015, 30, 1243–1254. (In Chinese) [Google Scholar]
- Koç, G.; Uzmay, A. Construction of a Farm-Level Food Security Index: Case Study of Turkish Dairy Farms. Soc. Indic. Res. 2024, 175, 687–714. [Google Scholar] [CrossRef]
- McKune, S.L.; Borresen, E.C.; Young, A.G.; Ryley, T.D.A.; Russo, S.L.; Camara, A.D.; Coleman, M.; Ryan, E.P. Climate change through a gendered lens: Examining livestock holder food security. Glob. Food Secur. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental health risk detection with Geog Detector. Environ. Model. Softw. 2012, 20, 114–115. [Google Scholar] [CrossRef]
- Shortridge, A. Practical limits of Moran’s autocorrelation index for raster class maps. Comput. Environ. Urban Syst. 2007, 31, 362–371. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y. Moran’s I of VRPAD: A human activity-sensitive spatial pattern index for vegetation restoration evaluation. J. Environ. Manag. 2025, 387, 125948. [Google Scholar] [CrossRef]
- Chinese Academy of Sciences Resource and Environment Science & Data Cloud Platform. China Land Use Dataset (2005, 2013, 2023). Available online: http://www.resdc.cn (accessed on 6 January 2022).
- Compilation Committee of National Agricultural Product Cost and Benefit Data. National Compilation of Agricultural Product Cost and Benefit Data [Monograph]; China Statistics Press: Beijing, China, 2024.
- Guangdong Provincial Bureau of Statistics & Relevant Department(s) (Ed.) Guangdong Rural Statistical Yearbook; Guangdong Provincial Bureau of Statistics & Relevant Department(s): Guangzhou, China, 2023.
- Hu, W.; Cheng, J.; Zheng, M.; Jin, X.; Yao, J.; Guo, F. A Multi-Scenario Simulation and Driving Factor Analysis of Production–Living–Ecological Land in China’s Main Grain Producing Areas: A Case Study of the Huaihe River Eco-Economic Belt. Agriculture 2025, 15, 349. [Google Scholar] [CrossRef]
- Yu, L.; Li, Y.; Luo, G.; Ge, G.; Zhang, H.; Tang, F.; Yu, M. Spatiotemporal evolution and driving mechanism of slope cultivated land in karst mountainous areas of Southwest China—A case study of Puding County, Guizhou Province. Land Degrad. Dev. 2024, 35, 568–585. [Google Scholar] [CrossRef]
- Dai, Z.Z.; Chang, S.; Zhao, G.R.; Duan, J.J.; Liang, H.Y.; Zhu, Z.Y.; Liu, S.L.; Feng, Y.Z.; Wang, X. Unlocking China’s grain yield potential: Harnessing technological and spatial synergies in diverse cropping systems. Agric. Syst. 2025, 226, 104308. [Google Scholar]
- Wang, X.; Meng, Q.; Zhang, L.; Hu, D. Evaluation of urban green space in terms of thermal environmental benefits using geographical detector analysis. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102610. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Liu, Z.; Feng, R.; Pan, Y. Evolution of Ecosystem Service Values and the Response to Landscape Pattern Change in the Huaihe River Eco-Economic Belt. Land 2023, 12, 1405. [Google Scholar] [CrossRef]
- Lang, Y.; Chao, H.; Xiao, J. The Relationship Between Carbon Emissions and Ecosystem Services in Guangdong Province, China: The Perspective of Ecological Function Zones. Land 2024, 13, 2227. [Google Scholar] [CrossRef]
Type | Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Undeveloped Land |
---|---|---|---|---|---|---|
ESV coefficients | 8692.19 | 40,317.9 | 26,141.6 | 192,518 | 0 | 2319.36 |
Year | Type | Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Undeveloped Land |
---|---|---|---|---|---|---|---|
2005 | Area/km2 | 42,833.97 | 108,358.57 | 7778.73 | 8017.57 | 10,567.84 | 107.93 |
Proportion/% | 24.11% | 60.99% | 4.38% | 4.51% | 5.95% | 0.06% | |
2013 | Area/km2 | 41,648.78 | 107,788.95 | 7724.77 | 7836.69 | 12,558.49 | 106.93 |
Proportion/% | 23.44% | 60.67% | 4.35% | 4.41% | 7.07% | 0.06% | |
2023 | Area/km2 | 40,941.26 | 107,372.24 | 7722.77 | 7690.79 | 13,885.59 | 105.93 |
Proportion/% | 23.04% | 60.42% | 4.35% | 4.33% | 7.81% | 0.06% |
City | Year | 2005 | 2023 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Undeveloped Land | Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Undeveloped Land | |
Chaozhou | Area/km2 | 922.03 | 1459.17 | 242.8 | 177.25 | 241.95 | 5 | 910.98 | 1452.18 | 239.8 | 176.25 | 263.99 | 5 |
Proportion/% | 30.25% | 47.87% | 7.97% | 5.81% | 7.94% | 0.16% | 29.89% | 47.64% | 7.87% | 5.78% | 8.66% | 0.16% | |
Dongguan | Area/km2 | 377.46 | 577.82 | 85.77 | 249.96 | 1154.2 | 0 | 263.62 | 536.62 | 85.39 | 232.42 | 1327.17 | 0 |
Proportion/% | 15.44% | 23.63% | 3.51% | 10.22% | 47.20% | 0.00% | 10.78% | 21.95% | 3.49% | 9.51% | 54.28% | 0.00% | |
Foshan | Area/km2 | 1386.57 | 857.24 | 21.81 | 517.88 | 1011.42 | 1 | 1186.04 | 810.29 | 24.2 | 493.16 | 1281.23 | 1 |
Proportion/% | 36.53% | 22.58% | 0.57% | 13.64% | 26.64% | 0.03% | 31.25% | 21.35% | 0.64% | 12.99% | 33.75% | 0.03% | |
Guangzhou | Area/km2 | 2218.97 | 3022 | 119.5 | 555.68 | 1264.45 | 3 | 1936.66 | 2953.4 | 122.47 | 536.02 | 1638.51 | 3 |
Proportion/% | 30.89% | 42.07% | 1.66% | 7.74% | 17.60% | 0.04% | 26.94% | 41.08% | 1.70% | 7.45% | 22.79% | 0.04% | |
Heyuan | Area/km2 | 2225.75 | 12,236.52 | 589.84 | 451.43 | 142.88 | 0 | 2141.46 | 12182.07 | 580.85 | 451.54 | 290.5 | 0 |
Proportion/% | 14.23% | 78.21% | 3.77% | 2.89% | 0.91% | 0.00% | 13.69% | 77.86% | 3.71% | 2.89% | 1.86% | 0.00% | |
Huizhou | Area/km2 | 2910.15 | 7197.15 | 244.89 | 384.7 | 517.32 | 4 | 2696.54 | 7090.32 | 233.9 | 361.66 | 876.05 | 4 |
Proportion/% | 25.85% | 63.93% | 2.18% | 3.42% | 4.60% | 0.04% | 23.94% | 62.96% | 2.08% | 3.21% | 7.78% | 0.04% | |
Jiangmen | Area/km2 | 2778.62 | 4741.05 | 278.07 | 910.11 | 560.72 | 2 | 2691.28 | 4653.35 | 279.48 | 890.04 | 759.58 | 2 |
Proportion/% | 29.97% | 51.14% | 3.00% | 9.82% | 6.05% | 0.02% | 29.01% | 50.17% | 3.01% | 9.60% | 8.19% | 0.02% | |
Jieyang | Area/km2 | 1769.19 | 2337.09 | 561.26 | 190.61 | 364.45 | 2.78 | 1743.2 | 2319.16 | 556.2 | 187.61 | 416.42 | 2.78 |
Proportion/% | 33.86% | 44.73% | 10.74% | 3.65% | 6.97% | 0.05% | 33.36% | 44.38% | 10.64% | 3.59% | 7.97% | 0.05% | |
Maoming | Area/km2 | 2689.9 | 7263.8 | 364.31 | 311.75 | 669.56 | 5.98 | 2642.68 | 7204.12 | 366.31 | 305.04 | 783.98 | 3.16 |
Proportion/% | 23.79% | 64.25% | 3.22% | 2.76% | 5.92% | 0.05% | 23.38% | 63.72% | 3.24% | 2.70% | 6.93% | 0.03% | |
Meizhou | Area/km2 | 2718.08 | 11,974.33 | 805.88 | 173.52 | 167.93 | 1 | 2667.82 | 11,927.47 | 796.04 | 175.4 | 273.99 | 0 |
Proportion/% | 17.16% | 75.59% | 5.09% | 1.10% | 1.06% | 0.01% | 16.84% | 75.30% | 5.03% | 1.11% | 1.73% | 0.00% | |
Qingyuan | Area/km2 | 4097.19 | 12,923.86 | 1262.32 | 387.12 | 339.62 | 1 | 3998.79 | 12,842.96 | 1259.35 | 385.12 | 523.89 | 1 |
Proportion/% | 21.55% | 67.98% | 6.64% | 2.04% | 1.79% | 0.01% | 21.03% | 67.56% | 6.62% | 2.03% | 2.76% | 0.01% | |
Shantou | Area/km2 | 743.74 | 491.15 | 161.99 | 319.92 | 362.92 | 0.09 | 698.83 | 483.76 | 155.05 | 319.08 | 443.55 | 0.09 |
Proportion/% | 35.76% | 23.62% | 7.79% | 15.38% | 17.45% | 0.00% | 33.27% | 23.03% | 7.38% | 15.19% | 21.12% | 0.00% | |
Shanwei | Area/km2 | 1285.54 | 1995.19 | 968.47 | 299.86 | 128.57 | 31.27 | 1255.11 | 1975.33 | 953.68 | 293.81 | 201.68 | 30.27 |
Proportion/% | 27.30% | 42.37% | 20.57% | 6.37% | 2.73% | 0.66% | 26.65% | 41.94% | 20.25% | 6.24% | 4.28% | 0.64% | |
Shaoguan | Area/km2 | 3311.1 | 13,411.02 | 1115.67 | 226.07 | 274.46 | 3 | 3246.16 | 13,349.41 | 1117.66 | 224.07 | 401.01 | 3 |
Proportion/% | 18.05% | 73.12% | 6.08% | 1.23% | 1.50% | 0.02% | 17.70% | 72.78% | 6.09% | 1.22% | 2.19% | 0.02% | |
Shenzhen | Area/km2 | 173.34 | 749.25 | 29.2 | 83.92 | 864.21 | 0 | 111.9 | 705.52 | 36.58 | 58.92 | 987.79 | 0 |
Proportion/% | 9.12% | 39.44% | 1.54% | 4.42% | 45.49% | 0.00% | 5.89% | 37.12% | 1.92% | 3.10% | 51.97% | 0.00% | |
Yangjiang | Area/km2 | 2358.08 | 4563.35 | 249.32 | 299.38 | 282.92 | 7.66 | 2267.55 | 4526.37 | 247.32 | 287.75 | 424.98 | 7.66 |
Proportion/% | 30.38% | 58.80% | 3.21% | 3.86% | 3.65% | 0.10% | 29.21% | 58.32% | 3.19% | 3.71% | 5.48% | 0.10% | |
Yunfu | Area/km2 | 1763.88 | 5401.34 | 275.11 | 84.58 | 244.21 | 0 | 1681.1 | 5341.07 | 273.12 | 83.58 | 390.26 | 0 |
Proportion/% | 22.70% | 69.52% | 3.54% | 1.09% | 3.14% | 0.00% | 21.64% | 68.75% | 3.52% | 1.08% | 5.02% | 0.00% | |
Zhanjiang | Area/km2 | 5691.67 | 4669.65 | 96.12 | 797.14 | 890.22 | 35.82 | 5618.09 | 4610.98 | 96.88 | 787.73 | 1033.2 | 38.82 |
Proportion/% | 46.73% | 38.34% | 0.79% | 6.54% | 7.31% | 0.29% | 46.10% | 37.84% | 0.80% | 6.46% | 8.48% | 0.32% | |
Zhaoqing | Area/km2 | 2425.9 | 11,124.78 | 255.66 | 700.22 | 376.36 | 0 | 2336.66 | 11,076.14 | 251 | 660.99 | 558.13 | 0 |
Proportion/% | 16.30% | 74.75% | 1.72% | 4.70% | 2.53% | 0.00% | 15.70% | 74.42% | 1.69% | 4.44% | 3.75% | 0.00% | |
Zhongshan | Area/km2 | 580.35 | 366.65 | 2 | 335.39 | 441.5 | 0 | 497.28 | 351.72 | 4 | 314.03 | 558.84 | 0 |
Proportion/% | 33.63% | 21.24% | 0.12% | 19.43% | 25.58% | 0.00% | 28.81% | 20.38% | 0.23% | 18.20% | 32.38% | 0.00% | |
Zhuhai | Area/km2 | 324.73 | 452.55 | 10.38 | 417.92 | 244.59 | 0 | 275.79 | 437.74 | 7.38 | 338.45 | 405.81 | 0 |
Proportion/% | 22.39% | 31.21% | 0.72% | 28.82% | 16.87% | 0.00% | 18.82% | 29.88% | 0.50% | 23.10% | 27.70% | 0.00% |
Type | Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Undeveloped Land | Total |
---|---|---|---|---|---|---|---|
2005 | 372.32 | 4368.79 | 203.35 | 1543.53 | 0 | 0.25 | 6488.24 |
2013 | 362.02 | 4345.82 | 201.94 | 1508.70 | 0 | 0.25 | 6418.73 |
2023 | 355.87 | 4329.02 | 201.89 | 1480.61 | 0 | 0.25 | 6367.64 |
City | 2005 | 2013 | 2023 |
---|---|---|---|
Chaozhou | 107.33 | 107.08 | 106.68 |
Dongguan | 76.94 | 72.96 | 70.90 |
Foshan | 146.89 | 139.48 | 138.56 |
Guangzhou | 251.24 | 246.01 | 242.31 |
Heyuan | 615.02 | 613.76 | 611.88 |
Huizhou | 395.94 | 391.09 | 385.06 |
Jiangmen | 397.79 | 391.88 | 389.67 |
Jieyang | 160.98 | 159.79 | 159.32 |
Maoming | 385.80 | 384.00 | 381.73 |
Meizhou | 560.88 | 559.91 | 558.66 |
Qingyuan | 664.21 | 661.01 | 659.63 |
Shantou | 92.09 | 94.85 | 91.06 |
Shanwei | 174.73 | 173.99 | 172.12 |
Shaoguan | 642.18 | 640.32 | 638.80 |
Shenzhen | 48.63 | 43.03 | 41.72 |
Yangjiang | 268.65 | 266.24 | 264.08 |
Yunfu | 256.58 | 254.54 | 253.18 |
Zhanjiang | 393.80 | 393.16 | 389.01 |
Zhaoqing | 611.10 | 604.49 | 600.69 |
Zhongshan | 84.45 | 80.93 | 79.06 |
Zhuhai | 101.80 | 95.01 | 85.40 |
Type | Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Undeveloped Land |
---|---|---|---|---|---|---|
2005 | 0.057384 | 0.673340 | 0.031341 | 0.237896 | 0.000000 | 0.000039 |
2013 | 0.056400 | 0.677053 | 0.031461 | 0.235047 | 0.000000 | 0.000039 |
2023 | 0.055887 | 0.679847 | 0.031705 | 0.232522 | 0.000000 | 0.000039 |
Independent Variable | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 |
---|---|---|---|---|---|---|---|---|---|---|---|
q value | 0.542 | 0.506 | 0.663 | 0.406 | 0.662 | 0.792 | 0.448 | 0.539 | 0.48 | 0.306 | 0.264 |
p value | 0.023 | 0.035 | 0.004 | 0.093 | 0.004 | 0.000 | 0.063 | 0.024 | 0.047 | 0.131 | 0.082 |
Year | ESV | ||
---|---|---|---|
Moran’s I | p-Value | z-Value | |
2005 | 0.253 | 0.035 | 1.866 |
2013 | 0.253 | 0.048 | 1.817 |
2023 | 0.254 | 0.029 | 1.935 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, B.; Zeng, B.; Dun, Y.; Jin, X.; Zhao, Y.; Wu, C.; Tian, X.; Zhen, S. Spatiotemporal Evolution and Driving Factors of LULC Change and Ecosystem Service Value in Guangdong: A Perspective of Food Security. Agriculture 2025, 15, 1467. https://doi.org/10.3390/agriculture15141467
Wen B, Zeng B, Dun Y, Jin X, Zhao Y, Wu C, Tian X, Zhen S. Spatiotemporal Evolution and Driving Factors of LULC Change and Ecosystem Service Value in Guangdong: A Perspective of Food Security. Agriculture. 2025; 15(14):1467. https://doi.org/10.3390/agriculture15141467
Chicago/Turabian StyleWen, Bo, Biao Zeng, Yu Dun, Xiaorui Jin, Yuchuan Zhao, Chao Wu, Xia Tian, and Shijun Zhen. 2025. "Spatiotemporal Evolution and Driving Factors of LULC Change and Ecosystem Service Value in Guangdong: A Perspective of Food Security" Agriculture 15, no. 14: 1467. https://doi.org/10.3390/agriculture15141467
APA StyleWen, B., Zeng, B., Dun, Y., Jin, X., Zhao, Y., Wu, C., Tian, X., & Zhen, S. (2025). Spatiotemporal Evolution and Driving Factors of LULC Change and Ecosystem Service Value in Guangdong: A Perspective of Food Security. Agriculture, 15(14), 1467. https://doi.org/10.3390/agriculture15141467