ijms-logo

Journal Browser

Journal Browser

Multifunctional Nanocomposites for Bioapplications

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Nanoscience".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 420

Special Issue Editor

Special Issue Information

Dear Colleagues,

The combination of biopolymers with nanomaterials has paved the way for the field of bio-nanocomposites in biomedical applications. The incorporation of nanomaterials, such as metal/metal oxide nanoparticles, carbon, graphene and silica nanomaterials, in biopolymers has been utilized in drug delivery, tissue engineering, wound healing and regenerative medicine. The ultimate scope of bio-nanocomposites is to provide advantageous multifunctional materials that exploit the biological compatibility and adherence of biopolymers, and the responsiveness to external (e.g., magnetic field, photothermal/photodynamic effect, ultrasound effect) or internal (e.g., pH/thermo/redox responsiveness, receptor or antigen targeting,) stimuli of the nanomaterials. Such multifunctional nanocomposites have been studied in cancer therapy, immunotherapeutics, microbial/bacterial infections and autoimmune diseases. This Special Issue focuses on the effect of such multifunctional nanocomposites on the molecular characteristics of cells (receptor expression, signaling pathways, biomarker expression, proliferation and ageing) and the metabolic pathways affected.

Dr. Athina Angelopoulou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanocomposites
  • biomedical applications
  • molecular characteristics
  • metabolic pathways
  • biomarkers
  • external stimuli

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

42 pages, 7271 KiB  
Review
Graphene Nanocomposites in the Targeting Tumor Microenvironment: Recent Advances in TME Reprogramming
by Argiris Kolokithas-Ntoukas, Andreas Mouikis and Athina Angelopoulou
Int. J. Mol. Sci. 2025, 26(10), 4525; https://doi.org/10.3390/ijms26104525 - 9 May 2025
Viewed by 113
Abstract
Graphene-based materials (GBMs) have shown significant promise in cancer therapy due to their unique physicochemical properties, biocompatibility, and ease of functionalization. Their ability to target solid tumors, penetrate the tumor microenvironment (TME), and act as efficient drug delivery platforms highlights their potential in [...] Read more.
Graphene-based materials (GBMs) have shown significant promise in cancer therapy due to their unique physicochemical properties, biocompatibility, and ease of functionalization. Their ability to target solid tumors, penetrate the tumor microenvironment (TME), and act as efficient drug delivery platforms highlights their potential in nanomedicine. However, the complex and dynamic nature of the TME, characterized by metabolic heterogeneity, immune suppression, and drug resistance, poses significant challenges to effective cancer treatment. GBMs offer innovative solutions by enhancing tumor targeting, facilitating deep tissue penetration, and modulating metabolic pathways that contribute to tumor progression and immune evasion. Their functionalization with targeting ligands and biocompatible polymers improves their biosafety and specificity, while their ability to modulate immune cell interactions within the TME presents new opportunities for immunotherapy. Given the role of metabolic reprogramming in tumor survival and resistance, GBMs could be further exploited in metabolism-targeted therapies by disrupting glycolysis, mitochondrial respiration, and lipid metabolism to counteract the immunosuppressive effects of the TME. This review focuses on discussing research studies that design GBM nanocomposites with enhanced biodegradability, minimized toxicity, and improved efficacy in delivering therapeutic agents with the intention to reprogram the TME for effective anticancer therapy. Additionally, exploring the potential of GBM nanocomposites in combination with immunotherapies and metabolism-targeted treatments could lead to more effective and personalized cancer therapies. By addressing these challenges, GBMs could play a pivotal role in overcoming current limitations in cancer treatment and advancing precision oncology. Full article
(This article belongs to the Special Issue Multifunctional Nanocomposites for Bioapplications)
Show Figures

Figure 1

Back to TopTop