Review of Self-Powered Wireless Sensors by Triboelectric Breakdown Discharge
Abstract
1. Introduction
2. Working Mechanism of TENGs in Wireless Sensing
3. Advances in Triboelectric Breakdown Discharge Applications in Wireless Sensing
3.1. Device Design and Sensing Mechanisms
3.2. Algorithm Fusion and Multimodal Sensing
3.3. Energy Management and System Optimization
4. Discussion
4.1. Reducing Energy Loss
4.2. Simplifying Signal Analysis
4.3. Diminishing Environmental Interference
4.4. Enhancing Device Durability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R. Significance of sensors for industry 4.0: Roles, capabilities, and applications. Sens. Int. 2021, 2, 100110. [Google Scholar] [CrossRef]
- Hamami, L.; Nassereddine, B. Application of wireless sensor networks in the field of irrigation: A review. Comput. Electron. Agric. 2020, 179, 105782. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, F.; Gong, G.; Yang, H.; Han, D. Intelligent technologies for construction machinery using data-driven methods. Autom. Constr. 2023, 147, 104711. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Z.; Wu, C.; Hua, L.; Zhu, D. Towards region-based robotic machining system from perspective of intelligent manufacturing: A technology framework with case study. J. Manuf. Syst. 2023, 70, 451–463. [Google Scholar] [CrossRef]
- Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [Google Scholar] [CrossRef]
- Yaqoob, I.; Salah, K.; Jayaraman, R.; Omar, M. Metaverse applications in smart cities: Enabling technologies, opportunities, challenges, and future directions. Internet Things 2023, 23, 100884. [Google Scholar] [CrossRef]
- Li, Y.; Tang, H.; Liu, Y.; Qiao, Y.; Xia, H.; Zhou, J. Oral wearable sensors: Health management based on the oral cavity. Biosens. Bioelectron. X 2022, 10, 100135. [Google Scholar] [CrossRef]
- Li, Z.; Yu, G. Data Transmission Control of Vehicle Ad Hoc Network in Intelligent Transportation Systems for Smart Cities. J. Adv. Transp. 2022, 2022, 8680880. [Google Scholar] [CrossRef]
- Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.-W. Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022, 22, 2087. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Sulaiman, O.B.; Dong, B.; Lee, C. Development Trends and Perspectives of Future Sensors and MEMS/NEMS. Micromachines 2020, 11, 7. [Google Scholar] [CrossRef]
- Yamini, B.; Pradeep, G.; Kalaiyarasi, D.; Jayaprakash, M.; Janani, G.; Uthayakumar, G.S. Theoretical study and analysis of advanced wireless sensor network techniques in Internet of Things (IoT). Meas. Sens. 2024, 33, 101098. [Google Scholar] [CrossRef]
- Putra, G.D.; Pratama, A.R.; Lazovik, A.; Aiello, M. Comparison of energy consumption in Wi-Fi and bluetooth communication in a Smart Building. In Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 9–11 January 2017; pp. 1–6. [Google Scholar]
- Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O.S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Kannaujaiya, D.; Dwivedi, A.K. Challenges Issue and Application of Wireless Sensor Networks: A Systematic Literature Review. In Proceedings of the 2023 International Conference on IoT, Communication and Automation Technology (ICICAT), Gorakhpur, India, 23–24 June 2023; pp. 1–5. [Google Scholar]
- Lazaro, A.; Villarino, R.; Girbau, D. A Survey of NFC Sensors Based on Energy Harvesting for IoT Applications. Sensors 2018, 18, 3746. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Chen, P.; Ma, Z.; Li, S.; Gao, X.; Wu, R.-x.; Pan, L.; Shi, Y. Near-Field Communication Sensors. Sensors 2019, 19, 3947. [Google Scholar] [CrossRef]
- Chung, H.U.; Kim, B.H.; Lee, J.Y.; Lee, J.; Xie, Z.; Ibler, E.M.; Lee, K.; Banks, A.; Jeong, J.Y.; Kim, J.; et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019, 363, eaau0780. [Google Scholar] [CrossRef]
- Niu, S.; Matsuhisa, N.; Beker, L.; Li, J.; Wang, S.; Wang, J.; Jiang, Y.; Yan, X.; Yun, Y.; Burnett, W.; et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2019, 2, 361–368. [Google Scholar] [CrossRef]
- Ida, N. Electromagnetic Waves and Propagation. In Engineering Electromagnetics; Springer International Publishing: Cham, Switzerland, 2015; pp. 597–663. [Google Scholar]
- Donnevert, J. Time-Varying Electric and Magnetic Fields. In Maxwell’s Equations: From Current Density Distribution to the Radiation Field of the Hertzian Dipole; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2020; pp. 89–131. [Google Scholar]
- Speidel, J. Basic Parameters of Wireless Transmission and Multipath Propagation. In Introduction to Digital Communications; Springer International Publishing: Cham, Switzerland, 2021; pp. 63–85. [Google Scholar]
- Pramila, J.; Amitesh, K. RF Oscillators. In RF Circuits for 5G Applications: Designing with mmWave Circuitry; Wiley: Hoboken, NJ, USA, 2023; pp. 157–170. [Google Scholar]
- Cao, X.; Zhang, M.; Huang, J.; Jiang, T.; Zou, J.; Wang, N.; Wang, Z.L. Inductor-Free Wireless Energy Delivery via Maxwell’s Displacement Current from an Electrodeless Triboelectric Nanogenerator. Adv. Mater. 2018, 30, 1704077. [Google Scholar] [CrossRef]
- Wang, Z.L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502. [Google Scholar] [CrossRef]
- Wang, Z.L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82. [Google Scholar] [CrossRef]
- Kuang, H.; Huang, S.; Zhang, C.; Chen, J.; Shi, L.; Zeng, X.; Li, Y.; Yang, Z.; Wang, X.; Dong, S.; et al. Electric-Field-Resonance-Based Wireless Triboelectric Nanogenerators and Sensors. ACS Appl. Mater. Interfaces 2022, 14, 794–804. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Vahidhosseini, S.M.; Rashidi, S.; Ehsani, M.H. Enhancing sustainable energy harvesting with triboelectric nanogenerators (TENGs): Advanced materials and performance enhancement strategies. Renew. Sustain. Energy Rev. 2025, 216, 115663. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Z.; Zhu, B.; Wang, H.; Lu, C.; Kang, M.; Kang, S.; Ding, W.; Yang, L.; Liao, R.; et al. All-in-One Sensing System for Online Vibration Monitoring via IR Wireless Communication as Driven by High-Power TENG. Adv. Energy Mater. 2023, 13, 2300051. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, Y.; Lu, C.; Wang, J.; Song, Z.; Yang, X.; Cao, Y.; Zi, Y.; Wang, Z.L.; Ding, W. Triboelectric-nanogenerator-enabled mechanical modulation for infrared wireless communications. Energy Environ. Sci. 2022, 15, 2983–2991. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Xu, G.; Hou, T.; Fu, J.; Wang, H.; Xia, X.; Yang, C.; Zi, Y. Passive Internet of Events Enabled by Broadly Compatible Self-Powered Visualized Platform Toward Real-Time Surveillance. Adv. Sci. 2023, 10, 2304352. [Google Scholar] [CrossRef]
- Tian, Z.; Su, L.; Wang, H.Y.; Wang, H.Q.; Zi, Y.L. Underwater Self-Powered All-Optical Wireless Ultrasonic Sensing, Positioning and Communication with Ultrafast Response Time and Ultrahigh Sensitivity. Adv. Opt. Mater. 2022, 10, 2102091. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Meng, C.; Kwok, H.S.; Zi, Y. Tribo-Induced Smart Reflector for Ultrasensitive Self-Powered Wireless Sensing of Air Flow. ACS Appl. Mater. Interfaces 2021, 13, 21450–21458. [Google Scholar] [CrossRef]
- Shen, J.; Li, B.; Yang, Y.; Yang, Z.; Liu, X.; Lim, K.-C.; Chen, J.; Ji, L.; Lin, Z.-H.; Cheng, J. Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosens. Bioelectron. 2022, 216, 114595. [Google Scholar] [CrossRef]
- Delgado-Alvarado, E.; Elvira-Hernández, E.A.; Hernández-Hernández, J.; Huerta-Chua, J.; Vázquez-Leal, H.; Martínez-Castillo, J.; García-Ramírez, P.J.; Herrera-May, A.L. Recent Progress of Nanogenerators for Green Energy Harvesting: Performance, Applications, and Challenges. Nanomaterials 2022, 12, 2549. [Google Scholar] [CrossRef]
- Hurdoganoglu, D.; Safaei, B.; Cheng, J.; Qin, Z.; Sahmani, S. A Comprehensive Review on the Novel Principles, Development and Applications of Triboelectric Nanogenerators. Appl. Mech. Rev. 2023, 76, 010802. [Google Scholar] [CrossRef]
- Cao, Y.; Su, E.; Sun, Y.; Wang, Z.L.; Cao, L.N.Y. A Rolling-Bead Triboelectric Nanogenerator for Harvesting Omnidirectional Wind-Induced Energy toward Shelter Forests Monitoring. Small 2024, 20, 2307119. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Xu, S.; Gao, Y.; Zhang, X.; Liu, G.; Zhou, H.; Lv, Y.; Zhang, C.; Wang, Z.L. Breeze-Wind-Energy-Powered Autonomous Wireless Anemometer Based on Rolling Contact-Electrification. ACS Energy Lett. 2021, 6, 2343–2350. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Y.; Ye, E.; Li, Z.; Wang, D. Innovative Technology for Self-Powered Sensors: Triboelectric Nanogenerators. Adv. Sens. Res. 2023, 2, 2200058. [Google Scholar] [CrossRef]
- Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714. [Google Scholar] [CrossRef]
- Deng, H.; Xiao, S.; Yang, A.; Wu, H.; Tang, J.; Zhang, X.; Li, Y. Advances in nanogenerators for electrical power system state sensing and monitoring. Nano Energy 2023, 115, 108738. [Google Scholar] [CrossRef]
- Lei, H.; Cao, Y.; Sun, G.; Huang, P.; Xue, X.; Lu, B.; Yan, J.; Wang, Y.; Lim, E.G.; Tu, X.; et al. Mechano-Graded Contact-Electrification Interfaces Based Artificial Mechanoreceptors for Robotic Adaptive Reception. ACS Nano 2025, 19, 1478–1489. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, H.; Shi, B.; Xue, X.; Liu, Z.; Jin, Y.; Ma, Y.; Zou, Y.; Wang, X.; An, Z.; et al. In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator. ACS Nano 2016, 10, 6510–6518. [Google Scholar] [CrossRef]
- Wen, F.; Wang, H.; He, T.; Shi, Q.; Sun, Z.; Zhu, M.; Zhang, Z.; Cao, Z.; Dai, Y.; Zhang, T.; et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2020, 67, 104266. [Google Scholar] [CrossRef]
- Liu, F.; Feng, Y.; Qi, Y.; Liu, G.; Zhou, H.; Lin, Y.; Fan, B.; Zhang, Z.; Dong, S.; Zhang, C. Self-powered wireless body area network for multi-joint movements monitoring based on contact-separation direct current triboelectric nanogenerators. InfoMat 2023, 5, e12428. [Google Scholar] [CrossRef]
- Xu, L.Q.; Xuan, W.P.; Chen, J.K.; Zhang, C.; Tang, Y.Z.; Huang, X.W.; Li, W.J.; Jin, H.; Dong, S.R.; Yin, W.L.; et al. Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator. Nano Energy 2021, 83, 10. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, J.; Xuan, W.; Huang, S.; You, B.; Li, W.; Sun, L.; Jin, H.; Wang, X.; Dong, S.; et al. Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors. Nat. Commun. 2020, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Lu, B.; Gao, Z.; Wu, S.; Zhang, L.; Xie, L.; Yi, J.; Liu, Y.; Nie, B.; Wen, Z.; et al. A Battery-Free Wireless Tactile Sensor for Multimodal Force Perception. Adv. Funct. Mater. 2024, 34, 2410661. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Yao, K.; Fu, J.; Xia, X.; Zhang, R.; Li, J.; Xu, G.; Wang, L.; Yang, J.; et al. A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current. Sci. Adv. 2021, 7, eabi6751. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xia, X.; Fu, J.; Li, J.; Chen, C.; Dai, Y.; Fan, Z.; Hu, G.; Zi, Y. A general self-powered wireless sensing solution based on triboelectric-discharge effect. Nano Energy 2023, 105, 107982. [Google Scholar] [CrossRef]
- Javandel, V.; Akbari, A.; Ardebili, M.; Werle, P. Simulation of Negative and Positive Corona Discharges in Air for Investigation of Electromagnetic Waves Propagation. IEEE Trans. Plasma Sci. 2022, 50, 3169–3177. [Google Scholar] [CrossRef]
- Bondiou, A.; Labaune, G.; Marque, J.P. Electromagnetic radiation associated with the formation of an electric breakdown in air at atmospheric pressure. J. Appl. Phys. 1987, 61, 503–509. [Google Scholar] [CrossRef]
- Heylen, A.E.D. Sparking formulae for very high-voltage Paschen characteristics of gases. IEEE Electr. Insul. Mag. 2006, 22, 25–35. [Google Scholar] [CrossRef]
- Paschen, F. Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Ann. Phys. 1889, 273, 69–96. [Google Scholar] [CrossRef]
- Levko, D.; Arslanbekov, R.R.; Kolobov, V.I. Modified Paschen curves for pulsed breakdown. Phys. Plasmas 2019, 26, 064502. [Google Scholar] [CrossRef]
- Li, X.; Luo, H.; Chu, L.; Ouyang, W.; Wen, Q. Analysis of corona discharge current trigger threshold for different shapes metal tips. Int. J. Appl. Electromagn. Mech. 2021, 65, 75–90. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, T.; Cui, J.; Zhang, Z.; Du, C.; Gao, X.; Chu, C.; Xue, C. High performance triboelectric nanogenerator with needle tips discharge for gas detection applications. Sens. Actuators A Phys. 2023, 362, 114613. [Google Scholar] [CrossRef]
- Liu, S.; An, S.; Zhou, X.; Wang, J.; Pu, X. A self-powered, process-oriented wireless sensor with high discharge signal density. Device 2024, 2, 100437. [Google Scholar] [CrossRef]
- Wang, H.; Xia, X.; Fu, J.; Song, Z.; Ding, W.; Dai, Y.; Zi, Y. A flexible lightweight self-powered wireless metal detector enabled by triboelectric discharge effect. Device 2023, 1, 100127. [Google Scholar] [CrossRef]
- Wan, D.; Xia, X.; Wang, H.; He, S.; Dong, J.; Dai, J.; Guan, D.; Zheng, J.; Yang, X.; Zi, Y. A Compact-Sized Fully Self-Powered Wireless Flowmeter Based on Triboelectric Discharge. Small Methods 2024, 8, 2301670. [Google Scholar] [CrossRef]
- Fu, J.; Song, Z.; Wang, H.; Xu, G.; Li, X.; Ding, W.; Zi, Y. Deep-learning assisted biomimetic self-powered wireless electronic noses system enabled by triboelectric discharge. Nano Energy 2024, 121, 109156. [Google Scholar] [CrossRef]
- Fu, J.; Song, Z.; Xu, G.; Wang, H.; Li, X.; Wang, J.; Ding, W.; Ren, W.; Lei, I.M.; Zi, Y. Optical Emission from Triboelectric Gas Discharge toward Self-Powered Gas Sensing. Adv. Opt. Mater. 2023, 11, 2202697. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, G.; Zhang, Z.; Ren, H.; Zhou, H.; Gui, Y.; Du, Z.; Cheng, G. Enhancing the output energy of triboelectric nanogenerator by adaptive arc discharge devices and its application in wireless weather sensing system. Nano Energy 2024, 129, 109987. [Google Scholar] [CrossRef]
- Si, J.; Yang, J.; Wang, R.; Wang, K.; Wang, Z.; Wu, B.; Li, M.; Nie, M.; Han, L. Self-Powered Wireless Sensing System Based on Triboelectric-Discharge Effect. IEEE Trans. Electron Devices 2024, 71, 3874–3879. [Google Scholar] [CrossRef]
- Si, J.; Yang, J.; Sun, D.; Li, M.; Wang, Z.; Wang, K.; Wang, R.; Han, L. Breakdown discharge effect enabled self-powered multi-mechanism wireless sensing scheme. Nano Energy 2025, 135, 110671. [Google Scholar] [CrossRef]
- Wang, C.; Guo, H.; Wang, P.; Li, J.; Sun, Y.; Zhang, D. An Advanced Strategy to Enhance TENG Output: Reducing Triboelectric Charge Decay. Adv. Mater. 2023, 35, 2209895. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; Liu, D.; Zhao, J.-S.; Wang, J. Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator. Nat. Commun. 2023, 14, 3218. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Liu, D.; Zhou, L.; Li, S.; Zhao, Z.; Li, X.; Wang, Z.L.; Wang, J. Enhancing output performance of direct-current triboelectric nanogenerator under controlled atmosphere. Nano Energy 2021, 84, 105864. [Google Scholar] [CrossRef]
- Lu, S.; Lei, W.; Wang, Q.; Liu, W.; Li, K.; Yuan, P.; Yu, H. A novel approach for weak current signal processing of self-powered sensor based on TENG. Nano Energy 2022, 103, 107728. [Google Scholar] [CrossRef]
- Jang, J.; Cho, W.; Kim, B.; Shin, J.H.; Kim, S.; Go, M.; Choi, S.S.; Kim, S.-W.; Kim, J.K.; Jeong, U. Design to secure temporal invariance of triboelectric sensing signals. Nano Energy 2023, 117, 108926. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Liu, T.; Wei, Z.; Luo, B.; Chi, M.; Zhang, S.; Cai, C.; Gao, C.; Zhao, T.; et al. Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications. Nat. Commun. 2025, 16, 383. [Google Scholar] [CrossRef]
- Liao, L.; Ni, Q.; Peng, W.; Mei, Q. Advances in Multifunctional Sensors Based on Triboelectric Nanogenerator—Applications, Triboelectric Materials, and Manufacturing Integration. Adv. Mater. Technol. 2024, 9, 2301592. [Google Scholar] [CrossRef]
- Kong, X.; Liu, Y.; Liu, Y.; Zheng, Y.; Wang, D.; Wang, B.; Xu, C.; Wang, D. New Coating TENG with Antiwear and Healing Functions for Energy Harvesting. ACS Appl. Mater. Interfaces 2020, 12, 9387–9394. [Google Scholar] [CrossRef]
- Sun, W.; Luo, N.; Liu, Y.; Li, H.; Wang, D. A New Self-Healing Triboelectric Nanogenerator Based on Polyurethane Coating and Its Application for Self-Powered Cathodic Protection. ACS Appl. Mater. Interfaces 2022, 14, 10498–10507. [Google Scholar] [CrossRef]
- Wang, M.; Shi, X.; Liu, W.; Zou, F.; Hua, P.; Zhang, M. A zwitterionic polyurethane-based self-healing triboelectric nanogenerator for efficient self-powered sensing. Mater. Lett. 2023, 333, 133629. [Google Scholar] [CrossRef]
Reference | Energy Harvesting Method | Signal Exciting Mechanism | System Size (m3) | Transmission Distance (m) |
---|---|---|---|---|
[13] | External powered | Bluetooth | 8.82 × 10−7 | 10 |
[17] | Wireless powered | NFC | 5.25 × 10−8 | 2.5 × 10−1 |
[18] | Wireless powered | RFID | 1.30 × 10−7 | 2.5 × 10−2 |
[29] | TENG self-powered | Optical signal | 1.215 × 10−4 | 10 |
[45] | TENG self-powered | RFID | 7.68 × 10−7 | 3 × 10−3 |
[46] | TENG self-powered | Coil | 1 × 10−5 | 9 × 10−1 |
[26] | TENG self-powered | Planar electrode | 1.25 × 10−5 | 2.3 |
[49] | TENG self-powered | Breakdown discharge | 7.70 × 10−9 | 30 |
[58] | TENG self-powered | Breakdown discharge | 1.6 × 10−4 | 100 |
Sensing Solutions | TENG Mode | Sensing Objects | Recognition Methods | Transmission Distance |
---|---|---|---|---|
Self-Powered Wireless Sensing E-Sticker (SWISE) | Freestanding sliding TENG (FS-TENG) | ID recognition, gas sensing | Base frequency modulation, machine learning | ~30 m |
Triboelectric-Discharge Effect Enabled Self-Powered Wireless Sensing Solution (TDE-SWIS) | FS-TENG | Temperature, pressure, ID recognition | Base frequency modulation, decay time modulation | ~30 m |
Self-Powered Wireless Metal Detection (SWMD) | Contact–separation TENG (CS-TENG) | Metal recognition | Machine learning | / |
Compact-Sized Fully Self-Powered Wireless Flowmeter (CSWF) | Rotating TENG | Fluid flow monitoring | Excitation frequency determination | ~10 m |
Self-Powered, Wireless, Multi-Dimensional Electronic Noses | Sliding freestanding triboelectric-layer TENG (SFT-TENG) | Gas sensing | Machine learning | 40 cm (for test) |
Self-Powered Multi-Dimensional Gas Sensing Solution | SFT-TENG | Gas sensing | Machine learning | / |
TENG Driven Tip-Tip Electrode Air Discharge Switch (T-TADS) | Rotating freestanding triboelectric-layer TENG (FST-TENG) | Ambient meteorological data | External sensors | ~800 m * |
Integrated Wireless Sensing Scheme with High Signal Density (HSD) | Sliding TENG | High-density motion signals | Spectral analysis | ~100 m |
Self-Powered Multi-Mechanism Wireless Sensing Scheme (SMWSS) | Vertical CS-TENG | Coupling data of ID recognition, temperature, humidity | Base frequency modulation, attenuation coefficient modulation | ~1.5 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Yi, J.; Jiang, G.; Hou, J.; Yang, Y.; Li, G.; Sun, X.; Wen, Z. Review of Self-Powered Wireless Sensors by Triboelectric Breakdown Discharge. Micromachines 2025, 16, 765. https://doi.org/10.3390/mi16070765
Liu S, Yi J, Jiang G, Hou J, Yang Y, Li G, Sun X, Wen Z. Review of Self-Powered Wireless Sensors by Triboelectric Breakdown Discharge. Micromachines. 2025; 16(7):765. https://doi.org/10.3390/mi16070765
Chicago/Turabian StyleLiu, Shuzhe, Jixin Yi, Guyu Jiang, Jiaxun Hou, Yin Yang, Guangli Li, Xuhui Sun, and Zhen Wen. 2025. "Review of Self-Powered Wireless Sensors by Triboelectric Breakdown Discharge" Micromachines 16, no. 7: 765. https://doi.org/10.3390/mi16070765
APA StyleLiu, S., Yi, J., Jiang, G., Hou, J., Yang, Y., Li, G., Sun, X., & Wen, Z. (2025). Review of Self-Powered Wireless Sensors by Triboelectric Breakdown Discharge. Micromachines, 16(7), 765. https://doi.org/10.3390/mi16070765