Co-Catalyst-Free Al6Si2O13/Cd8.05Zn1.95S10 Nanocomposites for Visible-Light-Driven Stable H2 Evolution and DDVP Degradation
Abstract
:1. Introduction
2. Results
2.1. Diagram of Materials Synthesis Process
2.2. Analysis of Phase and Microscopic Morphology
2.3. XPS Analysis
2.4. Photocatalytic H2 Evolution, DDVP Degradation Activity, and Stability Analysis
2.5. Optoelectronic Properties and Theoretical Calculations Analysis
2.6. Photocatalytic Mechanism
3. Experimental Section
3.1. Materials
3.2. Equations
3.3. Computational Details
3.4. Characterization
3.5. Evaluation of Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, Q.; Chen, W.; Lv, Y.; Yang, S.; Xu, Y. Z-scheme hierarchical Cu2S/Bi2WO6 composites for improved photocatalytic activity of glyphosate degradation under visible-light irradiation. Sep. Purif. Technol. 2020, 236, 116243. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Ji, G.; Wang, S.; Mo, C.; Ding, B. Lung regeneration: Diverse cell types and the therapeutic potential. MedComm 2024, 5, e494. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, G.; Kumar, M.; Kumar, A.; Singh, P.; Ansu, A.; Sharma, A.; Alam, T.; Yadav, A.; Dobrota, D. Nanocomposite Marvels: Unveiling Breakthroughs in Photocatalytic Water Splitting for Enhanced Hydrogen Evolution. ACS Omega 2024, 9, 6147–6164. [Google Scholar] [CrossRef]
- Lu, Y.; Zhuang, Z.; Li, L.; Chen, F.; Wei, P.; Yu, Y. Advancements and challenges in g-C3N4/ZnIn2S4 heterojunction photocatalysts. J. Mater. Chem. A 2025, 13, 4718–4745. [Google Scholar] [CrossRef]
- Shuaibu, A.; Hafeez, H.; Mohammed, J.; Dankawu, U.; Ndikilar, C.; Suleiman, A. Progress on g-C3N4 based heterojunction photocatalyst for H2 production via Photocatalytic water splitting. J. Alloys Compd. 2024, 1002, 175062. [Google Scholar] [CrossRef]
- Tahir, M.; Ajiwokewu, B.; Bankole, A.; Ismail, O.; Al-Amodi, H.; Kumar, N. MOF based composites with engineering aspects and morphological developments for photocatalytic CO2 reduction and hydrogen production: A comprehensive review. J. Environ. Chem. Eng. 2023, 11, 109408. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, M.; Wang, Y.; Liu, H.; Manor, B.; Bao, D.; Zhang, L.; Zhou, J. Effects of molecular hydrogen supplementation on fatigue and aerobic capacity in healthy adults: A systematic review and meta-analysis. Front. Nutr. 2023, 10, 1094767. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, J.; Guo, W.; Chen, H.; Li, J.; Jing, D.; Luo, B.; Ma, L. A Type-I Heterojunction by Anchoring Ultrafine Cu2O on Defective TiO2 Framework for Efficient Photocatalytic H2 Production. Ind. Eng. Chem. Res. 2023, 62, 1310–1321. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, X.; Bo, C.; Sun, Y.; Li, C.; Piao, L. Precise design of TiO2 photocatalyst for efficient photocatalytic H2 production from seawater splitting. Int. J. Hydrogen Energy 2024, 55, 542–549. [Google Scholar] [CrossRef]
- Fan, Q.; Yan, Z.; Li, J.; Xiong, X.; Li, K.; Dai, G.; Jin, Y.; Wu, C. Interfacial-electric-field guiding design of a Type-I FeIn2S4@ZnIn2S4 heterojunction with ohmic-like charge transfer mechanism for highly efficient solar H2 evolution. Appl. Surf. Sci. 2024, 663, 160206. [Google Scholar] [CrossRef]
- Han, S.; Wang, Z.; Yu, J.; Wang, F.; Li, X. Conversion of SOD zeolite into type I porous liquid and preparation of mixed matrix membrane with AO-PIM for efficient gas separation. J. Clean. Prod. 2024, 448, 141737. [Google Scholar] [CrossRef]
- Jia, X.; Lu, Y.; Du, K.; Zheng, H.; Mao, L.; Li, H.; Ma, Z.; Wang, R.; Zhang, J. Interfacial Mediation by Sn and S Vacancies of p-SnS/n-ZnIn2S4 for Enhancing Photocatalytic Hydrogen Evolution with New Scheme of Type-I Heterojunction. Adv. Funct. Mater. 2023, 33, 2304072. [Google Scholar] [CrossRef]
- Jin, N.; Sun, Y.; Shi, W.; Wang, P.; Nagaoka, Y.; Cai, T.; Wu, R.; Dube, L.; Nyiera, H.; Liu, Y.; et al. Type-I CdS/ZnS Core/Shell Quantum Dot-Gold Heterostructural Nanocrystals for Enhanced Photocatalytic Hydrogen Generation. J. Am. Chem. Soc. 2023, 145, 21886–21896. [Google Scholar] [CrossRef] [PubMed]
- Dai, K.; Lv, J.; Zhang, J.; Zhu, G.; Geng, L.; Liang, C. Efficient Visible-Light-Driven Splitting of Water into Hydrogen over Surface-Fluorinated Anatase TiO2 Nanosheets with Exposed {001} Facets/Layered CdS–Diethylenetriamine Nanobelts. ACS Sustain. Chem. Eng. 2018, 6, 12817–12826. [Google Scholar] [CrossRef]
- Janczak, J. Coordination Properties of Diethylenetriamine in Relation to Zinc Phthalocyanine. Polyhedron 2020, 178, 114313. [Google Scholar] [CrossRef]
- Lv, J.; Liu, J.; Zhang, J.; Dai, K.; Liang, C.; Wang, Z.; Zhu, G. Construction of Organic–Inorganic Cadmium Sulfide/Diethylenetriamine Hybrids for Efficient Photocatalytic Hydrogen Production. J. Colloid Interface Sci. 2018, 512, 77–85. [Google Scholar] [CrossRef]
- Li, W.; Meng, A.; Li, Z.; Zhang, J.; Fu, J. S-scheme CeO2/Cd7.23Zn2.77 S10-DETA heterojunctions for superior cocatalyst-free visible-light photocatalytic hydrogen evolution. J. Cent. South Univ. 2024, 31, 4572–4585. [Google Scholar] [CrossRef]
- Kanchana, V.; Vasanthan, S.; Mayavan, L.; Kistan, A. A Novel Mesoporous Al2O3@Graphene Composite as Photocatalyst for Organic Pollutant Removal. J. Electron. Mater. 2025, 54, 2122–2134. [Google Scholar] [CrossRef]
- Winayu, B.; Shen, B.; Chu, H. Impact of gas composition (CO, H2, and HCl) on chemical looping combustion by SiO2 supported oxygen carriers. Mater. Chem. Phys. 2024, 320, 129475. [Google Scholar] [CrossRef]
- Li, M.; Ren, T.; Li, Y.; Li, S.; He, P.; Xiao, Y.; Chen, J. Constructing CdIn2S4/ZnS type-I band alignment heterojunctions by decorating CdIn2S4 on ZnS microspheres for efficient photocatalytic H2 evolution. Int. J. Hydrogen Energy 2023, 48, 37224–37233. [Google Scholar] [CrossRef]
- Zhang, X.; Puttaswamy, M.; Bai, H.; Hou, B.; Verma, S. CdS/ZnS core-shell nanorod heterostructures co-deposited with ultrathin MoS2 cocatalyst for competent hydrogen evolution under visible-light irradiation. J. Colloid Interface Sci. 2024, 665, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Dai, X.; Song, J.; Pu, K.; Tang, J.; Qin, X.; Wang, F.; Guo, Y.; Zhao, T.; Lei, T. Electronic and optical characteristics of Silicane/GeAs van der Waals heterostructures: Effects of external electric field and biaxial strain: A first-principles study. Phys. E Low-Dimens. Syst. Nanostruct. 2023, 153, 115759. [Google Scholar] [CrossRef]
- Meng, F.; Zhao, F.; Zhao, J.; Zhang, H.; Wang, S. Diffusion-controlled charge separation in conjugated polymer heterojunctions for visible light-driven hydrogen production. Sep. Purif. Technol. 2025, 360, 131255. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Chen, C.; Ma, T.; Zhang, J.; Wang, Z. Transforming the Charge Transfer Mechanism in the In2O3/CdSe-DETA Nanocomposite from Type-I to S-Scheme to Improve Photocatalytic Activity and Stability During Hydrogen Production. Acta Phys.-Chim. Sin. 2022, 39, 2208030. [Google Scholar]
- Xu, D.; Shen, L.; Qin, Z.; Yan, S.; Wang, N.; Wang, J.; Gao, Y. Construction of Reverse Type-II InP/ZnxCd1-xS Core/Shell Quantum Dots with Low Interface Strain to Enhance Photocatalytic Hydrogen Evolution. Inorg. Chem. 2024, 63, 12582–12592. [Google Scholar] [CrossRef]
- Yang, L.; Tian, Q.; Wang, X.; Yang, H.; Meng, A.; Li, Z. Interfacial-Engineered Co3S4/MnCdS Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Sol. RRL 2023, 7, 2300403. [Google Scholar] [CrossRef]
- Yuan, L.; Su, J.; Zhang, M.; Wang, D.; Zhang, H.; Ma, J.; Gong, J. The electronic structures and hydrogen adsorption properties of a new graphene-like AlNC2 monolayer: First-principles calculations. Int. J. Hydrogen Energy 2024, 59, 1054–1062. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, P.; Xue, Y.; Wei, Y. Theoretical Study on Hydrogen Storage and Promoter Effect of Binary Clathrate Hydrates. Chem. J. Chin. Univ. 2024, 45, 20230383. [Google Scholar]
- Zhang, L.; He, J.; Li, N.; Yuan, J.; Li, W.; Liu, P.; Yan, T. Ternary CdS@MoS2-Co3O4 Multiheterojunction Photocatalyst for Boosting Photocatalytic H2 Evolution. ACS Appl. Mater. Interfaces 2023, 15, 43790–43798. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, X.; Wang, H.; Ma, Y.; Huang, H.; Ma, T. Interfacial engineering of Bi2MoO6-BaTiO3 Type-I heterojunction promotes cocatalyst-free piezocatalytic H2 production. Nano Energy 2024, 121, 109206. [Google Scholar] [CrossRef]
- Zhang, S.; Du, S.; Han, Z.; Wang, Y.; Jiang, T.; Wu, S.; Chen, C.; Han, Q.; Suo, S.; Xu, H.; et al. Ohmic-functionalized type I heterojunction: Improved alkaline water splitting and photocatalytic conversion from CO2 to C2H2. Chem. Eng. J. 2023, 471, 144438. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, J.; Huang, F.; Xie, H.; Li, Q.; Fang, C. A mechanism study of type I corrosion on the surface of ancient tin rich bronzes. Herit. Sci. 2024, 12, 349. [Google Scholar] [CrossRef]
- Li, T.; Chen, X.; Li, P.; Yang, Y.; Zhu, L. Pd-CQDs/CdS ternary composite for highly efficient visible light driven H2 evolution under combined action of type I heterojunctions and Schottky junctions. Int. J. Hydrogen Energy 2024, 85, 673–682. [Google Scholar] [CrossRef]
- Huo, Y.; Li, Z.; Zhang, J.; Dai, K.; Liang, C.; Yang, Y. Defect-mediated electron–hole separation in an inorganic–organic CdSxSe1-x-DETA solid solution under amine molecule-assisted fabrication and microwave-assisted method for promoting photocatalytic H2 evolution. Sustain. Energy Fuels 2019, 3, 3550–3560. [Google Scholar] [CrossRef]
- Li, Z.; Jin, D.; Wang, Z. ZnO/CdSe–diethylenetriamine nanocomposite as a step-scheme photocatalyst for photocatalytic hydrogen evolution. Appl. Surf. Sci. 2020, 529, 147071. [Google Scholar] [CrossRef]
- Li, Z.; Meng, A.; Sang, X.; Li, W.; Zhang, J.; Wang, Z. Efficient and Stable Hydrogen Evolution from ZnWO4/Zn1.95Cd8.05S10-DETA via S-Scheme Heterojunction under Visible-Light Irradiation without Co-Catalysts. Int. J. Hydrogen Energy 2024, 51, 777–786. [Google Scholar] [CrossRef]
- Meng, A.; Yang, R.; Li, W.; Li, Z.; Zhang, J. Enhanced photocatalytic hydrogen production through tuning charge transfer in TiO2/CdSxSe1-x-DETA nanocomposites with S-scheme heterojunction structure. J. Mater. 2025, 11, 100919. [Google Scholar]
- Long, Z.; Yang, X.; Huo, X.; Li, X.; Qi, Q.; Bian, X.; Wang, Q.; Yang, F.; Yu, W.; Jang, L. Bioinspired Z-scheme In2O3/C3N4 heterojunctions with tunable nanorod lengths for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2023, 461, 141893. [Google Scholar] [CrossRef]
- Chen, R.; Bai, X.; Luo, Y.; Qian, L.; Ma, M.; She, X. Rational designing of dual-functional photocatalysts for simultaneous hydrogen generation and organic pollutant degradation over Cd0.5Mn0.5S/CoP. Int. J. Hydrogen Energy 2022, 47, 32921–32927. [Google Scholar] [CrossRef]
- Tao, J.; Wang, M.; Liu, G.; Liu, Q.; Lu, L.; Wan, N.; Tang, H.; Qiao, G. Efficient photocatalytic hydrogen evolution coupled with benzaldehyde production over 0D Cd0.5Zn0.5S/2D Ti3C2 Schottky heterojunction. J. Adv. Ceram. 2022, 11, 1117–1130. [Google Scholar] [CrossRef]
- Liu, H.; Tan, P.; Liu, Y.; Zhai, H.; Du, W.; Liu, X.; Pan, J. Ultrafast interfacial charge evolution of the type-II cadmium sulfide/molybdenum disulfide heterostructure for photocatalytic hydrogen production. J. Colloid Interface Sci. 2022, 619, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Meng, A.; Li, W.; Li, Z.; Xiong, G.; Pu, X.; Zhang, J.; Li, Z. S-scheme heterojunction BiOBr/Cd8.05Zn1.95S10-DETA nanocomposite photocatalyst for enhanced and stable degradation of dichlorvos. Surf. Interfaces 2025, 68, 106697. [Google Scholar] [CrossRef]
- Li, W.; Meng, A.; Li, C.; Sun, Y.; Zhang, J.; Li, Z. Enhanced efficiency and stability in the degradation of triazophosphorus pesticides by Al6Si2O13/WO2.72 nanocomposites through synergistic action of S-scheme heterojunction and oxygen vacancies. J. Colloid Interface Sci. 2025, 677, 704–717. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, C.; Yang, R.; Cheng, S.; Sang, X.; Zhang, M.; Zhang, J.; Wang, Z.; Li, Z. Efficient and stable degradation of triazophos pesticide by TiO2/WO3 nanocomposites with S-scheme heterojunctions and oxygen defects. Catalysts 2023, 13, 1136. [Google Scholar] [CrossRef]
- Isari, A.; Moradi, S.; Rezaei, S.; Ghanbari, F.; Dehghanifard, E.; Kakavandi, B. Peroxymonosulfate catalyzed by core/shell magnetic ZnO photocatalyst towards malathion degradation: Enhancing synergy, catalytic performance and mechanism. Sep. Purif. Technol. 2021, 275, 119163. [Google Scholar] [CrossRef]
- Tang, Q.; Luo, X.; Yang, S.; Xu, Y. Novel Z-scheme In2S3/BiVO4 composites with improved visible-light photocatalytic performance and stability for glyphosate degradation. Sep. Purif. Technol. 2020, 248, 117039. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Meng, A.; Li, W.; Xiong, G.; Ye, M.; Meng, Y.; Li, Z. Co-Catalyst-Free Al6Si2O13/Cd8.05Zn1.95S10 Nanocomposites for Visible-Light-Driven Stable H2 Evolution and DDVP Degradation. Catalysts 2025, 15, 564. https://doi.org/10.3390/catal15060564
Li Z, Meng A, Li W, Xiong G, Ye M, Meng Y, Li Z. Co-Catalyst-Free Al6Si2O13/Cd8.05Zn1.95S10 Nanocomposites for Visible-Light-Driven Stable H2 Evolution and DDVP Degradation. Catalysts. 2025; 15(6):564. https://doi.org/10.3390/catal15060564
Chicago/Turabian StyleLi, Zhenhua, Aoyun Meng, Wen Li, Guoyuan Xiong, Mingfu Ye, Yaqiang Meng, and Zhen Li. 2025. "Co-Catalyst-Free Al6Si2O13/Cd8.05Zn1.95S10 Nanocomposites for Visible-Light-Driven Stable H2 Evolution and DDVP Degradation" Catalysts 15, no. 6: 564. https://doi.org/10.3390/catal15060564
APA StyleLi, Z., Meng, A., Li, W., Xiong, G., Ye, M., Meng, Y., & Li, Z. (2025). Co-Catalyst-Free Al6Si2O13/Cd8.05Zn1.95S10 Nanocomposites for Visible-Light-Driven Stable H2 Evolution and DDVP Degradation. Catalysts, 15(6), 564. https://doi.org/10.3390/catal15060564