Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (1,058)

Search Parameters:
Authors = Lin Cao ORCID = 0000-0001-5195-0477

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3707 KiB  
Article
Biodegradation of Both Ethanol and Acetaldehyde by Acetobacter ghanensis JN01
by Hongyan Liu, Jingjing Wang, Qianqian Xu, Xiaoyu Cao, Xinyue Du, Kun Lin and Hai Yan
Catalysts 2025, 15(8), 756; https://doi.org/10.3390/catal15080756 (registering DOI) - 7 Aug 2025
Abstract
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was [...] Read more.
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was successfully isolated from the traditional fermented food Jiaosu and identified as Acetobacter ghanensis JN01 based on average nucleotide identity (ANI) analysis. Initial ethanol of 1 g/L was completely biodegraded within 4 h, while initial acetaldehyde of 1 g/L was also rapidly removed at 2 or 1 h by whole cells or cell-free extracts (CEs) of JN01, respectively, which indicated that JN01 indeed has a strong ability in the biodegradation of both ethanol and acetaldehyde. Whole-genome sequencing revealed a 2.85 Mb draft genome of JN01 with 57.0% guanine–cytosine (GC) content and the key metabolic genes (adh1, adh2, and aldh) encoding involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), co-located with NADH dehydrogenase genes and ethanol-responsive regulatory motifs, supporting the metabolic pathway of transforming ethanol to acetaldehyde, and, subsequently, converting acetaldehyde to acetic acid. Furthermore, selected in vitro safety-related traits of JN01 were also assessed, which is very important in the development of microbial catalysts against both ethanol and acetaldehyde. Full article
(This article belongs to the Section Biocatalysis)
20 pages, 1083 KiB  
Article
The Risk of Global Environmental Change to Economic Sustainability and Law: Help from Digital Technology and Governance Regulation
by Zhen Cao, Zhuiwen Lai, Muhammad Bilawal Khaskheli and Lin Wang
Sustainability 2025, 17(15), 7094; https://doi.org/10.3390/su17157094 - 5 Aug 2025
Abstract
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential [...] Read more.
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential in advancing economic sustainability has been less explored. How can these technologies mitigate environmental risks while promoting sustainable and equitable development, aligning with the Sustainable Development Goals? We analyze policy global environmental data from the World Bank and the United Nations, as well as literature reviews on digital interventions, artificial intelligence, and smart databases. Global environmental change presents economic stability and rule of law threats, and innovative governance responses are needed. This study evaluates the potential for digital technology to be leveraged to enhance climate resilience and regulatory systems and address key implementation, equity, and policy coherence deficits. Policy recommendations for aligning economic development trajectories with planetary boundaries emphasize that proactive digital governance integration is indispensable for decoupling growth from environmental degradation. However, fragmented governance and unequal access to technologies undermine scalability. Successful experiences demonstrate that integrated policies, combining incentives, data transparency, and multilateral coordination, deliver maximum economic and environmental co-benefits, matching digital innovation with good governance. We provide policymakers with an action plan to leverage technology as a multiplier of sustainability, prioritizing inclusive governance structures to address implementation gaps and inform legislation. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

12 pages, 1267 KiB  
Article
Exogenous 24-Epibrassinolide Alleviated Selenium Stress in Peach Seedling
by Zhiyu Hang, Qizhe Cao, Yunyao Du, Jinrong Zhang, Lijin Lin, Mingfei Zhang and Xun Wang
Horticulturae 2025, 11(8), 909; https://doi.org/10.3390/horticulturae11080909 - 4 Aug 2025
Viewed by 119
Abstract
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact [...] Read more.
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact on biomass, selenium accumulation, and the expression of selenium metabolism-related genes in peach seedlings. The results demonstrated that 24-EBL could effectively mitigate biomass loss in peach seedlings exposed to selenium stress. Compared to the Se treatment alone, the 24-EBL+Se treatment resulted in a significant 16.55% increase in root selenium content and a more pronounced 30.39% increase in selenium content in the aboveground parts. Regarding the subcellular distribution, the cell wall was the primary site of Se deposition, accounting for 42.3% and 49.8% in the root and aboveground parts, respectively, in the Se treatment. 24-EBL further enhanced Se distribution at this site, reaching 42.9% and 63.2% in root and aboveground parts, respectively, in the 24-EBL+Se treatment. The 24-EBL+Se treatment significantly increased the contents of different chemical forms of Se, including ethanol-soluble, water-soluble, and salt-soluble Se. The quantitative real-time PCR (qRT-PCR) results indicated that the Se treatment promoted the expression of organic Se assimilation genes (SATs, OAS-TL B, and OAS-TL C), and 24-EBL application further increased their expression. Meanwhile, the Se-only treatment up-regulated the organic Se metabolism gene CGS1. Consequently, we propose that 24-EBL alleviates Se stress in peach seedlings by enhancing Se uptake and assimilation, and by adjusting subcellular distribution and chemical forms. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

14 pages, 3099 KiB  
Article
Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation
by Lele Lin, Yongjian Zhao, Chao Yuan, Yushu Zhang, Siyu Qiu and Jixin Cao
Animals 2025, 15(15), 2271; https://doi.org/10.3390/ani15152271 - 4 Aug 2025
Viewed by 191
Abstract
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. [...] Read more.
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. Our aim was to identify keystone taxa critical for avian foraging and nesting during the breeding season. We performed a network analysis linking bird species, their diets, and nest plants. Dietary components were detected using DNA metabarcoding conducted with avian fecal samples. Nest plants were identified via transect surveys. Two indices of the network, degree and weighted mean degree, were calculated to evaluate the importance of the dietary and nest plant species. We identified 13 bird host species from 107 fecal samples and 14 bird species from 107 nest observations. Based on the degree indices, fruit trees Morus and Prunus were detected as key food sources, exhibiting both the highest degree (degree = 9, 9) and weighted mean degree (lnwMD = 5.21, 4.63). Robinia pseudoacacia provided predominant nesting sites, with a predominant degree of 7. A few taxa, such as Styphnolobium japonicum and Rhamnus parvifolia, served dual ecological significance as both essential food sources and nesting substrates. Scrublands, as a unique habitat type, provided nesting sites and food for small-bodied birds. Therefore, targeted management interventions are recommended to sustain or enhance these keystone resource species and to maintain the multi-layered vertical vegetation structure to preserve the diverse habitats of birds. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

17 pages, 3682 KiB  
Article
Comparative Analysis of Testicular Transcriptional and Translational Landscapes in Yak and Cattle–Yak: Implications for Hybrid Male Sterility
by Mengli Cao, Shaoke Guo, Ziqiang Ding, Liyan Hu, Lin Xiong, Qianyun Ge, Jie Pei and Xian Guo
Biomolecules 2025, 15(8), 1080; https://doi.org/10.3390/biom15081080 - 25 Jul 2025
Viewed by 303
Abstract
Cattle–yak, a hybrid of yak and cattle, exhibits significant heterosis but male infertility, hindering heterosis fixation. Although extensive research has been conducted on transcriptional mechanisms in the testes of cattle–yak, the understanding of their translational landscape remains limited. In this study, we characterized [...] Read more.
Cattle–yak, a hybrid of yak and cattle, exhibits significant heterosis but male infertility, hindering heterosis fixation. Although extensive research has been conducted on transcriptional mechanisms in the testes of cattle–yak, the understanding of their translational landscape remains limited. In this study, we characterized the translational landscape of yak and cattle–yak based on Ribo-seq technology integrated with RNA-seq data. The results revealed that gene expression was not fully concordant between transcriptional and translational levels, whereas cattle–yak testes exhibited a stronger correlation across these two regulatory layers. Notably, genes that were differentially expressed at the translational level only (MEIOB, MEI1, and SMC1B) were mainly involved in meiosis. A total of 4,236 genes with different translation efficiencies (TEs) were identified, and the TEs of most of the genes gradually decreased as the mRNA expression level increased. Further research revealed that genes with higher TE had a shorter coding sequence (CDS) length, lower GC content, and higher normalized minimum free energy in the testes of yaks, but this characteristic was not found in cattle–yaks. We also identified upstream open reading frames (uORFs) in yak and cattle–yak testes, and the sequence characteristics of translated uORFs and untranslated uORFs were markedly different. In addition, we identified several short polypeptides that may play potential roles in spermatogenesis. In summary, our study uncovers distinct translational dysregulations in cattle–yak testes, particularly affecting meiosis, which provides novel insights into the mechanisms of spermatogenesis and male infertility in hybrids. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 7494 KiB  
Article
The Effect of Strain Aging on the Microstructure and Mechanical Properties of Steel for Reel-Lay Coiled Steel Pipelines
by Yuxi Cao, Guofeng Zuo, Yang Peng, Lin Zhu, Shuai Tong, Shubiao Yin and Xinjun Sun
Materials 2025, 18(15), 3462; https://doi.org/10.3390/ma18153462 - 24 Jul 2025
Viewed by 361
Abstract
Deep-sea oil and gas pipelines undergo significant plastic strain during reel-lay installation. Additionally, the static strain aging phenomenon that occurs during service can further deteriorate the mechanical properties of the pipelines. This study investigates the plastic deformation mechanism of reel-lay pipeline steel by [...] Read more.
Deep-sea oil and gas pipelines undergo significant plastic strain during reel-lay installation. Additionally, the static strain aging phenomenon that occurs during service can further deteriorate the mechanical properties of the pipelines. This study investigates the plastic deformation mechanism of reel-lay pipeline steel by subjecting the test steel to 5% pre-strain followed by aging treatment at 250 °C for 1 h. The present study systematically correlates the evolution of mechanical properties with microstructural changes through microstructural characterization techniques such as EBSD, TEM, and XRD. The results demonstrate that after pre-straining, the yield strength of the experimental steel increases due to dislocation strengthening and residual stress generation, while its uniform elongation decreases. Although no significant changes in grain size are observed macroscopically, microstructural characterization reveals a substantial increase in dislocation density within the matrix, forming dislocation cells and walls. These substructures lead to a deterioration of the material’s work hardening capacity. Following aging treatment, the tested steel exhibits further increased yield strength and reduced uniform elongation. After aging treatment, although the dislocation density in the matrix slightly decreases and dislocation tangles are somewhat reduced, the Cottrell atmosphere pinning effect leads to a further decline in work hardening capability, ultimately resulting in the deterioration of plasticity in reel-lay pipeline steel. The instantaneous hardening exponent curve shows that the work hardening phenomenon becomes more pronounced in the tested steel after strain aging as the tempering temperature increases. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 4345 KiB  
Article
Single-Thermocouple Suspended Microfluidic Thermal Sensor with Improved Heat Retention for the Development of Multifunctional Biomedical Detection
by Lin Qin, Xiasheng Wang, Chenxi Wu, Yuan Ju, Hao Zhang, Xin Cheng, Yuanlin Xia, Cao Xia, Yubo Huang and Zhuqing Wang
Sensors 2025, 25(15), 4532; https://doi.org/10.3390/s25154532 - 22 Jul 2025
Viewed by 268
Abstract
Thermal sensors are widely used in medical, industrial and other fields, where the requirements for high sensitivity and portability continues to increase. Here we propose a suspended bridge structure fabricated using MEMS, which effectively shrinks the size and reduces heat loss. This study [...] Read more.
Thermal sensors are widely used in medical, industrial and other fields, where the requirements for high sensitivity and portability continues to increase. Here we propose a suspended bridge structure fabricated using MEMS, which effectively shrinks the size and reduces heat loss. This study reviews current sensor-related theories of heat conduction, convective heat transfer and thermal radiation. Heat loss models for suspended and non-suspended bridge structures are established, and finite element analysis is conducted to evaluate their thermal performance. The thermal performance of the suspended bridge structure is further validated through infrared temperature measurements on the manufactured sensor device. Theoretical calculations demonstrate that the proposed suspension bridge structure reduces heat loss by 88.64% compared with traditional designs. Benefiting from this improved heat retention, which was also confirmed by infrared thermography, the thermal sensor fabricated based on the suspension bridge structure achieves an ultra-high sensitivity of 0.38 V/W and a fast response time of less than 200 ms, indicating a high accuracy in thermal characterization. The correlation coefficient obtained for the sensor output voltage and input power of the sensor is approximately 1.0. Based on this design, multiple microfluidic channels with suspended bridge structures can be integrated to realize multi-component detection, which is important for the development of multifunctional biomedical detection. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

17 pages, 3335 KiB  
Article
Thaldh3-Dependent GABA Metabolism Modulates Response of Trichoderma to Fusaric Acid-Induced Oxidative Stress
by Linhua Cao, Xiaoteng Shi, Tuo Li, Yang Liu, Tuokai Wang, Bozheng Lin, Dongyang Liu and Qirong Shen
J. Fungi 2025, 11(7), 542; https://doi.org/10.3390/jof11070542 - 21 Jul 2025
Viewed by 437
Abstract
Fusaric acid (FSA) is a mycotoxin produced by pathogenic Fusarium species that inhibits the growth of various beneficial microbes. In this study, we investigated the molecular mechanisms by which Trichoderma harzianum NJAU4742 (Th), a beneficial fungus, responds to FSA-induced stress. Here, [...] Read more.
Fusaric acid (FSA) is a mycotoxin produced by pathogenic Fusarium species that inhibits the growth of various beneficial microbes. In this study, we investigated the molecular mechanisms by which Trichoderma harzianum NJAU4742 (Th), a beneficial fungus, responds to FSA-induced stress. Here, by combining a transcriptome analysis, a gene knockout, and physiological data measurements, our study investigated the molecular mechanisms underlying the response of Trichoderma harzianum NJAU4742 (Th) to FSA stress. The results showed that FSA can induce severe oxidative stress in Th, and an aldehyde dehydrogenase (Thaldh3) in Th plays a critical role in alleviating FSA stress. Deleting Thaldh3 significantly decreased the γ-aminobutyrate (GABA) content, causing more severe oxidative damage in Th. Furthermore, we also provide evidence demonstrating that Thaldh3 alleviates FSA stress by enhancing the activities of key enzymes involved in the tricarboxylic acid cycle and ATP content. A pot experiment showed that an enhanced tolerance to FSA increased the Th biomass, strengthening its antagonistic capacity against pathogens and reducing the disease index in tomatoes. In conclusion, these observations provide new insight into the role of beneficial microbes in promoting plant health. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

21 pages, 5490 KiB  
Article
Impact of Reduced Chemical Fertilizer and Organic Amendments on Yield, Nitrogen Use Efficiency, and Soil Microbial Dynamics in Chinese Flowering Cabbage
by Jiaxin Xu, Jianshe Li, Xia Zhao, Zhen Liu, Hao Xu, Kai Cao and Lin Ye
Horticulturae 2025, 11(7), 859; https://doi.org/10.3390/horticulturae11070859 - 21 Jul 2025
Viewed by 315
Abstract
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify [...] Read more.
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify the impacts of reduced chemical fertilizer application integrated with organic amendments on cabbage yield and rhizosphere soil microenvironment characteristics. (2) Methods: A biennial field experiment was conducted during the 2022–2023 growing seasons at Lijun Town, Yinchuan City, Ningxia Hui Autonomous Region. Five treatments were tested: (i) Control (CK, no fertilizer); (ii) Conventional chemical fertilization (CF1, chemical fertilizer only); (iii) Reduced chemical fertilization (CF2, 30% less chemical fertilizer); (iv) CF2 + Well-decomposed chicken manure (FCM, 30% less chemical fertilizer + rotted chicken manure); and (v) CF2 + Vermicompost (FEM, 30% less chemical fertilizer + vermicompost). (3) Results: In 2023, the FCM treatment reduced electrical conductivity (EC) by 24.80% and pH by 2.16%, while the FEM treatment decreased EC by 31.13% and pH by 3.84% compared to controls. The FEM treatment significantly enhanced total nitrogen content by 12.71% and 8.85% relative to CF1 and FCM treatments, respectively. Compared to CF1, FEM increased soil organic matter content by 10.49% in 2022 and 11.24% in 2023. Organic fertilizer amendments elevated available nitrogen, phosphorus, and potassium levels while enhancing sucrase activity: FCM and FEM treatments increased sucrase activity by 23.62% and 32.00%, respectively, in 2022. Organic fertilization improved bacterial diversity and richness, optimized microbial community structure, and increased the relative abundance of Bacillus. It also upregulated microbial metabolic pathways related to carbohydrate and amino acid metabolism. Soil nutrients and bacterial community structure showed positive correlations with yield, whereas soil enzyme activities exhibited negative correlations. Key factors influencing yield were identified as Proteobacteria, Chloroflexi, available potassium, organic matter, available nitrogen, Actinobacteria, Firmicutes, total nitrogen, pH, and sucrase activity. (4) Conclusions: Integrated analysis of yield and soil microenvironmental parameters demonstrates that the fertilization regimen combining 30% chemical fertilizer reduction with vermicompost amendment (FEM) constitutes a more efficient fertilization strategy for Chinese flowering cabbage, making it suitable for regional promotion in the Ningxia area. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

24 pages, 11650 KiB  
Article
Particle-Scale Insights into Extraction Zone Development During Block Caving: Experimental Validation and PFC3D Simulation of Gradation-Dependent Flow Characteristics
by Chaoyi Yang, Guangquan Li, Dengjun Gan, Rihong Cao, Hang Lin and Rugao Gao
Appl. Sci. 2025, 15(14), 7916; https://doi.org/10.3390/app15147916 - 16 Jul 2025
Viewed by 184
Abstract
To investigate the evolution trend of the extraction zone above the drawbell in block caving, an experimental apparatus incorporating the drawbell structure was designed. Ore drawing experiments were conducted using materials with varying particle size gradations. The results demonstrate that the extraction zones [...] Read more.
To investigate the evolution trend of the extraction zone above the drawbell in block caving, an experimental apparatus incorporating the drawbell structure was designed. Ore drawing experiments were conducted using materials with varying particle size gradations. The results demonstrate that the extraction zones for all three gradations exhibit an ellipsoidal shape in the vertical direction, with elliptical cross-sections. As the draw height increases, both the major and minor axes of the extraction zone’s maximum cross-section continuously enlarge, stabilizing beyond a draw height of 80 cm. The ore fragment size significantly influences the extraction zone dimensions. Gradation I, characterized by the smallest average particle size, yielded the largest extraction zone, whereas Gradation III, with the largest average particle size, resulted in the smallest. Numerical simulations of ore drawing for the different particle sizes were performed using PFC3D. The extent of the extraction zone in the numerical results was determined by reconstructing the initial positions of the drawn particles. The simulations show good agreement with the experimental findings, particularly regarding how the major and minor axes of the extraction zone cross-section vary with increasing draw height. Moreover, the simulations confirm that smaller average particle sizes enhance particle flowability, leading to larger extraction zones, as anticipated. Full article
(This article belongs to the Special Issue Mechanics, Damage Properties and Impacts of Coal Mining, 2nd Edition)
Show Figures

Figure 1

24 pages, 5824 KiB  
Article
Evaluation of Highway Pavement Structural Conditions Based on Measured Crack Morphology by 3D GPR and Finite Element Modeling
by Zhonglu Cao, Dianguang Cao, Haolei Chang, Yaoguo Fu, Xiyuan Shen, Weiping Huang, Huiping Wang, Wanlu Bao, Chao Feng, Zheng Tong, Xiaopeng Lin and Weiguang Zhang
Materials 2025, 18(14), 3336; https://doi.org/10.3390/ma18143336 - 16 Jul 2025
Viewed by 326
Abstract
Structural cracks are internal distresses that cannot be observed from pavement surfaces. However, the existing evaluation methods for asphalt pavement structures lack the consideration of these cracks, which are crucial for accurate pavement assessment and effective maintenance planning. This study develops a novel [...] Read more.
Structural cracks are internal distresses that cannot be observed from pavement surfaces. However, the existing evaluation methods for asphalt pavement structures lack the consideration of these cracks, which are crucial for accurate pavement assessment and effective maintenance planning. This study develops a novel framework combining a three-dimensional (3D) ground penetrating radar (GPR) and finite element modeling (FEM) to evaluate the severity of structural cracks. First, the size and depth development of structural cracks on a four-layer asphalt pavement were determined using the 3D GPR. Then, the range of influence of the structural crack on structural bearing capacity was analyzed based on 3D FEM simulation model. Structural cracks have a distance-dependent diminishing influence on the deflection in the horizontal direction, with the most pronounced effects within a 20-cm width zone surrounding the cracks. Finally, two indices have been proposed: the pavement structural crack index (PSCI) to assess the depth of crack damage and the structural crack reflection ratio (SCRR) to evaluate surface reflection. Besides, PSCI and SCRR are used to classify the severities of structural cracks: none, low, and high. The threshold between none/low damage is a structural crack damage rate of 0.19%, and the threshold between low/high damage is 0.663%. An experiment on a 132-km expressway indicated that the proposed method achieved 94.4% accuracy via coring. The results also demonstrate the strong correlation between PSCI and pavement deflection (R2 = 0.92), supporting performance-based maintenance strategies. The results also demonstrate the correlation between structural and surface cracks, with 65.8% of the cracked sections having both structural and surface cracks. Full article
Show Figures

Figure 1

18 pages, 9131 KiB  
Article
The Primary Cultivation of Oogonial Stem Cells from Black Rockfish (Sebastes schlegelii): Morphology and Transcriptome Landscape
by Jingjing Zhang, Lei Lin, Shengyu Zhu, Yanming Zhang, Caichao Dong, Yu Yang, Yuyan Liu, Xuwen Cao, Yangbin He, Honglong Ji, Bo Meng, Qian Wang and Changwei Shao
Int. J. Mol. Sci. 2025, 26(14), 6772; https://doi.org/10.3390/ijms26146772 - 15 Jul 2025
Viewed by 287
Abstract
Black rockfish (Sebastes schlegelii) is a marine ovoviviparous teleost that exhibits significant sexual dimorphism, with females growing faster and reaching larger sizes than males. Establishing stable oogonial stem cells (OSCs) is critical for understanding germline stem cell dynamics and facilitating all-female [...] Read more.
Black rockfish (Sebastes schlegelii) is a marine ovoviviparous teleost that exhibits significant sexual dimorphism, with females growing faster and reaching larger sizes than males. Establishing stable oogonial stem cells (OSCs) is critical for understanding germline stem cell dynamics and facilitating all-female breeding. In this study, we successfully isolated and cultured OSCs from S. schlegelii for 12 passages. These cells exhibited alkaline phosphatase activity, expressed germline marker genes (ddx4, cdh1, klf4), and maintained a diploid karyotype (2n = 48). Transcriptomic comparisons between early (P3) and late (P12) passages revealed significant metabolic dysfunction and cell cycle arrest in the late-passage cells. Specifically, the down-regulation of glutathione-related and glycolysis-related genes (gstm3, gstt1, mgst3, gsta1, gsta4, gsto1, gapdh) and key mitotic regulators (cdk1, chk1, cdk4, e2f3, ccne2, ccnb1) suggested that metabolic imbalance contributes to oxidative stress, resulting in cell cycle inhibition and eventual senescence. This study provides a marine fish model for investigating metabolism-cell cycle interactions in germline stem cells and lays the foundation for future applications in germ cell transplantation and all-female breeding. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

18 pages, 2138 KiB  
Article
Ferritin-Based HA DNA Vaccine Outperforms Conventional Designs in Inducing Protective Immunity Against Seasonal Influenza
by Hongzhe Lin, Yuxuan Jiang, Yan Li, Yiwei Zhong, Mingyue Chen, Weiyu Jiang, Rong Xiang, Najing Cao, Lei Sun, Xuanyi Wang, Lu Lu, Qiao Wang, Guangyue Han, Duan Ma and Bin Wang
Vaccines 2025, 13(7), 745; https://doi.org/10.3390/vaccines13070745 - 10 Jul 2025
Viewed by 553
Abstract
Background: Influenza remains a persistent public health challenge due to antigenic drift and shift, necessitating vaccines capable of eliciting broad and durable immunity. Hemagglutinin (HA) antigen serves as the critical target for eliciting protective immune responses against influenza. DNA vaccines offer distinct [...] Read more.
Background: Influenza remains a persistent public health challenge due to antigenic drift and shift, necessitating vaccines capable of eliciting broad and durable immunity. Hemagglutinin (HA) antigen serves as the critical target for eliciting protective immune responses against influenza. DNA vaccines offer distinct advantages over conventional platforms, including accelerated development and induction of both humoral and cellular immune responses. Methods: To optimize HA antigen presentation, we designed and systematically compared the immunogenicity and protective efficacy of HA antigen display strategies—bacteriophage T4 fibritin (HA-Foldon) and ferritin-based virus-like particles (HA-Ferritin)—versus monomeric HA DNA vaccines against seasonal influenza viruses. Results: HA-Ferritin showed superior structural stability. All vaccines induced similar HA-specific antibody levels, but HA-Ferritin elicited higher neutralizing antibodies and stronger T cell responses. Upon challenge, HA-Ferritin and HA-Foldon protected mice from weight loss and reduced lung virus loads by 3.27 and 0.76 times, respectively. Monomeric HA provided limited protection, with only 40% survival and minimal viral or pathological reduction. Conclusions: The HA-Ferritin DNA vaccine demonstrated enhanced immunogenicity and protection, supporting structured antigen display as a promising strategy for influenza DNA vaccine development. Full article
(This article belongs to the Special Issue Advances in DNA Vaccine Research)
Show Figures

Figure 1

30 pages, 15347 KiB  
Article
Research on Optimization Design of Ice-Class Ship Form Based on Actual Sea Conditions
by Yu Lu, Xuan Cao, Jiafeng Wu, Xiaoxuan Peng, Lin An and Shizhe Liu
J. Mar. Sci. Eng. 2025, 13(7), 1320; https://doi.org/10.3390/jmse13071320 - 9 Jul 2025
Viewed by 270
Abstract
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake [...] Read more.
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake long-distance ocean voyages, an ice-class ship requires sufficient icebreaking capacity to navigate ice-covered water areas. However, since such ships operate for most of their time under open water conditions, it is also crucial to consider their resistance characteristics in these environments. Firstly, this paper employs linear interpolation to extract wind, wave, and sea ice data along the route and calculates the proportion of ice-covered and open water area in the overall voyage. This provides data support for hull form optimization based on real sea state conditions. Then, a resistance optimization platform for ice-class ships is established by integrating hull surface mixed deformation control within a scenario analysis framework. Based on the optimization results, comparative analysis is conducted between the parent hull and the optimized hull under various environmental resistance scenarios. Finally, the optimization results are evaluated in terms of energy consumption using a fuel consumption model of the ship’s main engine. The optimized hull achieves a 16.921% reduction in total resistance, with calm water resistance and wave-added resistance reduced by 5.92% and 27.6%, respectively. Additionally, the optimized hull shows significant resistance reductions under multiple wave and floating ice conditions. At the design speed, calm water power and hourly fuel consumption are reduced by 7.1% and 7.02%, respectively. The experimental results show that the hull form optimization process in this paper can take into account both ice-region navigation and ice-free navigation. The design ideas and solution methods can provide a reference for the design of ice-class ships. Full article
Show Figures

Figure 1

23 pages, 1632 KiB  
Review
Retinal Vascular Occlusion Following COVID-19 Vaccination: A Comprehensive Review of Observational Study and Pathophysiological Mechanisms
by Yuchen Zhang, Haoliang Zhang, Kangjia Lv, Xin Lin, Feng’e Chen, Hui Cao and Chong Chen
Vaccines 2025, 13(7), 733; https://doi.org/10.3390/vaccines13070733 - 7 Jul 2025
Viewed by 718
Abstract
Background: Retinal vascular occlusion (RVO) and retinal artery occlusion (RAO) have been reported as rare adverse events following COVID-19 vaccination, raising concerns about vaccine safety. This review synthesizes cohort and case–control studies assessing the association between COVID-19 vaccines and RVO/RAO, while exploring [...] Read more.
Background: Retinal vascular occlusion (RVO) and retinal artery occlusion (RAO) have been reported as rare adverse events following COVID-19 vaccination, raising concerns about vaccine safety. This review synthesizes cohort and case–control studies assessing the association between COVID-19 vaccines and RVO/RAO, while exploring potential pathophysiological mechanisms. Methods: We analyzed large-scale population-based studies from South Korea, Europe, and the TriNetX database, focusing on odds ratios (OR), hazard ratios (HR), and relative risks (RR) across mRNA and adenoviral vector vaccines. Pathological processes were hypothesized based on molecular and clinical evidence. Results: Studies investigating the association between COVID-19 vaccination and retinal vascular occlusion show conflicting results; some studies report no association (e.g., OR 0.93, 95% CI 0.60–1.45), others suggest reduced risk (e.g., OR 0.80, 95% CI 0.64–0.99), and one indicates increased risk over two years (HR 2.19, 95% CI 2.00–2.39). Adenoviral vector vaccines, particularly ChAdOx1, show higher RAO incidence in specific cohorts. Proposed mechanisms include vaccine-induced immune thrombotic thrombocytopenia (VITT) via anti-PF4 antibodies, spike protein-mediated endothelial dysfunction, and adjuvant-driven inflammation. Conclusions: While causality remains unproven, temporal heterogeneity and vaccine type-specific risks warrant further investigation. Longitudinal studies with robust controls are needed to clarify these associations in the post-pandemic context. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

Back to TopTop