Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,045)

Search Parameters:
Authors = Kun Li

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2547 KiB  
Article
Formation and Biological Characteristics Analysis of Artificial Gynogenetic WuLi Carp Induced by Inactivated Sperm of Megalobrama Amblycephala
by Xiaowei Xu, Enkui Hu, Qian Xiao, Xu Huang, Chongqing Wang, Xidan Xu, Kun Zhang, Yue Zhou, Jinhai Bai, Zhengkun Liu, Yuchen Jiang, Yan Tang, Xinyi Deng, Siyang Li, Wanjing Peng, Ling Xiong, Yuhan Yang, Zeyang Li, Ming Ma, Qinbo Qin and Shaojun Liuadd Show full author list remove Hide full author list
Biology 2025, 14(8), 994; https://doi.org/10.3390/biology14080994 - 4 Aug 2025
Viewed by 153
Abstract
Artificial gynogenesis is an essential technique for aquaculture breeding. Fertile offspring of the WuLi carp (Cyprinus carpio var. Quanzhounensis, 2n = 100, WLC) were successfully produced via gynogenesis using ultraviolet-irradiated sperm from the blunt snout bream (Megalobrama amblycephala, 2 [...] Read more.
Artificial gynogenesis is an essential technique for aquaculture breeding. Fertile offspring of the WuLi carp (Cyprinus carpio var. Quanzhounensis, 2n = 100, WLC) were successfully produced via gynogenesis using ultraviolet-irradiated sperm from the blunt snout bream (Megalobrama amblycephala, 2n = 48, BSB). As anticipated, gonadal section examination confirmed that all gynogenetic WuLi carp (2n = 100, GWB) were female. To investigate whether paternal DNA fragments from BSB were integrated into the GWB genome, comparative analyses of morphological traits, DNA content, chromosomal numbers, 5S rDNA sequences, microsatellite DNA markers, fluorescence in situ hybridization (FISH), growth performance and nutritional composition were systematically conducted between GWB and maternal WLC. The results revealed pronounced maternal inheritance patterns across morphological characteristics, DNA quantification, chromosomal configurations, 5S rDNA sequences and FISH signals, while microsatellite detection unequivocally confirmed paternal BSB DNA fragment integration into the GWB genome. Remarkably, GWB demonstrated significantly superior growth performance and elevated unsaturated fatty acid content relative to the maternal line. This approach not only addressed germplasm degradation in WLC but also provided valuable theoretical foundations for breeding programs in this commercially significant species. Full article
Show Figures

Figure 1

20 pages, 11402 KiB  
Article
Identification and Characterization of NAC Transcription Factors Involved in Pine Wilt Nematode Resistance in Pinus massoniana
by Zhengping Zhao, Jieyun Lei, Min Zhang, Jiale Li, Chungeng Pi, Jinxiu Yu, Xuewu Yan, Kun Luo and Yonggang Xia
Plants 2025, 14(15), 2399; https://doi.org/10.3390/plants14152399 - 3 Aug 2025
Viewed by 207
Abstract
Pinus massoniana Lamb. is an economically important conifer native to China. However, it is highly susceptible to the pine wood nematode (Bursaphelenchus xylophilus, PWN), the causal agent of pine wilt disease (PWD), resulting in substantial ecological and economic losses. To elucidate [...] Read more.
Pinus massoniana Lamb. is an economically important conifer native to China. However, it is highly susceptible to the pine wood nematode (Bursaphelenchus xylophilus, PWN), the causal agent of pine wilt disease (PWD), resulting in substantial ecological and economic losses. To elucidate potential molecular defense mechanisms, 50 NAC (NAM, ATAF1/2, and CUC2) transcription factors (PmNACs) were identified in the P. massoniana genome. Phylogenetic analysis divided these PmNACs into seven subfamilies, and motif analysis identified ten conserved motifs associated with stress responses. Twenty-three genes were selected for expression analysis in various tissues and under exogenous salicylic acid (SA), methyl jasmonate (MeJA), and PWN infection. Six genes (PmNAC1, PmNAC8, PmNAC9, PmNAC17, PmNAC18, and PmNAC20) were significantly up-regulated by both hormonal treatment and PWN infection, implying their involvement in JA/SA-mediated immune pathways. Functional characterization showed PmNAC8 is a nuclear-localized transcription factor with autoactivation activity. Furthermore, transient overexpression of PmNAC8 in Nicotiana benthamiana induced reactive oxygen species (ROS) accumulation and necrotic lesions. Collectively, these results elucidate NAC-mediated defense responses to PWN infection in P. massoniana and identify candidate genes for developing PWD-resistant pine varieties. Full article
Show Figures

Figure 1

17 pages, 5265 KiB  
Article
Influence of Agricultural Practices on Soil Physicochemical Properties and Rhizosphere Microbial Communities in Apple Orchards in Xinjiang, China
by Guangxin Zhang, Zili Wang, Huanhuan Zhang, Xujiao Li, Kun Liu, Kun Yu, Zhong Zheng and Fengyun Zhao
Horticulturae 2025, 11(8), 891; https://doi.org/10.3390/horticulturae11080891 - 1 Aug 2025
Viewed by 204
Abstract
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological [...] Read more.
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological balance. However, most of the existing studies focus on a single management practice or indicator and lack a systematic assessment of the effects of integrated orchard management in arid zones. This study aims to investigate how different agricultural management practices influence soil physicochemical properties and inter-root microbial communities in apple orchards in Xinjiang and to identify the main physicochemical factors affecting the composition of inter-root microbial communities. Inter-root soil samples were collected from apple orchards under green management (GM), organic management (OM), and conventional management (CM) in major apple-producing regions of Xinjiang. Microbial diversity and community composition of the samples were analyzed using high-throughput amplicon sequencing. The results revealed significant differences (p < 0.05) in soil physicochemical properties across different management practices. Specifically, GM significantly reduced soil pH and C:N compared with OM. Both OM and GM significantly decreased soil available nutrient content compared with CM. Moreover, GM and OM significantly increased bacterial diversity and changed the community composition of bacteria and fungi. Proteobacteria and Ascomycota were identified as the dominant bacteria and fungi, respectively, in all management practices. Linear discriminant analysis (LEfSe) showed that biomarkers were more abundant under OM, suggesting that OM may contribute to ecological functions through specific microbial taxa. Co-occurrence network analysis (building a network of microbial interactions) demonstrated that the topologies of bacteria and fungi varied across different management practices and that OM increased the complexity of microbial co-occurrence networks. Mantel test analysis (analyzing soil factors and microbial community correlations) showed that C:N and available potassium (AK) were significantly and positively correlated with the community composition of bacteria and fungi, and that C:N, soil organic carbon (SOC), and alkaline hydrolyzable nitrogen (AN) were significantly and positively correlated with the diversity of fungi. Redundancy analysis (RDA) further indicated that SOC, C:N, and AK were the primary soil physicochemical factors influencing the composition of microbial communities. This study provides theoretical guidance for the sustainable management of orchards in arid zones. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

18 pages, 6795 KiB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Viewed by 190
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

25 pages, 16276 KiB  
Article
Localized Compression Behavior of GFRP Grid Web–Concrete Composite Beams: Experimental, Numerical, and Analytical Studies
by Yunde Li, Hai Cao, Yang Zhou, Weibo Kong, Kun Yu, Haoting Jiang and Zhongya Zhang
Buildings 2025, 15(15), 2693; https://doi.org/10.3390/buildings15152693 - 30 Jul 2025
Viewed by 216
Abstract
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable [...] Read more.
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable shear-span ratios (λ = 1.43, 1.77) and local stiffener specimens were designed to assess their localized compressive behavior. Experimental results reveal that a 19.2% reduction in shear-span ratio enhances ultimate load capacity by 22.93% and improves stiffness by 66.85%, with additional performance gains of 77.53% in strength and 94.29% in stiffness achieved through local stiffener implementation. In addition, finite element (FE) analysis demonstrated a strong correlation with experimental results, showing less than 5% deviation in ultimate load predictions while accurately predicting stress distributions and failure modes. FE parametric analysis showed that increasing the grid thickness and decreasing the grid spacing within a reasonable range can considerably enhance the localized compression performance. The proposed analytical model, based on Winkler elastic foundation theory, predicts ultimate compression capacities within 10% of both the experimental and numerical results. However, the GFRP grid strength adjustment factor βg should be further refined through additional experiments and numerical analyses to improve reliability. Full article
Show Figures

Figure 1

20 pages, 3123 KiB  
Article
Plant Electrophysiological Parameters Represent Leaf Intracellular Water–Nutrient Metabolism and Immunoregulations in Brassica rapa During Plasmodiophora Infection
by Antong Xia, Yanyou Wu, Kun Zhai, Dongshan Xiang, Lin Li, Zhanghui Qin and Gratien Twagirayezu
Plants 2025, 14(15), 2337; https://doi.org/10.3390/plants14152337 - 29 Jul 2025
Viewed by 270
Abstract
Although Brassica rapa (B. rapa) is vital in agricultural production and vulnerable to the pathogen Plasmodiophora, the intracellular water–nutrient metabolism and immunoregulation of Plasmodiophora infection in B. rapa leaves remain unclear. This study aimed to analyze the responsive mechanisms of [...] Read more.
Although Brassica rapa (B. rapa) is vital in agricultural production and vulnerable to the pathogen Plasmodiophora, the intracellular water–nutrient metabolism and immunoregulation of Plasmodiophora infection in B. rapa leaves remain unclear. This study aimed to analyze the responsive mechanisms of Plasmodiophora-infected B. rapa using rapid detection technology. Six soil groups planted with Yangtze No. 5 B. rapa were inoculated with varying Plasmodiophora concentrations (from 0 to 10 × 109 spores/mL). The results showed that at the highest infection concentration (PWB5, 10 × 109 spores/mL) of B. rapa leaves, the plant electrophysiological parameters showed the intracellular water-holding capacity (IWHC), the intracellular water use efficiency (IWUE), and the intracellular water translocation rate (IWTR) declined by 41.99–68.86%. The unit for translocation of nutrients (UNF) increased by 52.83%, whereas the nutrient translocation rate (NTR), the nutrient translocation capacity (NTC), the nutrient active translocation (NAT) value, and the nutrient active translocation capacity (NAC) decreased by 52.40–77.68%. The cellular energy metabolism decreased with worsening Plasmodiophora infection, in which the units for cellular energy metabolism (∆GE) and cellular energy metabolism (∆G) of the leaves decreased by 44.21% and 78.14% in PWB5, respectively. Typically, based on distribution of B-type dielectric substance transfer percentage (BPn), we found PWB4 (8 × 109 spores/mL) was the maximal immune response concentration, as evidenced by a maximal BPnR (B-type dielectric substance transfer percentage based on resistance), with increasing lignin and cork deposition to enhance immunity, and a minimum BPnXc (B-type dielectric substance transfer percentage based on capacitive reactance), with a decreasing quantity of surface proteins in the B. rapa leaves. This study suggests plant electrophysiological parameters could characterize intracellular water–nutrient metabolism and immunoregulation of B. rapa leaves under various Plasmodiophora infection concentrations, offering a dynamic detection method for agricultural disease management. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

14 pages, 1771 KiB  
Article
An Adaptive Overcurrent Protection Method for Distribution Networks Based on Dynamic Multi-Objective Optimization Algorithm
by Biao Xu, Fan Ouyang, Yangyang Li, Kun Yu, Fei Ao, Hui Li and Liming Tan
Algorithms 2025, 18(8), 472; https://doi.org/10.3390/a18080472 - 28 Jul 2025
Viewed by 222
Abstract
With the large-scale integration of renewable energy into distribution networks, traditional fixed-setting overcurrent protection strategies struggle to adapt to rapid fluctuations in renewable energy (e.g., wind and photovoltaic) output. Optimizing current settings is crucial for enhancing the stability of modern distribution networks. This [...] Read more.
With the large-scale integration of renewable energy into distribution networks, traditional fixed-setting overcurrent protection strategies struggle to adapt to rapid fluctuations in renewable energy (e.g., wind and photovoltaic) output. Optimizing current settings is crucial for enhancing the stability of modern distribution networks. This paper proposes an adaptive overcurrent protection method based on an improved NSGA-II algorithm. By dynamically detecting renewable power fluctuations and generating adaptive solutions, the method enables the online optimization of protection parameters, effectively reducing misoperation rates, shortening operation times, and significantly improving the reliability and resilience of distribution networks. Using the rate of renewable power variation as the core criterion, renewable power changes are categorized into abrupt and gradual scenarios. Depending on the scenario, either a random solution injection strategy (DNSGA-II-A) or a Gaussian mutation strategy (DNSGA-II-B) is dynamically applied to adjust overcurrent protection settings and time delays, ensuring real-time alignment with grid conditions. Hard constraints such as sensitivity, selectivity, and misoperation rate are embedded to guarantee compliance with relay protection standards. Additionally, the convergence of the Pareto front change rate serves as the termination condition, reducing computational redundancy and avoiding local optima. Simulation tests on a 10 kV distribution network integrated with a wind farm validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

17 pages, 1554 KiB  
Article
Optimizing Fertilization Rate to Achieve High Onion Bulb Yield and High Nitrogen Fertilizer Productivity in Dry-Hot Valley Region of Southwest China
by Jiancha Li, Kun Li, Yilin Li, Xuewen Yue, Hongye Zhu, Liangtao Shi and Haidong Fang
Agronomy 2025, 15(8), 1822; https://doi.org/10.3390/agronomy15081822 - 28 Jul 2025
Viewed by 182
Abstract
Excessive fertilization is a widespread issue in onion (Allium cepa L.) production in Southwest China. This practice not only leads to environmental pollution but also decreases the marketable yield and fertilizer productivity of onions. Identifying an optimal fertilization rate is crucial for [...] Read more.
Excessive fertilization is a widespread issue in onion (Allium cepa L.) production in Southwest China. This practice not only leads to environmental pollution but also decreases the marketable yield and fertilizer productivity of onions. Identifying an optimal fertilization rate is crucial for promoting high-yield and highly efficient onion cultivation. The objective of this research is to determine the appropriate amount of fertilizer by investigating the effects of different fertilization rates on the growth characteristics and bulb yield of onion. The study was conducted over two consecutive growing seasons utilizing a randomized complete block design, which included six treatments: local routine fertilizer application (F1), a 20% reduction from F1 (F2), a 40% reduction from F1 (F3), a 60% reduction from F1 (F4), an 80% reduction from F1 (F5), and no fertilizer application (F0). The results show that, at the mature stage, aboveground dry matter quantity and its accumulation rate of onion under treatment F2 were found to be the highest among all other treatments across both growing seasons. Following the onset of bulbing, dry matter accumulation initially increased but subsequently decreased with reduced fertilizer supply; notably, it was greater under treatment F2 compared to other treatments. Compared with F1, the PFPN (partial factor productivity of nitrogen fertilizer) under treatment F2 increased by 35.2% and 32.0%, and the marketable bulb yield under treatment F2 increased by 8.4% and 5.8% during the 2022–2023 and 2023–2024 growing seasons, respectively. The marketable bulb yield demonstrated extremely significant positive correlations with aboveground dry matter and the dry matter accumulation rate throughout all growth periods in both growing seasons. Furthermore, marketable bulb yield exhibited extremely significant positive correlations with dry matter translocation before the onset of bulbing and dry matter accumulation following bulbing initiation. It was concluded that the appropriate fertilizer application (F2), characterized by a fertilization rate of 339-216-318 kg ha−1 for N-P2O5-K2O, enhanced onion bulb yield and nitrogen fertilizer productivity by promoting post-bulbing dry matter accumulation. This study emphasizes the significance of optimizing the fertilization rate as a crucial factor in achieving high-yield and highly efficient onion cultivation by enhancing dry matter accumulation. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 2412 KiB  
Article
Postharvest Application of Myo-Inositol Extends the Shelf-Life of Banana Fruit by Delaying Ethylene Biosynthesis and Improving Antioxidant Activity
by Lingyu Hu, Yi Li, Kun Zhou, Kaili Shi, Yi Niu, Feng Qu, Shenglin Zhang, Weidi He and Yuanli Wu
Foods 2025, 14(15), 2638; https://doi.org/10.3390/foods14152638 - 28 Jul 2025
Viewed by 324
Abstract
Banana fruits are harvested and then undergo rapid ripening and senescence, sharply limiting their shelf-life and marketability. Myo-inositol (MI) is an important regulator in ethylene production and reactive oxygen species (ROS) accumulation; however, its involvement in the postharvest ripening process of banana [...] Read more.
Banana fruits are harvested and then undergo rapid ripening and senescence, sharply limiting their shelf-life and marketability. Myo-inositol (MI) is an important regulator in ethylene production and reactive oxygen species (ROS) accumulation; however, its involvement in the postharvest ripening process of banana remains to be determined. This study found that postharvest application of MI could efficiently delay the fruit ripening and extend the time in which the luster, color, and hardness were maintained in two cultivars with contrasting storage characteristics, storable ‘Brazil’ and unstorable ‘Fenza No. 1’, when stored at room temperature (23 °C ± 2 °C). Moreover, physiological, metabolic, and gene expression analyses indicated that MI application improved MI metabolism and postponed ethylene biosynthesis and cell wall loosening. The decrease in ethylene production was associated with a reduction in the expression of ACS1 and ACO1 genes. MI treatment decreased the expressions of PL1/2, PG, and EXP1/7/8, which may account for the delay in softening. In addition, the application of MI could alleviate ROS-mediated senescence and cell membrane damage by promoting the activities of SOD, POD, and anti-O2 and decreasing PPO activity. This study shed light on the function of MI in regulating the postharvest ripening and senescence of bananas and provided an efficient strategy for extending shelf-life and reduce losses. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

10 pages, 2001 KiB  
Article
Low Phase Noise Millimeter-Wave Generation Based on Optoelectronic Feed-Forward
by Tong Yang, Yiwen Lu, Qizhuang Cen, Xinpeng Wang, Zhen Feng, Chong Liu, Feifei Yin, Kun Xu, Ming Li and Yitang Dai
Photonics 2025, 12(8), 757; https://doi.org/10.3390/photonics12080757 - 28 Jul 2025
Viewed by 220
Abstract
In this paper, we propose an optoelectronic feed-forward millimeter-wave generator based on the Mach–Zehnder interferometer (MZI) structure. The phase noise of the local oscillation (LO) input is extracted by loop design and used for phase noise suppression of the output, thereby optimizing the [...] Read more.
In this paper, we propose an optoelectronic feed-forward millimeter-wave generator based on the Mach–Zehnder interferometer (MZI) structure. The phase noise of the local oscillation (LO) input is extracted by loop design and used for phase noise suppression of the output, thereby optimizing the phase noise performance of the generator output. The scheme achieves separation of the phase noise by using an MZI structure and a mixing-frequency oscillator to realize the differential and integration process of the phase noise from the LO input source, respectively. Then, it is combined with a feed-forward operation to skillfully realize phase noise rejection of the resulting high-frequency output. The proposed scheme has been demonstrated to facilitate millimeter-wave generation at 40 GHz and 50 GHz. The measured phase noise is as low as −120 dBc/Hz at a 10 kHz offset, and the experimental setup achieves phase noise suppression of up to 36 dB at this frequency offset. Through systematic theoretical analysis and experimental verification, the excellent capabilities of the proposed scheme in high-frequency signal generation and phase noise suppression are fully demonstrated, which provides a new technological path for high-performance millimeter-wave generation, avoiding the deterioration of the phase noise introduced using high-frequency optoelectronic devices other than photodetectors (PDs) to process the signals. Full article
(This article belongs to the Special Issue Optoelectronic Oscillators (OEO): Principles and Applications)
Show Figures

Figure 1

21 pages, 4494 KiB  
Article
A Numerical Model for Simulating Force-Induced Damage in Korla Fragrant Pears at Different Maturity Stages
by Chen Ding, Peiyu Chen, Lin Liao, Shengyou Chu, Xirui Yang, Guangxin Gai, Yang Liu, Kun Li, Xuerong Wang, Jiahui Li and Haipeng Lan
Agriculture 2025, 15(15), 1611; https://doi.org/10.3390/agriculture15151611 - 25 Jul 2025
Viewed by 188
Abstract
The maturity of Korla fragrant pears directly influences their harvesting, packaging, transportation, and storage. Investigating the mechanical properties of fragrant pears at various maturity stages can help minimize damage during postharvest handling. This study employs micro-CT technology combined with reverse model scanning to [...] Read more.
The maturity of Korla fragrant pears directly influences their harvesting, packaging, transportation, and storage. Investigating the mechanical properties of fragrant pears at various maturity stages can help minimize damage during postharvest handling. This study employs micro-CT technology combined with reverse model scanning to develop a numerical model for force damage across different maturity stages, supported by experimental validation. The results demonstrate that both rupture force and rupture strain progressively decrease as the maturity of Korla fragrant pears increases, exhibiting a sudden transition. Simultaneously, the fruit’s microstructure shifts from distinct cellular organization to an irregular, collapsed state. The proposed numerical model, which accounts for this abrupt change, provides a better fit than models based on a single physical parameter, with the R2 value improving from 0.7922 to 0.9665. Furthermore, this model accurately quantifies the mechanical properties of fragrant pears at all stages of maturity. These findings offer technical support for reducing postharvest losses and serve as a reference for developing damage prediction models for other fruits and vegetables. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

27 pages, 1706 KiB  
Review
Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review
by Munwar Ali, Chang Xu and Kun Li
Vet. Sci. 2025, 12(8), 688; https://doi.org/10.3390/vetsci12080688 - 23 Jul 2025
Viewed by 525
Abstract
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs [...] Read more.
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs enter animals’ bodies primarily through ingestion of contaminated feed and water, inhalation, and dermal exposure, subsequently accumulating in various organs, disrupting physiological functions. Notably, MNPs facilitate the horizontal transfer of antimicrobial resistance genes (ARGs), exacerbating the global challenge of antimicrobial resistance (AMR). In agricultural environments, sources such as organic fertilizers, wastewater irrigation systems, surface runoff, and littering contribute to soil contamination, adversely affecting plant growth and soil health, which in turn compromises feed quality and ultimately animals’ productivity. This review synthesizes current evidence demonstrating how MNP exposure impairs animal production, reproduction, and survival, and highlights the interconnected risks to food safety and ecosystem health. The findings call for the urgent need for comprehensive research under controlled conditions to underscore the fine details regarding mechanisms of MNP toxicity and to inform effective mitigation strategies. Addressing MNP pollution is crucial for safeguarding animal health, ensuring sustainable livestock production, and promoting environmental sustainability and integrity. Full article
Show Figures

Graphical abstract

28 pages, 7506 KiB  
Article
Impact of Plateau Grassland Degradation on Ecological Suitability: Revealing Degradation Mechanisms and Dividing Potential Suitable Areas with Multi Criteria Models
by Yi Chai, Lin Xu, Yong Xu, Kun Yang, Rao Zhu, Rui Zhang and Xiaxing Li
Remote Sens. 2025, 17(15), 2539; https://doi.org/10.3390/rs17152539 - 22 Jul 2025
Viewed by 319
Abstract
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with [...] Read more.
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with escalating human activities have disrupted the seasonal growth cycles of grasslands, thereby intensifying degradation processes. To date, the key drivers and lifecycle dynamics of Grassland Depletion across the QTP remain contentious, limiting our comprehension of its ecological repercussions and regulatory mechanisms. This study comprehensively investigates grassland degradation on the Qinghai–Tibetan Plateau, analyzing its drivers and changes in ecological suitability during the growing season. By integrating natural factors (e.g., precipitation and temperature) and anthropogenic influences (e.g., population density and grazing intensity), it examines observational data from over 160 monitoring stations collected between the 1980s and 2020. The findings reveal three distinct phases of grassland degradation: an acute degradation phase in 1990 (GDI, Grassland Degradation Index = 2.53), a partial recovery phase from 1996 to 2005 (GDI < 2.0) during which the proportion of degraded grassland decreased from 71.85% in 1990 to 51.22% in 2005, and a renewed intensification of degradation after 2006 (GDI > 2.0), with degraded grassland areas reaching 56.39% by 2020. Among the influencing variables, precipitation emerged as the most significant driver, interacting closely with anthropogenic factors such as grazing practices and population distribution. Specifically, the combined impacts of precipitation with population density, grazing pressure, and elevation were particularly notable, yielding interaction q-values of 0.796, 0.767, and 0.752, respectively. Our findings reveal that while grasslands exhibit superior carbon sink potential relative to forests, their productivity and ecological functionality are undergoing considerable declines due to the compounded effects of multiple interacting factors. Consequently, the spatial distribution of ecologically suitable zones has contracted significantly, with the remaining high-suitability regions concentrating in the “twin-star” zones of Baingoin and Zanda grasslands, areas recognized as focal points for future ecosystem preservation. Furthermore, the effects of climate change and intensifying anthropogenic activity have driven the reduction in highly suitable grassland areas, shrinking from 41,232 km2 in 1990 to 24,485 km2 by 2020, with projections indicating a further decrease to only 2844 km2 by 2060. This study sheds light on the intricate mechanisms behind Grassland Depletion, providing essential guidance for conservation efforts and ecological restoration on the QTP. Moreover, it offers theoretical underpinnings to support China’s carbon neutrality and peak carbon emission goals. Full article
Show Figures

Figure 1

16 pages, 3231 KiB  
Article
Aptamer-Conjugated Magnetic Nanoparticles Integrated with SERS for Multiplex Salmonella Detection
by Fan Sun, Kun Pang, Keke Yang, Li Zheng, Mengmeng Wang, Yufeng Wang, Qiang Chen, Zihong Ye, Pei Liang and Xiaoping Yu
Biosensors 2025, 15(7), 464; https://doi.org/10.3390/bios15070464 - 19 Jul 2025
Viewed by 516
Abstract
Salmonella is a rapidly spreading and widespread zoonotic infectious disease that poses a serious threat to the safety of both poultry and human lives. Therefore, the timely detection of Salmonella in foods and animals has become an urgent need for food safety. This [...] Read more.
Salmonella is a rapidly spreading and widespread zoonotic infectious disease that poses a serious threat to the safety of both poultry and human lives. Therefore, the timely detection of Salmonella in foods and animals has become an urgent need for food safety. This work describes the construction of an aptamer-based sensor for Salmonella detection, using Fe3O4 magnetic beads and Ag@Au core–shell nanoparticles-embedded 4-mercaptobenzoic acid (4MBA). Leveraging the high affinity between biotin and streptavidin, aptamers were conjugated to Fe3O4 magnetic beads. These beads were then combined with Ag@4MBA@Au nanoparticles functionalized with complementary aptamers through hydrogen bonding and π-π stacking interactions, yielding a SERS-based aptamer sensor with optimized Raman signals from 4MBA. When target bacteria are present, aptamer-conjugated magnetic beads exhibit preferential binding to the bacteria, leading to a decrease in the surface-enhanced Raman scattering (SERS) signal. And it was used for the detection of five different serotypes of Salmonella, respectively, and the results showed that the aptamer sensor exhibited a good linear relationship between the concentration range of 102–108 CFU/mL and LOD is 35.51 CFU/mL. The SERS aptasensor was utilized for the detection of spiked authentic samples with recoveries between 94.0 and 100.4%, which proved the usability of the method and helped to achieve food safety detection. Full article
(This article belongs to the Special Issue Aptamer-Based Sensing: Designs and Applications)
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Experimental Study on Mechanical Differences Between Prefabricated and Cast-In Situ Tunnel Linings Based on a Load-Structure Model
by Li-Ming Wu, Hong-Kun Li, Feng Gao, Zi-Jian Wang, Bin Zhang, Wen-Jie Luo and Jun-Jie Li
Buildings 2025, 15(14), 2522; https://doi.org/10.3390/buildings15142522 - 18 Jul 2025
Viewed by 273
Abstract
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This [...] Read more.
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This study investigates a cut-and-cover prefabricated tunnel project in the Chongqing High-Tech Zone through scale model tests and numerical simulations to systematically compare the mechanical behaviors of cast-in situ linings and three-segment prefabricated linings under surrounding rock loads. The experimental results show that the ultimate bearing capacity of the prefabricated lining is 15.3% lower than that of the cast-in situ lining, with asymmetric failure modes and cracks concentrated near joint regions. Numerical simulations further reveal the influence of joint stiffness on structural performance: when the joint stiffness is 30 MN·m/rad, the bending moment of the segmented lining decreases by 37.7% compared to the cast-in situ lining, while displacement increments remain controllable. By optimising joint pre-tightening forces and stiffness parameters, prefabricated linings can achieve stability comparable to cast-in situ structures while retaining construction efficiency. This research provides theoretical and technical references for the design and construction of open-cut prefabricated tunnel linings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop