Optimizing Fertilization Rate to Achieve High Onion Bulb Yield and High Nitrogen Fertilizer Productivity in Dry-Hot Valley Region of Southwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Layout
2.3. Measurements
2.3.1. Aboveground Dry Matter
2.3.2. Aboveground Dry Matter Partitioning and Translocation
2.3.3. Bulb Yield and Its Components
2.3.4. Statistical Analysis
3. Results
3.1. Aboveground Dry Matter
3.2. Dry Matter Partitioning
3.3. Dry Matter Translocation (DMT)
3.4. Bulb Yield and Partial Factor Productivity of Nitrogen Fertilizer
3.5. Correlation Analysis
4. Discussion
4.1. Effects of Various Fertilization Rates on Dry Matter Accumulation of Onion
4.2. Effects of Various Fertilization Rates on the Partitioning and Translocation of Aboveground Dry Matter of Onion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erisman, J.W.; Bleeker, A.; Galloway, J.; Sutton, M.S. Reduced nitrogen in ecology and the environment. Environ. Pollut. 2007, 150, 140–149. [Google Scholar] [CrossRef]
- van Grinsven, H.J.; Ward, M.H.; Benjamin, N.; Kok, T.D. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water? Environ. Health 2006, 5, 26. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, Y.T.; Chen, A.Q.; Liu, H.B.; Zhai, L.M.; Lei, B.K.; Ren, T.Z. An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects. Field Crops Res. 2017, 207, 52–61. [Google Scholar] [CrossRef]
- Wang, H.D.; Wu, L.F.; Wang, X.K.; Zhang, S.H.; Cheng, M.H.; Feng, H.; Fan, J.L.; Zhang, F.C.; Xiang, Y.Z. Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency in of cotton under drip fertigation. Agric. Water Manag. 2021, 245, 106662. [Google Scholar] [CrossRef]
- Galloway, J.N.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Cosby, B.J. The nitrogen cascade. Bioscience 2003, 53, 341–356. [Google Scholar] [CrossRef]
- Castro, A.; Stulen, I.; De Kok, L.J. Atmospheric NH3 as plant nutrient: A case study with Brassica oleracea. Environ. Pollut. 2008, 154, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Ferrise, R.; Triossi, A.; Stratonovitch, P.; Bindi, M.; Martre, P. Sowing date and nitrogen fertilisation effects on dry matter and nitrogen dynamics for durum wheat: An experimental and simulation study. Field Crops Res. 2010, 117, 245–257. [Google Scholar] [CrossRef]
- Hamzei, J. Nitrogen rate applied affects dry matter translocation and performance attributes of wheat under deficit irrigation. J. Plant Nutr. 2018, 41, 807–817. [Google Scholar] [CrossRef]
- Geisseler, D.; Ortiz, R.S.; Diaz, J. Nitrogen nutrition and fertilization of onions (Allium cepa L.)—A literature review. Sci. Hortic. 2022, 291, 110591. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data (accessed on 26 April 2021).
- Wang, X.; Yan, B.; Shi, L.T.; Liu, G.C. Plant–soil feedback effects on the performance and functional traits of Dodonaea viscosa in a dry-hot valley, China. Plant Ecol. 2021, 222, 1209–1224. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiong, D.H.; Wu, H.; Zhang, S.; Shi, L.T. Spatial variation of soil physical properties and its relationship with plant biomass in degraded slopes in dry-hot valley region of Southwest China. J. Soils Sediments 2020, 20, 2354–2366. [Google Scholar] [CrossRef]
- Boru, G.W.; Birhan, T.S.; Beyene, T.L. Integrated effects of furrow irrigation systems and irrigation regimes on water productivity of onion (Allium cepa L.) crop in a semi-arid area. Heliyon 2024, 10, e40098. [Google Scholar] [CrossRef] [PubMed]
- Elouattassi, Y.; Ferioun, M.; Ghachtouli, N.E.; Derraz, K.; Rachidi, F. Enhancing onion growth and yield through agroecological practices: Organic fertilization and intercropping. Ecol. Front. 2024, 44, 547–557. [Google Scholar] [CrossRef]
- Kinoshita, T.; Hayashi, T.; Yamauchi, D.; Yamamoto, T. Quantitative analysis of factors affecting bulb yield in terms of dry matter production across different planting dates and cultivars in spring-sown onions. Sci. Hortic. 2024, 338, 113726. [Google Scholar] [CrossRef]
- Yeshiwas, Y.; Alemayehu, M.; Adgo, E. Enhancing bulb yield through nitrogen fertilization and the use of hybrid onion (Alluim cepa L.) varieties in northwest Ethiopia. PLoS ONE 2024, 19, e0312394. [Google Scholar] [CrossRef]
- Diaz-Perez, J.C.; Purvis, A.C.; Paulk, J.T. Bolting, yield, and bulb decay of sweet onion as affected by nitrogen fertilization. J. Am. Soc. Hortic. Sci. 2003, 128, 144–149. [Google Scholar] [CrossRef]
- Boyhan, G.E.; Torrance, R.L.; Hill, C.R. Effects of Nitrogen, Phosphorus, and Potassium Rates and Fertilizer Sources on Yield and Leaf Nutrient Status of Short-day Onions. Hortscience A Publ. Am. Soc. Hortic. Sci. 2007, 42, 653–660. [Google Scholar] [CrossRef]
- Golubkina, N.; Amalfitano, C.; Sekara, A.; Alessio, T.; Robert, P.; Vasile, S.; Antonio, C.; Alexander, F. Yield and bulb quality of storage onion cultivars as affected by farming system and nitrogen dose. Sci. Hortic. 2022, 293, 110751. [Google Scholar] [CrossRef]
- Mandefro, T.; Wondwosen, T.; Bizuayehu, D. Effects of Different Nitrogen and Sulfur Fertilizer Rates on Growth, Yield, Quality and Nutrient Uptake of Onion (Allium cepa L.) at Shewa Robit, North Shewa, Ethiopia. Open Biotechnol. J. 2021, 15, 59–67. [Google Scholar] [CrossRef]
- Ngon’e, F.B.; Francisca, N.V.; Al’e, K.; Harouna, T.; Rokhaya, D.; Sokhna, N.; Alioune, S.; El Hadji, D.; Papa Mamadou, D.S.; Nicolas, C.A.; et al. Effect of cultivation practices on the quality of onion bulbs (Allium cepa L.) produced at two sites in northern Senegal: Evaluation of morphological and physicochemical parameters. J. Agric. Food Res. 2024, 15, 101022. [Google Scholar] [CrossRef]
- Getachew, A. Review on Mineral Nutrition of Onion (Allium cepa L). Open Biotechnol. J. 2020, 134, 134–144. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. FAOSTAT. 2016. Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 21 July 2025).
- Zhang, L.C.; Meng, F.C.; Zhang, X.X.; Gao, Q.; Yan, L. Optimum management strategy for improving maize water productivity and partial factor productivity for nitrogen in china: A meta-analysis. Agric. Water Manag. 2024, 303, 109043. [Google Scholar] [CrossRef]
- Rengel, Z.; Damon, P.M. Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 2008, 133, 624–636. [Google Scholar] [CrossRef]
- Kundu, A.; Raha, P.; Dubey, A. Impact of Source and Method of Potassium Application on Dry Matter Accumulation and Partitioning of Potassium in Rice (Oryza sativa L.). J. Soil Sci. Plant Nutr. 2021, 21, 2252–2263. [Google Scholar] [CrossRef]
- Xu, K.; Chai, Q.; Hu, F.; Fan, Z.; Yin, W. N-fertilizer Postponing application improves dry matter translocation and increases system productivity of wheat/maize intercropping. Sci. Rep. 2021, 11, 22825. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Bryla, D.R. Nitrogen requirements at bulb initiation for production of intermediate-day onions. Acta Hortic. 2016, 1142, 67–74. [Google Scholar] [CrossRef]
- Sotomayor-Ramírez, D.; Oliveras-Berrocales, M.; Wessel-Beaver, L. Fertilizernitrogen management in an onion and tropical pumpkin rotation in Puerto Rico. HortTechnology 2016, 26, 831–838. [Google Scholar] [CrossRef]
- Liu, M.; Wu, X.L.; Li, C.S.; Li, M.; Xiong, T.; Tang, Y.L. Dry matter and nitrogen accumulation, partitioning, and translocation in synthetic-derived wheat cultivars under nitrogen deficiency at the post-jointing stage. Field Crops Res. 2020, 248, 107720. [Google Scholar] [CrossRef]
- Ding, J.; Zi, Y.; Li, C.; Peng, Y.; Zhu, X.; Guo, W. Dry matter accumulation, partitioning, and remobilization in high-yielding wheat under rice–wheat rotation in China. Agron. J. 2016, 108, 604–614. [Google Scholar] [CrossRef]
- Li, H.; Yang, X.Y.; Kang, Y.C.; Li, W.L.; Li, H.J.; Qin, S.H. Effects of Nitrogen, Phosphorus and Potassium Combined Fertilisation on the Dry Matter Accumulation, Distribution and Yield of Potato Under Ridge and Furrow Film Mulch Cropping. Potato Resarch 2023, 66, 851–871. [Google Scholar] [CrossRef]
- Yan, S.C.; Wu, Y.; Fan, J.L.; Zhang, F.C.; Guo, J.J.; Zheng, J.; Wu, L.F. Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China. Agric. Water Manag. 2022, 271, 107782. [Google Scholar] [CrossRef]
- Madani, A.; Rad, A.; Pazoki, A.; Nourmohammadi, G.; Zarghami, R. Wheat (Triticum aestivum L.) grain filling and dry matter partitioning responses to source: Sink modifications under postanthesis water and nitrogen deficiency. Acta Sci. Agron. 2010, 32, 145–151. [Google Scholar] [CrossRef]
- Delbaz, R.; Ebrahimian, H.; Abbasi, F.; Ghameshlou, A.N.; Liaghat, A.; Ranazadeh, D. A global meta-analysis on surface and drip fertigation for annual crops under different fertilization levels. Agric. Water Manag. 2023, 289, 108504. [Google Scholar] [CrossRef]
Soil Property | Value |
---|---|
Soil texture | Sandy loam |
Bulk density | 1.4 (g∙cm−3) |
pH | 6.4 |
Soil organic matter | 6.1 (g∙kg−1) |
Available nitrogen | 39.0 (mg∙kg−1) |
Available phosphorus | 30.4 (mg∙kg−1) |
Available potassium | 129.0 (mg∙kg−1) |
Treatment | The First Fertilization Rate (kg·hm−2) | The Second Fertilization Rate (kg·hm−2) | The Third Fertilization Rate (kg·hm−2) | The Fourth Fertilization Rate (kg·hm−2) | The Fifth Fertilization Rate (kg·hm−2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | |
F1 | 42.3 | 27.0 | 39.8 | 84.6 | 54.0 | 79.5 | 84.6 | 54.0 | 79.5 | 126.9 | 81.0 | 119.3 | 84.6 | 54.0 | 79.5 |
F2 | 33.9 | 21.6 | 31.8 | 67.8 | 43.2 | 63.6 | 67.8 | 43.2 | 63.6 | 101.7 | 64.8 | 95.4 | 67.8 | 43.2 | 63.6 |
F3 | 25.4 | 16.2 | 23.9 | 50.7 | 32.4 | 47.7 | 50.7 | 32.4 | 47.7 | 76.1 | 48.6 | 71.6 | 50.7 | 32.4 | 47.7 |
F4 | 17.0 | 10.8 | 15.9 | 33.9 | 21.6 | 31.8 | 33.9 | 21.6 | 31.8 | 50.9 | 32.4 | 47.7 | 33.9 | 21.6 | 31.8 |
F5 | 8.4 | 5.4 | 8.0 | 16.8 | 10.8 | 15.9 | 16.8 | 10.8 | 15.9 | 25.2 | 16.2 | 23.9 | 16.8 | 10.8 | 15.9 |
F0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Year | Treatment | Bulb Fresh Weight (g·plant−1) | Splitting Bulb Rate (%) | Small Bulb Rate (%) | Bolting Bulb Rate (%) | Marketable Bulb Rate (%) | Dry Matter Content of Bulbs (%) | Bulb Index |
---|---|---|---|---|---|---|---|---|
2022–2023 | F1 | 780.1 ± 50.5 ab | 1.2 ± 0.5 | 23.8 ± 3.3 ab | 0.1 ± 1.0 b | 75.0 ± 3.3 bc | 9.8 ± 0.3 a | 1.0 ± 0.2 a |
F2 | 913.4 ± 50.5 a | 0.0 | 13.1 ± 3.3 c | 0.2 ± 1.0 b | 86.7 ± 3.3 a | 9.8 ± 0.3 a | 0.9 ± 0.2 ab | |
F3 | 756.7 ± 50.5 b | 0.0 | 19.1 ± 3.3 abc | 0.2 ± 1.0 b | 80.8 ± 3.3 ab | 10.1 ± 0.3 a | 0.9 ± 0.2 ab | |
F4 | 799.2 ± 50.5 ab | 0.0 | 25.0 ± 3.3 ab | 0.8 ± 1.0 b | 74.2 ± 3.3 bc | 9.3 ± 0.3 a | 0.9 ± 0.2 c | |
F5 | 564.0 ± 50.5 c | 0.0 | 28.6 ± 3.3 a | 6.8 ± 1.0 a | 64.6 ± 3.3 c | 9.5 ± 0.3 a | 0.9 ± 0.2 abc | |
2023–2024 | F1 | 647.1 ± 40.1 ab | 15.3 ± 1.8 a | 6.3 ± 1.4 a | 0.9 ± 0.3 b | 77.5 ± 2.7 a | 8.0 ± 0.5 a | 0.8 ± 0.2 b |
F2 | 697.9 ± 40.1 a | 12.0 ± 1.8 a | 6.7 ± 1.4 a | 0.9 ± 0.3 b | 80.2 ± 2.7 a | 8.2 ± 0.5 a | 0.7 ± 0.2 b | |
F3 | 637.4 ± 40.1 ab | 14.7 ± 1.8 a | 4.7 ± 1.4 a | 1.5 ± 0.3 b | 79.3 ± 2.7 a | 8.4 ± 0.5 a | 0.7 ± 0.2 b | |
F4 | 543.0 ± 40.1 b | 12.6 ± 1.8 a | 5.3 ± 1.4 a | 1.7 ± 0.3 b | 80.4 ± 2.7 a | 8.4 ± 0.5 a | 0.7 ± 0.2 b | |
F5 | 395.4 ± 40.1 c | 11.5 ± 1.8 a | 3.6 ± 1.4 a | 8.5 ± 0.3 a | 76.5 ± 2.7 a | 8.9 ± 0.5 a | 0.9 ± 0.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, K.; Li, Y.; Yue, X.; Zhu, H.; Shi, L.; Fang, H. Optimizing Fertilization Rate to Achieve High Onion Bulb Yield and High Nitrogen Fertilizer Productivity in Dry-Hot Valley Region of Southwest China. Agronomy 2025, 15, 1822. https://doi.org/10.3390/agronomy15081822
Li J, Li K, Li Y, Yue X, Zhu H, Shi L, Fang H. Optimizing Fertilization Rate to Achieve High Onion Bulb Yield and High Nitrogen Fertilizer Productivity in Dry-Hot Valley Region of Southwest China. Agronomy. 2025; 15(8):1822. https://doi.org/10.3390/agronomy15081822
Chicago/Turabian StyleLi, Jiancha, Kun Li, Yilin Li, Xuewen Yue, Hongye Zhu, Liangtao Shi, and Haidong Fang. 2025. "Optimizing Fertilization Rate to Achieve High Onion Bulb Yield and High Nitrogen Fertilizer Productivity in Dry-Hot Valley Region of Southwest China" Agronomy 15, no. 8: 1822. https://doi.org/10.3390/agronomy15081822
APA StyleLi, J., Li, K., Li, Y., Yue, X., Zhu, H., Shi, L., & Fang, H. (2025). Optimizing Fertilization Rate to Achieve High Onion Bulb Yield and High Nitrogen Fertilizer Productivity in Dry-Hot Valley Region of Southwest China. Agronomy, 15(8), 1822. https://doi.org/10.3390/agronomy15081822