Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review
Simple Summary
Abstract
1. Introduction
2. Methodology
3. Non-Polymeric Components in Plastics: Key Additives and Their Functions
4. Accumulation of MPs in Terrestrial and Aquatic Environments and Associated Hazards in Animals
5. Exposure Pathways and Associated Hazards of MNPs
5.1. Via Ingestion
5.2. Via Inhalation
5.3. Through Dermal Exposure
6. Influence of MNPs in Propagation of AMR
7. MNPs as “Shuttle Trojan Horses” and Their Associated Risks
8. MPs Affect Plants, Leading to Shortage of Feed for Animals
Possible Sources of MPs in Agricultural Soil and Influences of MPs on Soil Structure, Function, Fertility, Soil Microbiota, and Ultimately Plants
9. Emerging Challenges Associated with MNPs
10. Strategies for Reducing MNPs and Their Potential Hazards
10.1. Eco-Sustainability Management Approaches for Reducing Plastic Waste
10.2. Technical Ways to Increase the Elimination Efficiency of MNP-Contaminated Waste Streams
11. Suggestions for Setting an Animal Health Hazard Assessment Index for MNP Exposure
- Multi-Route Exposure Quantification
- Species-Targeted Toxicokinetics and Toxicodynamics
- Effect-Based Biomarkers
- Bioaccumulation and Trophic Transfer
- Chemical Additives and Adsorbed Pollutants
- Composite Hazard Scoring System
- Probabilistic Risk Assessment
- Chronic and Cumulative Effects
12. Conclusions and Future Research Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Habumugisha, T.; Zhang, Z.; Ndayishimiye, J.C.; Nkinahamira, F.; Kayiranga, A.; Cyubahiro, E.; Rehman, A.; Yan, C.; Zhang, X. Evaluation and Optimization of the Influence of Silver Cluster Ions on the MALDI-TOF-MS Analysis of Polystyrene Nanoplastic Polymers. Anal. Methods 2022, 14, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.-K.; Brehm, J.; Völkl, M.; Jérôme, V.; Laforsch, C.; Freitag, R.; Greiner, A. Disentangling Biological Effects of Primary Nanoplastics from Dispersion Paints’ Additional Compounds. Ecotoxicol. Environ. Saf. 2022, 242, 113877. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Singh, E.; Singh, S.; Pandey, A.; Bhargava, P.C. Micro- and Nano-Plastics (MNPs) as Emerging Pollutant in Ground Water: Environmental Impact, Potential Risks, Limitations and Way Forward towards Sustainable Management. Chem. Eng. J. 2023, 459, 141568. [Google Scholar] [CrossRef]
- Rehman, A.; Huang, F.; Zhang, Z.; Habumugisha, T.; Yan, C.; Shaheen, U.; Zhang, X. Nanoplastic Contamination: Impact on Zebrafish Liver Metabolism and Implications for Aquatic Environmental Health. Environ. Int. 2024, 187, 108713. [Google Scholar] [CrossRef] [PubMed]
- Allouzi, M.M.A.; Tang, D.Y.Y.; Chew, K.W.; Rinklebe, J.; Bolan, N.; Allouzi, S.M.A.; Show, P.L. Micro (Nano) Plastic Pollution: The Ecological Influence on Soil-Plant System and Human Health. Sci. Total Environ. 2021, 788, 147815. [Google Scholar] [CrossRef] [PubMed]
- Rashed, A.H.; Yesilay, G.; Hazeem, L.; Rashdan, S.; AlMealla, R.; Kilinc, Z.; Ali, F.; Abdulrasool, F.; Kamel, A.H. Micro-and Nano-Plastics Contaminants in the Environment: Sources, Fate, Toxicity, Detection, Remediation, and Sustainable Perspectives. Water 2023, 15, 3535. [Google Scholar] [CrossRef]
- Habumugisha, T.; Zhang, Z.; Fang, C.; Yan, C.; Zhang, X. Uptake, Bioaccumulation, Biodistribution and Depuration of Polystyrene Nanoplastics in Zebrafish (Danio rerio). Sci. Total Environ. 2023, 893, 164840. [Google Scholar] [CrossRef] [PubMed]
- Habumugisha, T.; Zhang, Z.; Ndayishimiye, J.C.; Nkinahamira, F.; Uwizewe, C.; Cyubahiro, E.; Rehman, A.; Yan, C.; Zhang, X. Qualitative and Quantitative Analysis of Accumulation and Biodistribution of Polystyrene Nanoplastics in Zebrafish (Danio rerio) via Artificial Freshwater. Environ. Sci. Nano 2023, 10, 2141–2156. [Google Scholar] [CrossRef]
- Kiran, B.R.; Kopperi, H.; Venkata Mohan, S. Micro/Nano-Plastics Occurrence, Identification, Risk Analysis and Mitigation: Challenges and Perspectives. Rev. Environ. Sci. Bio/Technol. 2022, 21, 169–203. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ren, S.-Y.; Ni, H.-G. Incidence of Microplastics in Personal Care Products: An Appreciable Part of Plastic Pollution. Sci. Total Environ. 2020, 742, 140218. [Google Scholar] [CrossRef] [PubMed]
- Arif, Y.; Mir, A.R.; Zieliński, P.; Hayat, S.; Bajguz, A. Microplastics and Nanoplastics: Source, Behavior, Remediation, and Multi-Level Environmental Impact. J. Environ. Manag. 2024, 356, 120618. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Browne, M.A.; Halpern, B.S.; Hentschel, B.T.; Hoh, E.; Karapanagioti, H.K.; Rios-Mendoza, L.M.; Takada, H.; Teh, S.; Thompson, R.C. Classify Plastic Waste as Hazardous. Nature 2013, 494, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Kannabiran, K. A Critical Review on Effect of Macro, Micro and Nanoplastics Pollution on Human Health and Their Control Measures. Mater. Int. 2024, 6, 31. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.; Fauziah, S. Distribution and Importance of Microplastics in the Marine Environment: A Review of the Sources, Fate, Effects, and Potential Solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Napper, I.E.; Baroth, A.; Barrett, A.C.; Bhola, S.; Chowdhury, G.W.; Davies, B.F.R.; Duncan, E.M.; Kumar, S.; Nelms, S.E.; Niloy, M.N.H. The Abundance and Characteristics of Microplastics in Surface Water in the Transboundary Ganges River. Environ. Pollut. 2021, 274, 116348. [Google Scholar] [CrossRef] [PubMed]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and Fate of Microplastic Particles in Wastewater Treatment Plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Krifa, M.; Stevens, S.S. Cotton Utilization in Conventional and Non-Conventional Textiles—A Statistical Review. Agric. Sci. 2016, 7, 747–758. [Google Scholar] [CrossRef]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017. [Google Scholar]
- Jefferson, M. Whither Plastics?—Petrochemicals, Plastics and Sustainability in a Garbage-Riddled World. Energy Res. Soc. Sci. 2019, 56, 101229. [Google Scholar] [CrossRef]
- Thompson, R.C.; Moore, C.J.; vom Saal, F.S.; Swan, S.H. Plastics, the Environment and Human Health: Current Consensus and Future Trends. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.; Mason, S.A.; Stanek, S.K.; Willis-Norton, E.; Wren, I.F.; Box, C. Microplastic Contamination in the San Francisco Bay, California, USA. Mar. Pollut. Bull. 2016, 109, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, L.; Zhao, X.; Song, K. An Evaluation of the Effects of Nanoplastics on the Removal of Activated-Sludge Nutrients and Production of Short Chain Fatty Acid. Process Saf. Environ. Prot. 2021, 148, 1070–1076. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Nor, N.H.M.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in Freshwaters and Drinking Water: Critical Review and Assessment of Data Quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-M.; Yang, J.; Criddle, C.S. Microplastics Pollution and Reduction Strategies. Front. Environ. Sci. Eng. 2017, 11, 6. [Google Scholar] [CrossRef]
- Avio, C.G.; Cardelli, L.R.; Gorbi, S.; Pellegrini, D.; Regoli, F. Microplastics Pollution after the Removal of the Costa Concordia Wreck: First Evidences from a Biomonitoring Case Study. Environ. Pollut. 2017, 227, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, Y. Effects of Microplastics on Wastewater and Sewage Sludge Treatment and Their Removal: A Review. Chem. Eng. J. 2020, 382, 122955. [Google Scholar] [CrossRef]
- Tallec, K.; Huvet, A.; Di Poi, C.; González-Fernández, C.; Lambert, C.; Petton, B.; Le Goïc, N.; Berchel, M.; Soudant, P.; Paul-Pont, I. Nanoplastics Impaired Oyster Free Living Stages, Gametes and Embryos. Environ. Pollut. 2018, 242, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Diab, H.; Thompson, J. Microplastic Pollution: Chemical Characterization and Impact on Wildlife. Int. J. Environ. Res. Public Health 2023, 20, 1745. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Wang, Y.; Kulyar, M.F.-A.; Iqbal, M.; Lai, R.; Zhu, H.; Li, K. Environmental Microplastics Exposure Decreases Antioxidant Ability, Perturbs Gut Microbial Homeostasis and Metabolism in Chicken. Sci. Total Environ. 2023, 856, 159089. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.D.; Van Valkenburgh, B. The Dog–Human Connection. Anat. Rec. 2021, 304, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Luo, Y.; Li, R.; Zhou, Q.; Peijnenburg, W.J.G.M.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y. Effective Uptake of Submicrometre Plastics by Crop Plants via a Crack-Entry Mode. Nat. Sustain. 2020, 3, 929–937. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Huerta Lwanga, E.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and Micro- Plastics in Soil-Plant System: Effects of Plastic Mulch Film Residues on Wheat (Triticum aestivum) Growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Chang, Y.; Zhang, T.; Qiao, Y.; Klobučar, G.; Li, M. Toxicological Effects of Polystyrene Microplastics on Earthworm (Eisenia fetida). Environ. Pollut. 2020, 259, 113896. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, J.; Li, J. The Removal of Microplastics in the Wastewater Treatment Process and Their Potential Impact on Anaerobic Digestion Due to Pollutants Association. Chemosphere 2020, 251, 126360. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Schlummer, M. Legacy Additives in a Circular Economy of Plastics: Current Dilemma, Policy Analysis, and Emerging Countermeasures. Resour. Conserv. Recycl. 2020, 158, 104800. [Google Scholar] [CrossRef]
- Birnbaum, L.S.; Staskal, D.F. Brominated Flame Retardants: Cause for Concern? Environ. Health Perspect. 2004, 112, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Erythropel, H.C.; Maric, M.; Nicell, J.A.; Leask, R.L.; Yargeau, V. Leaching of the Plasticizer Di (2-Ethylhexyl) Phthalate (DEHP) from Plastic Containers and the Question of Human Exposure. Appl. Microbiol. Biotechnol. 2014, 98, 9967–9981. [Google Scholar] [CrossRef] [PubMed]
- Bilitewski, B.; Darbra, R.M.; Barceló, D. Global Risk-Based Management of Chemical Additives I: Production, Usage and Environmental Occurrence; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 18, ISBN 3642248764. [Google Scholar]
- Murphy, J. The Additives for Plastics Handbook: Antioxidants, Antistatics, Compatibilisers, Conductive Fillers, Flame-Retardants, Pigments, Plasticisers, Reinforcements: Classification, Data, Tables, Descriptions, Market Trends, Suppliers/Brand Names; Elsevier Advanced Technology: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Carbery, M.; O’Connor, W.; Palanisami, T. Trophic Transfer of Microplastics and Mixed Contaminants in the Marine Food Web and Implications for Human Health. Environ. Int. 2018, 115, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M.E.J.; Le Goïc, N.; Quillien, V.; Mingant, C.; Epelboin, Y. Oyster Reproduction Is Affected by Exposure to Polystyrene Microplastics. Proc. Natl. Acad. Sci. USA 2016, 113, 2430–2435. [Google Scholar] [CrossRef] [PubMed]
- Canniff, P.M.; Hoang, T.C. Microplastic Ingestion by Daphnia Magna and Its Enhancement on Algal Growth. Sci. Total Environ. 2018, 633, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Talsness, C.E.; Andrade, A.J.M.; Kuriyama, S.N.; Taylor, J.A.; Vom Saal, F.S. Components of Plastic: Experimental Studies in Animals and Relevance for Human Health. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2079–2096. [Google Scholar] [CrossRef] [PubMed]
- do Sul, J.A.I.; Costa, M.F. The Present and Future of Microplastic Pollution in the Marine Environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.S. Microplastic Ingestion by Zooplankton. Environ. Sci. Technol. 2013, 47, 6646–6655. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.; Loeschner, K. Detection of Nanoplastics in Food by Asymmetric Flow Field-Flow Fractionation Coupled to Multi-Angle Light Scattering: Possibilities, Challenges and Analytical Limitations. Anal. Bioanal. Chem. 2018, 410, 5603–5615. [Google Scholar] [CrossRef] [PubMed]
- Urli, S.; Corte Pause, F.; Crociati, M.; Baufeld, A.; Monaci, M.; Stradaioli, G. Impact of Microplastics and Nanoplastics on Livestock Health: An Emerging Risk for Reproductive Efficiency. Animals 2023, 13, 1132. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.; Lee, J.-Y.; Redwan, M. Animal Exposure to Microplastics and Health Effects: A Review. Emerg. Contam. 2024, 10, 100369. [Google Scholar] [CrossRef]
- Ward, C.P.; Reddy, C.M. We Need Better Data about the Environmental Persistence of Plastic Goods. Proc. Natl. Acad. Sci. USA 2020, 117, 14618–14621. [Google Scholar] [CrossRef] [PubMed]
- Nahiduzzaman, F.; Rahman, M.Z.; Akhi, M.A.J.; Manik, M.; Khatun, M.M.; Islam, M.A.; Matin, M.N.; Haque, M.A. Potential Biological Impacts of Microplastics and Nanoplastics on Farm Animals: Global Perspectives with Insights from Bangladesh. Animals 2025, 15, 1394. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Liu, X.; Hou, Q.; Wang, Z. From Natural Environment to Animal Tissues: A Review of Microplastics(Nanoplastics) Translocation and Hazards Studies. Sci. Total Environ. 2023, 855, 158686. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Galloway, T.S. Micro- and Nano-Plastics and Human Health. In Marine Anthropogenic Litter; Springer International Publishing: Cham, Switzerland, 2015; pp. 343–366. [Google Scholar]
- Schwarzfischer, M.; Rogler, G. The Intestinal Barrier—Shielding the Body from Nano-and Microparticles in Our Diet. Metabolites 2022, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Revel, M.; Châtel, A.; Mouneyrac, C. Micro (Nano) Plastics: A Threat to Human Health? Curr. Opin. Environ. Sci. Health 2018, 1, 17–23. [Google Scholar] [CrossRef]
- Hsu, W.-H.; Chen, Y.-Z.; Chiang, Y.-T.; Chang, Y.-T.; Wang, Y.-W.; Hsu, K.-T.; Hsu, Y.-Y.; Wu, P.-T.; Lee, B.-H. Polystyrene Nanoplastics Disrupt the Intestinal Microenvironment by Altering Bacteria-Host Interactions through Extracellular Vesicle-Delivered MicroRNAs. Nat. Commun. 2025, 16, 5026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, M.; Wang, L.; Gu, W.; Li, X.; Han, Z.; Fu, X.; Wang, X.; Li, X.; Su, Z. Continuous Oral Exposure to Micro- and Nanoplastics Induced Gut Microbiota Dysbiosis, Intestinal Barrier and Immune Dysfunction in Adult Mice. Environ. Int. 2023, 182, 108353. [Google Scholar] [CrossRef]
- Zhou, L.; Ran, L.; He, Y.; Huang, Y. Mechanisms of Microplastics on Gastrointestinal Injury and Liver Metabolism Disorder (Review). Mol. Med. Rep. 2025, 31, 98. [Google Scholar] [CrossRef] [PubMed]
- Enyoh, C.E.; Shafea, L.; Verla, A.W.; Verla, E.N.; Qingyue, W.; Chowdhury, T.; Paredes, M. Microplastics Exposure Routes and Toxicity Studies to Ecosystems: An Overview. Environ. Anal. Health Toxicol. 2020, 35, e2020004. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Feng, C.; Wu, Y.; Guo, X. Impacts of Nanoplastics on Bivalve: Fluorescence Tracing of Organ Accumulation, Oxidative Stress and Damage. J. Hazard. Mater. 2020, 392, 122418. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lai, H.; Huang, J.; Sun, L.; Mennigen, J.A.; Wang, Q.; Liu, Y.; Jin, Y.; Tu, W. Polystyrene Microplastics Decrease F–53B Bioaccumulation but Induce Inflammatory Stress in Larval Zebrafish. Chemosphere 2020, 255, 127040. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Li, Q.; Deng, J.; Ma, X.; Liao, X.; Zou, J.; Liao, J.; Huang, H.; Dai, H. Response Mechanism of Soil Leachate and Disinfection By-Product Formation to Extreme Precipitation Events under Continuous Drought Scenario. Sci. Total Environ. 2024, 916, 170123. [Google Scholar] [CrossRef] [PubMed]
- Duncan, K.D.; Hawkes, J.A.; Berg, M.; Clarijs, B.; Gill, C.G.; Bergquist, J.; Lanekoff, I.; Krogh, E.T. Membrane Sampling Separates Naphthenic Acids from Biogenic Dissolved Organic Matter for Direct Analysis by Mass Spectrometry. Environ. Sci. Technol. 2022, 56, 3096–3105. [Google Scholar] [CrossRef] [PubMed]
- Bilge, S.; Sınağ, A. Current Trends and Strategies in the Development of Green MXene-Based Photoelectrochemical Sensing Application. TrAC Trends Anal. Chem. 2023, 163, 117059. [Google Scholar] [CrossRef]
- Zhang, L.; Hong, X.; Yan, S.; Zha, J. Environmentally Relevant Concentrations of Fenvalerate Induces Immunotoxicity and Reduces Pathogen Resistance in Chinese Rare Minnow (Gobiocypris rarus). Sci. Total Environ. 2022, 838, 156347. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wang, T.; Zhan, X.; Hong, S.; Lin, L.; Tan, P.; Xiong, Y.; Zhao, H.; Zheng, Z.; Bi, R.; et al. Legacy and Novel Perfluoroalkyl Substances in Raw and Cooked Squids: Perspective from Health Risks and Nutrient Benefits. Environ. Int. 2023, 177, 108024. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.L.; Ng, C.T.; Zou, L.; Lu, Y.; Chen, J.; Bay, B.H.; Shen, H.-M.; Ong, C.N. Targeted Metabolomics Reveals Differential Biological Effects of Nanoplastics and NanoZnO in Human Lung Cells. Nanotoxicology 2019, 13, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C. Airborne Microplastics: Consequences to Human Health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric Transport and Deposition of Microplastics in a Remote Mountain Catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Li, B.; Dinkler, K.; Zhao, N.; Ran, X.; Sobhi, M.; Dong, R.; Müller, J.; Xiong, W.; Huang, G.; Guo, J.; et al. Response of Phosphorus Speciation to Organic Loading Rates and Temperatures during Anaerobic Co-Digestion of Animal Manures and Wheat Straw. Sci. Total Environ. 2022, 838, 155921. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Deng, F.; Tang, X.; Chen, W.; Zhou, R.; Zhao, T.; Mao, X.; Shu, F. Long-Term Effect of PBDE-99 Prenatal Exposure on Spermatogenic Injuries via the Dysregulation of Autophagy. J. Hazard. Mater. 2023, 452, 131234. [Google Scholar] [CrossRef] [PubMed]
- Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.A.; Dissanayake, A.; Galloway, T.S.; Lowe, D.M.; Thompson, R.C. Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environ. Sci. Technol. 2008, 42, 5026–5031. [Google Scholar] [CrossRef] [PubMed]
- Lademann, J.; Richter, H.; Schaefer, U.F.; Blume-Peytavi, U.; Teichmann, A.; Otberg, N.; Sterry, W. Hair Follicles–a Long-Term Reservoir for Drug Delivery. Skin Pharmacol. Physiol. 2006, 19, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Raszewska-Famielec, M.; Flieger, J. Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions—An Overview of Dermo-Cosmetic and Dermatological Products. Int. J. Mol. Sci. 2022, 23, 15980. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Stracke, F.; Hansen, S.; Schaefer, U.F. Nanoparticles and Their Interactions with the Dermal Barrier. Derm.-Endocrinol. 2009, 1, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L.; Germaine, K.; Dowling, D.N.; Kakouli-Duarte, T.; Cleary, J. Association of Potential Human Pathogens with Microplastics in Freshwater Systems. In Proceedings of the 2nd International Conference on Microplastic Pollution in the Mediterranean Sea; Springer: Berlin/Heidelberg, Germany, 2020; pp. 112–120. [Google Scholar]
- Luo, H.; Du, Q.; Zhong, Z.; Xu, Y.; Peng, J. Protein-Coated Microplastics Corona Complex: An Underestimated Risk of Microplastics. Sci. Total Environ. 2022, 851, 157948. [Google Scholar] [CrossRef] [PubMed]
- Brandts, I.; Teles, M.; Gonçalves, A.P.; Barreto, A.; Franco-Martinez, L.; Tvarijonaviciute, A.; Martins, M.A.; Soares, A.M.V.M.; Tort, L.; Oliveira, M. Effects of Nanoplastics on Mytilus galloprovincialis after Individual and Combined Exposure with Carbamazepine. Sci. Total Environ. 2018, 643, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Han, Y.; Sun, S.; Tang, Y.; Zhou, W.; Du, X.; Liu, G. Immunotoxicities of Microplastics and Sertraline, Alone and in Combination, to a Bivalve Species: Size-Dependent Interaction and Potential Toxication Mechanism. J. Hazard. Mater. 2020, 396, 122603. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, C.; García Beltrán, J.M.; Esteban, M.A.; Cuesta, A. In Vitro Effects of Virgin Microplastics on Fish Head-Kidney Leucocyte Activities. Environ. Pollut. 2018, 235, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Liu, M.; Song, Y.; Lu, S.; Hu, J.; Cao, C.; Xie, B.; Shi, H.; He, D. Polystyrene (Nano)Microplastics Cause Size-Dependent Neurotoxicity, Oxidative Damage and Other Adverse Effects in Caenorhabditis elegans. Environ. Sci. Nano 2018, 5, 2009–2020. [Google Scholar] [CrossRef]
- Lu, K.; Qiao, R.; An, H.; Zhang, Y. Influence of Microplastics on the Accumulation and Chronic Toxic Effects of Cadmium in Zebrafish (Danio rerio). Chemosphere 2018, 202, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Ahrendt, C.; Perez-Venegas, D.J.; Urbina, M.; Gonzalez, C.; Echeveste, P.; Aldana, M.; Pulgar, J.; Galbán-Malagón, C. Microplastic Ingestion Cause Intestinal Lesions in the Intertidal Fish Girella laevifrons. Mar. Pollut. Bull. 2020, 151, 110795. [Google Scholar] [CrossRef] [PubMed]
- Song, J.A.; Choi, C.Y.; Park, H.-S. Exposure of Bay Scallop Argopecten irradians to Micro-Polystyrene: Bioaccumulation and Toxicity. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 236, 108801. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.; Deng, Y.; Zhang, S.; Wolosker, M.B.; Zhu, Q.; Ren, H.; Zhang, Y. Accumulation of Different Shapes of Microplastics Initiates Intestinal Injury and Gut Microbiota Dysbiosis in the Gut of Zebrafish. Chemosphere 2019, 236, 124334. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-M.; Byeon, E.; Jeong, H.; Kim, M.-S.; Chen, Q.; Lee, J.-S. Different Effects of Nano- and Microplastics on Oxidative Status and Gut Microbiota in the Marine Medaka Oryzias melastigma. J. Hazard. Mater. 2021, 405, 124207. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-N.; Wen, B.; Zhu, J.-G.; Zhang, Y.-S.; Gao, J.-Z.; Chen, Z.-Z. Exposure to Microplastics Impairs Digestive Performance, Stimulates Immune Response and Induces Microbiota Dysbiosis in the Gut of Juvenile Guppy (Poecilia reticulata). Sci. Total Environ. 2020, 733, 138929. [Google Scholar] [CrossRef] [PubMed]
- Hämer, J.; Gutow, L.; Köhler, A.; Saborowski, R. Fate of Microplastics in the Marine Isopod Idotea emarginata. Environ. Sci. Technol. 2014, 48, 13451–13458. [Google Scholar] [CrossRef] [PubMed]
- Bergami, E.; Bocci, E.; Vannuccini, M.L.; Monopoli, M.; Salvati, A.; Dawson, K.A.; Corsi, I. Nano-Sized Polystyrene Affects Feeding, Behavior and Physiology of Brine Shrimp Artemia franciscana Larvae. Ecotoxicol. Environ. Saf. 2016, 123, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Tosetto, L.; Brown, C.; Williamson, J.E. Microplastics on Beaches: Ingestion and Behavioural Consequences for Beachhoppers. Mar. Biol. 2016, 163, 1–13. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Chen, Y.; Meng, X.; Dieketseng, M.Y.; Wang, X.; Yan, S.; Wang, B.; Zhou, L.; Zheng, G. A Neglected Risk of Nanoplastics as Revealed by the Promoted Transformation of Plasmid-borne Ampicillin Resistance Gene by Escherichia Coli. Environ. Microbiol. 2022, 24, 4946–4959. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Ma, J.; Li, G.; Rillig, M.C.; Zhu, Y.-G. Soil Plastispheres as Hotspots of Antibiotic Resistance Genes and Potential Pathogens. ISME J. 2022, 16, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Shi, J.; Zhang, N.; Pan, Z.; Xing, C.; Chen, X. Current Research Trends on Microplastics Pollution and Impacts on Agro-Ecosystems: A Short Review. Sep. Sci. Technol. 2022, 57, 656–669. [Google Scholar] [CrossRef]
- Zha, Y.; Li, Z.; Zhong, Z.; Ruan, Y.; Sun, L.; Zuo, F.; Li, L.; Hou, S. Size-Dependent Enhancement on Conjugative Transfer of Antibiotic Resistance Genes by Micro/Nanoplastics. J. Hazard. Mater. 2022, 431, 128561. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Sun, R.; Yu, P.; Cheng, Y.; Wu, W.; Bao, J.; Alvarez, P.J.J. UV-Aging of Microplastics Increases Proximal ARG Donor-Recipient Adsorption and Leaching of Chemicals That Synergistically Enhance Antibiotic Resistance Propagation. J. Hazard. Mater. 2022, 427, 127895. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wu, J.; Liu, B.; Ma, W.; Yang, S.; Cao, G. (Micro) Nanoplastics Promote the Risk of Antibiotic Resistance Gene Propagation in Biological Phosphorus Removal System. J. Hazard. Mater. 2022, 431, 128547. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, J.; Dai, H.; Zhao, Y.; Li, D.; Duan, W.; Guo, Y. Microplastics Affect the Ammonia Oxidation Performance of Aerobic Granular Sludge and Enrich the Intracellular and Extracellular Antibiotic Resistance Genes. J. Hazard. Mater. 2021, 409, 124981. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, L.; Yang, K.; Li, H.; Zhu, Y.-G.; Cui, L. Impact of Urbanization on Antibiotic Resistome in Different Microplastics: Evidence from a Large-Scale Whole River Analysis. Environ. Sci. Technol. 2021, 55, 8760–8770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, J.; Wu, J.; Wang, J.; Luo, Y. Potential Risks of Microplastics Combined with Superbugs: Enrichment of Antibiotic Resistant Bacteria on the Surface of Microplastics in Mariculture System. Ecotoxicol. Environ. Saf. 2020, 187, 109852. [Google Scholar] [CrossRef] [PubMed]
- Thushari, G.G.N.; Senevirathna, J.D.M. Plastic Pollution in the Marine Environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.; Lovell, C.R. Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol. Mol. Biol. Rev. 2016, 80, 91–138. [Google Scholar] [CrossRef] [PubMed]
- Bowley, J.; Baker-Austin, C.; Porter, A.; Hartnell, R.; Lewis, C. Oceanic Hitchhikers–Assessing Pathogen Risks from Marine Microplastic. Trends Microbiol. 2021, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.M.; Maldonado, G.C.; Castro, R.O.; de Sá Felizardo, J.; Cardoso, R.P.; Dos Anjos, R.M.; de Araújo, F.V. Dispersal of Potentially Pathogenic Bacteria by Plastic Debris in Guanabara Bay, RJ, Brazil. Mar. Pollut. Bull. 2019, 141, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, Migration and Toxicology of Microplastics in Soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef] [PubMed]
- Dey, T.K.; Uddin, M.E.; Jamal, M. Detection and Removal of Microplastics in Wastewater: Evolution and Impact. Environ. Sci. Pollut. Res. 2021, 28, 16925–16947. [Google Scholar] [CrossRef] [PubMed]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World—New Tricks for an Old Dog; IntechOpen: London, UK, 2019; Volume 10, pp. 70–90. [Google Scholar]
- Jiang, R.L.; Xiao, B.C.; Yu, N.; Chen, L.Q. Research Advance in Toxic Effects of PAHs on Aquatic Animals. Mar. Fish. 2014, 36, 372–384. [Google Scholar]
- Luca, M.; Chattipakorn, S.C.; Sriwichaiin, S.; Luca, A. Cognitive-Behavioural Correlates of Dysbiosis: A Review. Int. J. Mol. Sci. 2020, 21, 4834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Y.; Chen, X.; Jiang, X.; Li, J.; Yang, L.; Yin, X.; Zhang, X. Occurrence and Distribution of Microplastics in Organic Fertilizers in China. Sci. Total Environ. 2022, 844, 157061. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Zhu, C.; Wang, C.; Gu, C. Occurrence and Ecological Impacts of Microplastics in Soil Systems: A Review. Bull. Environ. Contam. Toxicol. 2019, 102, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Enyoh, C.E.; Verla, A.W. We Are Breathing Plastic; Don’t Just Look down, Look Up. In Proceedings of the 3rd IMSU World Environment Day International Conference, Owerri, Nigeria, 5 June 2019. [Google Scholar]
- Kumar, M.; Sun, Y.; Rathour, R.; Pandey, A.; Thakur, I.S.; Tsang, D.C.W. Algae as Potential Feedstock for the Production of Biofuels and Value-Added Products: Opportunities and Challenges. Sci. Total Environ. 2020, 716, 137116. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Ingraffia, R.; de Souza Machado, A.A. Microplastic Incorporation into Soil in Agroecosystems. Front. Plant Sci. 2017, 8, 1805. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhou, Q.; Yin, N.; Tu, C.; Luo, Y. Uptake and Accumulation of Microplastics in an Edible Plant. Chin. Sci. Bull. 2019, 64, 928–934. [Google Scholar] [CrossRef]
- Ebere, E.C.; Wirnkor, V.A.; Ngozi, V.E. Uptake of Microplastics by Plant: A Reason to Worry or to Be Happy? World Sci. News 2019, 131, 256–267. [Google Scholar]
- Liang, Y.; Lehmann, A.; Yang, G.; Leifheit, E.F.; Rillig, M.C. Effects of Microplastic Fibers on Soil Aggregation and Enzyme Activities Are Organic Matter Dependent. Front. Environ. Sci. 2021, 9, 650155. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Li, Y.; Powell, T.; Wang, X.; Wang, G.; Zhang, P. Microplastics as Contaminants in the Soil Environment: A Mini-Review. Sci. Total Environ. 2019, 691, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Reverón, R.; Álvarez-Méndez, S.J.; Kropp, R.M.; Perdomo-González, A.; Hernández-Borges, J.; Díaz-Peña, F.J. Microplastics in Agricultural Systems: Analytical Methodologies and Effects on Soil Quality and Crop Yield. Agriculture 2022, 12, 1162. [Google Scholar] [CrossRef]
- Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in Agricultural Soils: Sources, Effects, and Their Fate. Curr. Opin. Environ. Sci. Health 2022, 25, 100311. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. Response of Soil Dissolved Organic Matter to Microplastic Addition in Chinese Loess Soil. Chemosphere 2017, 185, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Chen, H.; Liao, Y.; Ye, Z.; Li, M.; Klobučar, G. Ecotoxicity and Genotoxicity of Polystyrene Microplastics on Higher Plant Vicia Faba. Environ. Pollut. 2019, 250, 831–838. [Google Scholar] [CrossRef] [PubMed]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xia, M.; Su, X.; Yuan, P.; Li, X.; Zhou, C.; Wan, Z.; Zou, W. Photolytic Degradation Elevated the Toxicity of Polylactic Acid Microplastics to Developing Zebrafish by Triggering Mitochondrial Dysfunction and Apoptosis. J. Hazard. Mater. 2021, 413, 125321. [Google Scholar] [CrossRef] [PubMed]
- Colzi, I.; Renna, L.; Bianchi, E.; Castellani, M.B.; Coppi, A.; Pignattelli, S.; Loppi, S.; Gonnelli, C. Impact of Microplastics on Growth, Photosynthesis and Essential Elements in Cucurbita pepo L. J. Hazard. Mater. 2022, 423, 127238. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Ossowicki, A.; Yang, X.; Lwanga, E.H.; Dini-Andreote, F.; Geissen, V.; Garbeva, P. Effects of Plastic Mulch Film Residues on Wheat Rhizosphere and Soil Properties. J. Hazard. Mater. 2020, 387, 121711. [Google Scholar] [CrossRef] [PubMed]
- Lozano, Y.M.; Rillig, M.C. Effects of Microplastic Fibers and Drought on Plant Communities. Environ. Sci. Technol. 2020, 54, 6166–6173. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, C.; Martín, C.; Costa, G.; Sánchez-Fortún, S.; Rodríguez, C.; de Lucas Burneo, J.J.; Nande, M.; Mengs, G.; Martín, M. Assessing the Role of Polyethylene Microplastics as a Vector for Organic Pollutants in Soil: Ecotoxicological and Molecular Approaches. Chemosphere 2022, 288, 132460. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A.; Liu, W.; Meng, L.; Lian, J.; Wang, Q.; Lian, Y.; Chen, C.; Wu, J. Effects of Polyester Microfibers (PMFs) and Cadmium on Lettuce (Lactuca sativa) and the Rhizospheric Microbial Communities: A Study Involving Physio-Biochemical Properties and Metabolomic Profiles. J. Hazard. Mater. 2022, 424, 127405. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Hou, H.; Liu, Y.; Yin, S.; Bian, S.; Liang, S.; Wan, C.; Yuan, S.; Xiao, K.; Liu, B.; et al. Microplastics Affect Rice (Oryza sativa L.) Quality by Interfering Metabolite Accumulation and Energy Expenditure Pathways: A Field Study. J. Hazard. Mater. 2022, 422, 126834. [Google Scholar] [CrossRef] [PubMed]
- López, M.D.; Toro, M.T.; Riveros, G.; Illanes, M.; Noriega, F.; Schoebitz, M.; García-Viguera, C.; Moreno, D.A. Brassica Sprouts Exposed to Microplastics: Effects on Phytochemical Constituents. Sci. Total Environ. 2022, 823, 153796. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wu, D.; Yu, Y.; Han, S.; Sun, L.; Li, M. Impact of Microplastics on Bioaccumulation of Heavy Metals in Rape (Brassica napus L.). Chemosphere 2022, 288, 132576. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Zhao, F.; Tian, L.; Ni, K.; Lu, Y.; Borah, P. Effects of Polystyrene Microplastics on the Seed Germination of Herbaceous Ornamental Plants. Sci. Total Environ. 2022, 809, 151100. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Xu, Y.; Liu, Y.; Wang, S.; Wang, C.; Dong, Y.; Song, Z. Effect of Polystyrene on Di-Butyl Phthalate (DBP) Bioavailability and DBP-Induced Phytotoxicity in Lettuce. Environ. Pollut. 2021, 268, 115870. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, T.; Guo, J.; Dong, Y.; Wang, Z.; Gong, L.; Li, X. Polystyrene Microplastics Disturb the Redox Homeostasis, Carbohydrate Metabolism and Phytohormone Regulatory Network in Barley. J. Hazard. Mater. 2021, 415, 125614. [Google Scholar] [CrossRef] [PubMed]
- Lozano, Y.M.; Lehnert, T.; Linck, L.T.; Lehmann, A.; Rillig, M.C. Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass. Front. Plant Sci. 2021, 12, 616645. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, R.; Li, Q.; Zhou, J.; Wang, G. Physiological Response of Cucumber (Cucumis sativus L.) Leaves to Polystyrene Nanoplastics Pollution. Chemosphere 2020, 255, 127041. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, X.; Hu, J.; Peng, J.; Qu, J. Ecotoxicity of Polystyrene Microplastics to Submerged Carnivorous Utricularia Vulgaris Plants in Freshwater Ecosystems. Environ. Pollut. 2020, 265, 114830. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Chatterjee, A.; Guchhait, R.; De, S.; Pramanick, K. Cytogenotoxic Potential of a Hazardous Material, Polystyrene Microparticles on Allium Cepa L. J. Hazard. Mater. 2020, 385, 121560. [Google Scholar] [CrossRef] [PubMed]
- Urbina, M.A.; Correa, F.; Aburto, F.; Ferrio, J.P. Adsorption of Polyethylene Microbeads and Physiological Effects on Hydroponic Maize. Sci. Total Environ. 2020, 741, 140216. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Gao, M.; Song, Z.; Qiu, W. Microplastic Particles Increase Arsenic Toxicity to Rice Seedlings. Environ. Pollut. 2020, 259, 113892. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-C.; Nazygul, J.; Li, M.; Wang, X.-L.; Jiang, L.-J. Effects of Microplastics on the Growth, Physiology, and Biochemical Characteristics of Wheat (Triticum aestivum). Huan Jing Ke Xue Huanjing Kexue 2019, 40, 4661–4667. [Google Scholar] [PubMed]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
- Kalčíková, G.; Gotvajn, A.Ž.; Kladnik, A.; Jemec, A. Impact of Polyethylene Microbeads on the Floating Freshwater Plant Duckweed Lemna Minor. Environ. Pollut. 2017, 230, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Puckowski, A.; Cwięk, W.; Mioduszewska, K.; Stepnowski, P.; Białk-Bielińska, A. Sorption of Pharmaceuticals on the Surface of Microplastics. Chemosphere 2021, 263, 127976. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhuang, W.; Cui, H.; Liu, M.; Gao, T.; Li, A.; Gao, Z. Interactions of Microplastics with Organic, Inorganic and Bio-Pollutants and the Ecotoxicological Effects on Terrestrial and Aquatic Organisms. Sci. Total Environ. 2022, 838, 156068. [Google Scholar] [CrossRef] [PubMed]
- Mammo, F.K.; Amoah, I.D.; Gani, K.M.; Pillay, L.; Ratha, S.K.; Bux, F.; Kumari, S. Microplastics in the Environment: Interactions with Microbes and Chemical Contaminants. Sci. Total Environ. 2020, 743, 140518. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Reddy, S.; Barathe, P.; Oak, U.; Shriram, V.; Kharat, S.S.; Govarthanan, M.; Kumar, V. Microplastic-Associated Pathogens and Antimicrobial Resistance in Environment. Chemosphere 2022, 291, 133005. [Google Scholar] [CrossRef] [PubMed]
- Lomonaco, T.; Manco, E.; Corti, A.; La Nasa, J.; Ghimenti, S.; Biagini, D.; Di Francesco, F.; Modugno, F.; Ceccarini, A.; Fuoco, R. Release of Harmful Volatile Organic Compounds (VOCs) from Photo-Degraded Plastic Debris: A Neglected Source of Environmental Pollution. J. Hazard. Mater. 2020, 394, 122596. [Google Scholar] [CrossRef] [PubMed]
- Prüst, M.; Meijer, J.; Westerink, R.H.S. The Plastic Brain: Neurotoxicity of Micro-and Nanoplastics. Part. Fibre Toxicol. 2020, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Windheim, J.; Colombo, L.; Battajni, N.C.; Russo, L.; Cagnotto, A.; Diomede, L.; Bigini, P.; Vismara, E.; Fiumara, F.; Gabbrielli, S. Micro-and Nanoplastics’ Effects on Protein Folding and Amyloidosis. Int. J. Mol. Sci. 2022, 23, 10329. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Yu, H.; Yi, J.; Lei, P.; He, J.; Ruan, J.; Xu, P.; Tao, R.; Jin, L.; Wu, W. Behavioral Studies of Zebrafish Reveal a New Perspective on the Reproductive Toxicity of Micro- and Nanoplastics. Toxics 2024, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Amereh, F.; Babaei, M.; Eslami, A.; Fazelipour, S.; Rafiee, M. The Emerging Risk of Exposure to Nano (Micro) Plastics on Endocrine Disturbance and Reproductive Toxicity: From a Hypothetical Scenario to a Global Public Health Challenge. Environ. Pollut. 2020, 261, 114158. [Google Scholar] [CrossRef] [PubMed]
- Ismanto, A.; Hadibarata, T.; Kristanti, R.A.; Maslukah, L.; Safinatunnajah, N.; Kusumastuti, W. Endocrine Disrupting Chemicals (EDCs) in Environmental Matrices: Occurrence, Fate, Health Impact, Physio-Chemical and Bioremediation Technology. Environ. Pollut. 2022, 302, 119061. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Akhtar, M.F.; Saleem, A.; Akhtar, B.; Sharif, A. Reproductive and Metabolic Toxic Effects of Polystyrene Microplastics in Adult Female Wistar Rats: A Mechanistic Study. Environ. Sci. Pollut. Res. 2023, 30, 63185–63199. [Google Scholar] [CrossRef] [PubMed]
- Maradonna, F.; Meccariello, R. EDCs: Focus on Reproductive Alterations in Mammalian and Nonmammalian Models. In Environmental Contaminants and Endocrine Health; Elsevier: Amsterdam, The Netherlands, 2023; pp. 89–108. [Google Scholar]
- Lu, L.; Wan, Z.; Luo, T.; Fu, Z.; Jin, Y. Polystyrene Microplastics Induce Gut Microbiota Dysbiosis and Hepatic Lipid Metabolism Disorder in Mice. Sci. Total Environ. 2018, 631, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Beriot, N.; Peek, J.; Zornoza, R.; Geissen, V.; Lwanga, E.H. Low Density-Microplastics Detected in Sheep Faeces and Soil: A Case Study from the Intensive Vegetable Farming in Southeast Spain. Sci. Total Environ. 2021, 755, 142653. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-J.; Han, J.-S.; Park, E.-J.; Seong, E.; Lee, G.-H.; Kim, D.-W.; Son, H.-Y.; Han, H.-Y.; Lee, B.-S. Repeated-Oral Dose Toxicity of Polyethylene Microplastics and the Possible Implications on Reproduction and Development of the next Generation. Toxicol. Lett. 2020, 324, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Li, Y.; Han, Y.; Fang, Y.; Xiang, H.; Zhao, Z.; Zhao, B.; Zhong, R. Polystyrene Exposure Induces Lamb Gastrointestinal Injury, Digestive Disorders and Inflammation, Decreasing Daily Gain, and Meat Quality. Ecotoxicol. Environ. Saf. 2024, 277, 116389. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wang, J.; Wei, X.; Chang, L.; Liu, S. Proinflammatory Properties and Lipid Disturbance of Polystyrene Microplastics in the Livers of Mice with Acute Colitis. Sci. Total Environ. 2021, 750, 143085. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, S.; Cheng, Z.; Xu, G.; Li, F.; Bu, Q.; Zhang, L.; Song, Y.; An, X. Endoplasmic Reticulum Stress Exacerbates Microplastics-Induced Toxicity in Animal Cells. Food Res. Int. 2024, 175, 113818. [Google Scholar] [CrossRef] [PubMed]
- Žalmanová, T.; Hošková, K.; Nevoral, J.; Adámková, K.; Kott, T.; Šulc, M.; Kotíková, Z.; Prokešová, Š.; Jílek, F.; Králíčková, M.; et al. Bisphenol S Negatively Affects the Meotic Maturation of Pig Oocytes. Sci. Rep. 2017, 7, 485. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Deng, T.; Duan, J.; Xie, J.; Yuan, J.; Chen, M. Exposure to Polystyrene Microplastics Causes Reproductive Toxicity through Oxidative Stress and Activation of the P38 MAPK Signaling Pathway. Ecotoxicol. Environ. Saf. 2020, 190, 110133. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Jeong, J.; Song, K.S.; Sung, J.H.; Oh, S.M.; Choi, J. Inhalation Toxicity of Polystyrene Micro(Nano)Plastics Using Modified OECD TG 412. Chemosphere 2021, 262, 128330. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Chen, R.; Wang, M.; Bai, R.; Cui, X.; Liu, Y.; Wu, C.; Chen, C. Perturbation of Gut Microbiota Plays an Important Role in Micro/Nanoplastics-Induced Gut Barrier Dysfunction. Nanoscale 2021, 13, 8806–8816. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Wang, X.; Yang, L.; Zhang, J.; Wang, N.; Xu, F.; Hou, Y.; Zhang, H.; Zhang, L. Polystyrene Microplastics Cause Granulosa Cells Apoptosis and Fibrosis in Ovary through Oxidative Stress in Rats. Toxicology 2021, 449, 152665. [Google Scholar] [CrossRef] [PubMed]
- Nandinee, D.; Mishra, G.; Shukla, A.; Soni, N.L.; Sharma, P. Bisphenol A and Cattle Fertility. Pharma Innov. 2021, 10, 524–528. [Google Scholar] [CrossRef]
- Hou, J.; Lei, Z.; Cui, L.; Hou, Y.; Yang, L.; An, R.; Wang, Q.; Li, S.; Zhang, H.; Zhang, L. Polystyrene Microplastics Lead to Pyroptosis and Apoptosis of Ovarian Granulosa Cells via NLRP3/Caspase-1 Signaling Pathway in Rats. Ecotoxicol. Environ. Saf. 2021, 212, 112012. [Google Scholar] [CrossRef] [PubMed]
- Shengchen, W.; Jing, L.; Yujie, Y.; Yue, W.; Shiwen, X. Polystyrene Microplastics-Induced ROS Overproduction Disrupts the Skeletal Muscle Regeneration by Converting Myoblasts into Adipocytes. J. Hazard. Mater. 2021, 417, 125962. [Google Scholar] [CrossRef] [PubMed]
- Estrela, F.N.; Guimarães, A.T.B.; da Costa Araújo, A.P.; Silva, F.G.; Da Luz, T.M.; Silva, A.M.; Pereira, P.S.; Malafaia, G. Toxicity of Polystyrene Nanoplastics and Zinc Oxide to Mice. Chemosphere 2021, 271, 129476. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yan, Z.; Shen, R.; Huang, Y.; Ren, H.; Zhang, Y. Enhanced Reproductive Toxicities Induced by Phthalates Contaminated Microplastics in Male Mice (Mus musculus). J. Hazard. Mater. 2021, 406, 124644. [Google Scholar] [CrossRef] [PubMed]
- Fournier, S.B.; D’Errico, J.N.; Adler, D.S.; Kollontzi, S.; Goedken, M.J.; Fabris, L.; Yurkow, E.J.; Stapleton, P.A. Nanopolystyrene Translocation and Fetal Deposition after Acute Lung Exposure during Late-Stage Pregnancy. Part. Fibre Toxicol. 2020, 17, 55. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ding, Y.; Cheng, X.; Sheng, D.; Xu, Z.; Rong, Q.; Wu, Y.; Zhao, H.; Ji, X.; Zhang, Y. Polyethylene Microplastics Affect the Distribution of Gut Microbiota and Inflammation Development in Mice. Chemosphere 2020, 244, 125492. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.K.; Jain, M.; Kataria, N.; Sahoo, P.K.; Garg, V.K.; Yadav, A. Microplastics in Multimedia Environment: A Systematic Review on Its Fate, Transport, Quantification, Health Risk, and Remedial Measures. Groundw. Sustain. Dev. 2023, 20, 100889. [Google Scholar] [CrossRef]
- Solis, M.; Silveira, S. Technologies for Chemical Recycling of Household Plastics—A Technical Review and TRL Assessment. Waste Manag. 2020, 105, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Bolan, S.; Padhye, L.P.; Konarova, M.; Foong, S.Y.; Lam, S.S.; Wagland, S.; Cao, R.; Li, Y.; Batalha, N. Retrieving Back Plastic Wastes for Conversion to Value Added Petrochemicals: Opportunities, Challenges and Outlooks. Appl. Energy 2023, 345, 121307. [Google Scholar] [CrossRef]
- Yu, F.; Hu, X. Machine Learning May Accelerate the Recognition and Control of Microplastic Pollution: Future Prospects. J. Hazard. Mater. 2022, 432, 128730. [Google Scholar] [CrossRef] [PubMed]
- Syberg, K.; Nielsen, M.B.; Oturai, N.B.; Clausen, L.P.W.; Ramos, T.M.; Hansen, S.F. Circular Economy and Reduction of Micro (Nano) Plastics Contamination. J. Hazard. Mater. Adv. 2022, 5, 100044. [Google Scholar] [CrossRef]
- Cholewinski, A.; Dadzie, E.; Sherlock, C.; Anderson, W.A.; Charles, T.C.; Habib, K.; Young, S.B.; Zhao, B. A Critical Review of Microplastic Degradation and Material Flow Analysis towards a Circular Economy. Environ. Pollut. 2022, 315, 120334. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.S.; Veltman, K.; Huijbregts, M.A.J.; Verones, F.; Hertwich, E.G. Towards a Meaningful Assessment of Marine Ecological Impacts in Life Cycle Assessment (LCA). Environ. Int. 2016, 89, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhou, Y.; Liang, C.; Song, J.; Yu, S.; Liao, G.; Zou, P.; Tang, K.H.D.; Wu, C. Airborne Microplastics: Occurrence, Sources, Fate, Risks and Mitigation. Sci. Total Environ. 2023, 858, 159943. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Hiraga, K.; Taniguchi, I.; Oda, K. Ideonella Sakaiensis, PETase, and MHETase: From Identification of Microbial PET Degradation to Enzyme Characterization. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 648, pp. 187–205. ISBN 0076-6879. [Google Scholar]
- Zhou, Y.; Kumar, M.; Sarsaiya, S.; Sirohi, R.; Awasthi, S.K.; Sindhu, R.; Binod, P.; Pandey, A.; Bolan, N.S.; Zhang, Z. Challenges and Opportunities in Bioremediation of Micro-Nano Plastics: A Review. Sci. Total Environ. 2022, 802, 149823. [Google Scholar] [CrossRef] [PubMed]
- Khaldoon, S.; Lalung, J.; Maheer, U.; Kamaruddin, M.A.; Yhaya, M.F.; Alsolami, E.S.; Alorfi, H.S.; Hussein, M.A.; Rafatullah, M. A Review on the Role of Earthworms in Plastics Degradation: Issues and Challenges. Polymers 2022, 14, 4770. [Google Scholar] [CrossRef] [PubMed]
- Helmberger, M.S.; Miesel, J.R.; Tiemann, L.K.; Grieshop, M.J. Soil Invertebrates Generate Microplastics from Polystyrene Foam Debris. J. Insect Sci. 2022, 22, 21. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.K.; Hadi, M.; Lin, C.; Nguyen, H.-L.; Thai, V.-B.; Hoang, H.-G.; Vo, D.-V.N.; Tran, H.-T. Microplastics in Sewage Sludge: Distribution, Toxicity, Identification Methods, and Engineered Technologies. Chemosphere 2022, 308, 136455. [Google Scholar] [CrossRef] [PubMed]
- Naz, S.; Chatha, A.M.M.; Khan, N.A.; Ullah, Q.; Zaman, F.; Qadeer, A.; Khan, I.M.; Danabas, D.; Kiran, A.; Skalickova, S.; et al. Unraveling the Ecotoxicological Effects of Micro and Nano-Plastics on Aquatic Organisms and Human Health. Front. Environ. Sci. 2024, 12, 1390510. [Google Scholar] [CrossRef]
- Christian, E.E.; Wang, Q.; Andrew, W.V.; Tanzin, C. Index Models for Ecological and Health Risks Assessment of Environmental Micro-and Nano-Sized Plastics. AIMS Environ. Sci. 2022, 9, 51–65. [Google Scholar] [CrossRef]
- Parthipan, P.; Sathish, V.; Rajasekar, A.; Vickram, A.S.; Thanigaivel, S.; Subbaiya, R.; Karmegam, N.; Kim, W.; Govarthanan, M.; Seralathan, K. Impact Assessment and Evaluation of Micro(Nano)Plastics Exposure in the Human Health System: A Review. Adv. Sustain. Syst. 2025, e00143. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Andrady, A.L.; Duarte, A.C.; Rocha-Santos, T. A One Health Perspective of the Impacts of Microplastics on Animal, Human and Environmental Health. Sci. Total Environ. 2021, 777, 146094. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.; Roy, A.; Popek, R.; Sarkar, A. Micro- and Nano- Plastic Degradation by Bacterial Enzymes: A Solution to “White Pollution”. Microbe 2024, 3, 100072. [Google Scholar] [CrossRef]
- Cai, Z.; Li, M.; Zhu, Z.; Wang, X.; Huang, Y.; Li, T.; Gong, H.; Yan, M. Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms 2023, 11, 1661. [Google Scholar] [CrossRef] [PubMed]
- Zeenat; Elahi, A.; Bukhari, D.A.; Shamim, S.; Rehman, A. Plastics Degradation by Microbes: A Sustainable Approach. J. King Saud Univ.-Sci. 2021, 33, 101538. [Google Scholar] [CrossRef]
- Mariam, I.; Rova, U.; Christakopoulos, P.; Matsakas, L. Data-Driven Synthetic Microbes for Sustainable Future. NPJ Syst. Biol. Appl. 2025, 11, 74. [Google Scholar] [CrossRef] [PubMed]
Exposure Route | Humans: Main Hazards | Animals: Main Hazards | Key References |
---|---|---|---|
Ingestion |
|
| [54,55,56,57,58,59,60,61,62,63,64,65,66] |
Inhalation |
|
| [61,67,68,69,70,71] |
Dermal |
|
| [70,72,73,74,75,76,77,78,79] |
Organism | Plastic Type and Size | MPs Concentration | Suspension | Detection Method and Sample Analyzed | Effects on Aquatic Animals | Reference |
---|---|---|---|---|---|---|
Zebrafish (Danio rerio) (n = 20) | PS * and BSA *, 100 nm, 5 μm, and 200 μm | 10 g/L | Freshwater | Microscope, intestine | Altered gene expression and signaling processes of macrophages, impaired food consumption, and impaired function of Keap1-Nrf2-ARE signaling pathway in intestine | [80] |
Oyster (Ostreidae) (n = 25) | PS, 50–500 nm and 2 μm | 0.1, 1, 10, and 25 µg/mL | Ultrapure water | Raman microspectroscopy, gametes, embryos, and larvae | Reduced fertilization and larval hatching, genotoxicity | [27] |
Mussels (Mytiulus galloprovincialis) (n = 30) | PS, 110 nm | 0.005, 0.05, 0.5, 5, and 50 mg L−1 | Artificial saltwater | NanoDrop spectrophotometer, digestive glands, gills, and hemolymph | Affects glutathione transferase and isocitrate dehydrogenase activity, increased atresia of oocytes | [81] |
Mollusk (Tegillarca granosa) (n = 720) | PS, 500 nm and 30 μm | 25 mg/mL | 10 mL aqueous suspension without additives | HPLC *, immune system, and body tissues | Decrease total hemocyte count, phagocytosis, and ATP content, and increase Caspase 3 activity; increase immunotoxicity, disturbing neuroendocrine system as well | [82] |
European sea bass (Dicentrarchus labrax) (n = 6) | PVC *, PE *, 40–150 μm | 1, 10, and 100 mg mL−1 | Seawater aquaria (250 L) | qPCR *, respiratory system | Decrease phagocytic capacity; increase respiratory burst activity of HKLs, affecting the immune cells. | [83] |
Nematodes (Caenorhabditis elegans) (n = 30) | PS, 1.0–5.0 μm | 1 mg L−1 | K-medium * | Stereomicroscope and Motic microscope, intestine, and physical parameters | Reduced body length, survival rate, overall life span; raised number of head thrashes, mRNA gene expressions, and crawling speed | [84] |
Fish (Danio rerio) (n = 100) | PS, 5 μm | 20 and 200 μg/L | Ultrapure water | qRT-PCR, zebrafish tissues (livers, guts, and gills) | Increased accumulation in gill, intestines, and liver; infiltration in hepatocytes; cilia abnormalities in enterocytes; and fuzzy structure in gill filament cells | [85] |
Juvenile intertidal fish (Girella laevifrons) (n = 30) | PS, 8 μm | 0.15 g | Pellets |
Microscope,
intestine | Histopathological alterations, including leukocyte infiltration, villus cell death, and hyperemia leukocyte infiltration | [86] |
Shellfish (Argopecten irradians) (n = 40) | PS, 1 μm | 10, 100, and 1000 beads/mL | 80 L of aerated and filtered seawater | Fluorescence microscope, digestive tract | Increased functioning of antioxidant enzymes H2O2, SOD, and CAT, inducing oxidative damage in bivalves; increasing oxidative stress may result in histological deterioration | [87] |
Zebrafish (Danio rerio)
(n = 270) | MPs, 20–200 μm | 20 mg/L | Culture water |
Fluorescence spectrometer, microscope,
intestine | Decreased mucus secretion and D-lactate levels, increased superoxide dismutase activity, caused mucosal injury, enhanced permeability, inflammation, metabolic disturbance, and microbial dysbiosis | [88] |
Medaka (Oryzias. melastigma) (n = 5) | PS, 50 nm and 45 μm | 10 μg/mL | Artificial sea water |
DNA extraction
Gut and liver tissue | Increased mucus secretion, gut D-lactate levels, and gut diamine oxidase levels; increased ROS and decreased SOD and CAT | [89] |
Juvenile guppy (Poecilia reticulata) (n = 180) | PS, 32–40 μm | 100 μg/L (MP-100) and 1000 μg/L | Freshwater | Spectrophotometer, PCR, intestine | Decreased digestive activity of enzymes, elevated goblet cell production and gut secretion of TNFα, IL6, and IFNγ; impaired digestive performance and induced microbiota dysbiosis in gut | [90] |
Mussel (Mytiulus galloprovincialis) (n = 32) | PS, 110 nm | 0.005, 0.05, 0.5, 5, and 50 mg L−1 | Artificial saltwater | Microscope, digestive glands, and gills | Elevated Hsp70 mRNA levels in digestive glands, lipid peroxidation, total oxidant status, RNA damage; influenced cell-tissue repair and immune system | [81] |
Juvenile isopods (I. emarginata) (n = 22) | PS, 10 µm | 10 mL | Demineralized water (aqua dem.) | Microscope, gut | Do not block gastrointestinal organs of isopods and do not have harmful impacts on their life history aspects | [91] |
Brine shrimp (Artemia franciscana) | PS and NPs *, 40 nm | 50 and 100 mg/ml | Natural sea water | Fluorescent microscope, gut | Impaired food uptake, motility, and multiple molting of brine shrimp larvae | [92] |
Beachhoppers (Platorchestia smithi) | PE, 38–45 µm | 1 μL | NSW | Gas chromatograph | Impact on survival and behavior, reduced nutrition, and decline in capability of individuals to respond to diverse biotic and abiotic signals | [93] |
Plants Specie | Plastic Type and Size | Concentration | Exposure | Culture Method | Effects on Plants | Reference |
---|---|---|---|---|---|---|
Corn (Zea mays L.) | PE *, 212–300 μm | 0.1% (w/w) | 28 days | Soil culture | Adversely impact maize and ecology of soil bacteria, and influence antioxidant gene expression | [130] |
Lettuce (Lactuca sativa) | PMFs *, 2.55 mm | 0.1%, 0.2% (w/w) | 59 days | Soil culture | Negatively impacted plant shoot length, photosynthesis, and chlorophyll content, and altered nitrogen and carbohydrate content as well. | [131] |
Rice (Oryza sativa L.) | PS *, 135.9–530 μm | 0.01%, 0.5% (w/w) | 142 days | Soil culture | Affected metabolite accumulation and energy expenditure of rice | [132] |
Cabbage (Brassica oleracea), Radish (Raphanus sativus cv.) | PE *, <1 mm | 0.01, 0.1, 1, 10, 100, 1000, 10,000 mg/L | 12 days | Hydroponics | Induce oxidative stress in radish buds, which leads to increase in ROS *, inhibits nutrient absorption by seedlings, and increases anthocyanin content | [133] |
Rapeseed (Brassica napus L.) | PE, 293 μm | 0.001%, 0.01%, 0.1% (w/w) | 60 days | Soil culture | Reduced overall chlorophyll concentration in cabbage and influenced sugar synthesis, increased accumulation of heavy metals, and reduced beneficial components in rapeseed plants | [134] |
Pumpkin (Cucurbita pepo L.) | PP, PE and PVC *, 40–50 μm | 0.02%, 0.1%, 0.2% (w/w) | 28 days | Soil culture | Impaired root and especially shoot growth; reduction in leaf size, chlorophyll content, and photosynthetic efficiency | [127] |
White clover (Trifolium repens), and rose balsam (Impatiens balsamina) | PS, 2 μm, 80 nm | 0, 10, 50, 100, 500 mg/L | 7 days | Hydroponics | Germination rates of these plants dropped significantly as PS concentration increased | [135] |
Lettuce (Lactuca sativa L.) | PS, 0.1–1 μm, >10 μm | 0.25, 0.5, 1 mg/mL | 28 days | Hydroponics | Caused physical blocking of root pores, produced phototoxicity, and drastically reduced MBP * and DBP * accumulation in leaves, lettuce, and roots. | [136] |
Barley (Hordeum vulgare L.) | PS (5.64 ± 0.07 μm), PMMA * (96.75 ± 0.58 nm) | 2 g/mL | 14 days | Hydroponics | Limited development of rootlets, elevated ROS levels, and altered functions of ROS metabolism enzymes in roots and leaves | [137] |
Wild carrot (Daucus carota) | PA, PP, LDPE and PS, <5 mm or <5 mm2 | 0.1%, 0.2%, 0.3%, 0.4% (w/w) | 28 days | Soil culture | All shapes of MPs boosted plant biomass | [138] |
Cucumber (Cucumis sativus L.) | PS, 100, 300, 500, 700 nm | 50 mg/L | 21 days | Hydroponics | Transfer of PS to underground section through cucumber stem, where PS decomposition may release benzene, hence impacting chlorophyll and carbohydrate metabolism | [139] |
Greater Bladderwort (Utricularia vulgaris) | PS, 1, 2, 5 μm | 15, 70, 140 mg/L | 7 days | Hydroponics | Caused changes in composition of pigment and protein, and produced severe ecological toxicity and oxidative damage | [140] |
Onion (Allium cepa L.) | PS, 100 nm | 25, 50, 100, 200, 400 mg/L | 30 days | Hydroponics | Significantly decreased root length and produced cytogenetic toxicity by enhancing production of ROS and suppressing cdc2 expression | [141] |
Maize (Zea mays L.) | PE, 3 μm | 0.0125, 100 mg/L | 10, 15 days | Hydroponics | Caused significant decrease in nitrogen content, transpiration, and production of maize | [142] |
Red rice (Oryza sativa L.) | PS, PTFE *, 10 μm | 0.04, 0.1, 0.2 g/L | 10 days | Hydroponics | High concentration lowered rice biomass, gross photosynthetic rate, and chlorophyll concentration, and produced oxidative burst in rice tissues | [143] |
Wheat (Triticum aestivum L.) | PS, 100 nm and 5 μm | Hydroponics: (0, 10, 20, 50, 100, 200 mg/L), soil culture: (0, 1, 10, 50, 100 mg/kg) | Soil: 6 days, culture: 10 days | Soil culture and hydroponics | In hydroponics test, excessive concentrations reduced wheat root and stem elongation; in condition of soil culture, photosynthesis of wheat leaves impaired, and biosynthesis of protein hampered | [144] |
Perennial ryegrass (Lolium perenne) | HDPE *, PLA *, 102.6 μm | 0.001%, 0.1% (w/w) | 30 days | Soil culture | Decreased germination rate of seedlings and height of shoots | [145] |
Duckweed (Lemna minor) | PE, 4–12 μm | 0, 10, 50, 100 mg/L | 7 days | Hydroponics | Inhibited root development and impaired viability of root tissue cells | [146] |
Mammals | Plastic Type and Size | Concentration | Exposure Days | Route | Adverse Effects | Reference |
---|---|---|---|---|---|---|
Male ICR mice | PS *, 0.5 and 50 mm | 0.024 and 0.24 mg/kg/day | 5 weeks | Replacement of water in drinkers with PS suspension | Decrease in BW *, decreased Klf4 and Muc1 expression in colon and mucin secretion, considerable modification in composition of intestinal microbiota, and lipid metabolism abnormalities in liver | [160] |
Sheep | MPs *, 10 to 100 μm | 2 × 103 particles kg−1 | N/A | Via soil | Caused digestive disorders, including persistent ruminal tympany and gastrointestinal blockage, resulting in impaired development | [161] |
ICR mice | PE *, 40–48 mm | 3.75, 15, and 60 mg/kg/day | 13 weeks | Infusion of PE * suspension through a gastric tube | MP-induced immune system reactions in animals: In both sexes of mice, proportion of neutrophils and IgA in blood was boosted in females, and subpopulation composition of lymphocytes in spleen changed; in animals administered with MP, percentage of live births per female reduced dramatically | [162] |
Lambs | MPs, 25 μm, 50 μm and 100 μm | 100 mg/day | 56–60 days | Supplemented with diet | Inhibited lambs’ digestive function, significantly impacted blood and organ health status, decreasing daily average growth, decreasing hemoglobin and levels of albumin in lamb blood, initiating oxidative stress, and causing serious harm to jejunum | [163] |
Male C57 mice | PS, 5 mm | 0.12 mg/kg/day | 7 days | Replaced water in drinkers with MP concentration | Caused acute colitis, produced dystrophic alterations in liver | [164] |
Goat | MPs, 5 mm | 0∼1.6 mg/mL | N/A | In diet | Decreased modified cell morphology and cell viability, disrupted organelle integrity, caused mitochondrial dysfunction and oxidative stress | [165] |
Pig | BPA, 3 mm | 3 nM, 300 nM, or 30 μM | 48 h | In vitro culture | Effected oocyte maturation, cytoskeletal disruption, changed mRNA levels and cumulus expansion. | [166] |
Male Balb/c mice | PS 5–5.9 mm | 0.4; 4 and 40 mg/kg/da | 6 weeks | Administration of MP suspension through a gastric tube | MPs reduce quantity and motility of spermatozoa, increase percentage of malformed spermatozoa, decrease activity of succinate dehydrogenase and lactate dehydrogenase, lower testosterone levels, and lead to oxidative stress | [167] |
Male and female Sprague Dawley rats | PS, 0.1 mm (NP) | 0.75 × 105, 1.5 × 105 and 3 × 105 particles/sm3 | 12 weeks | Inhalation | Increase in overall weight of heart, drop in quantity of lymphocytes and leukocytes in blood, and decline in inspiration time; additionally, TGF-β *, TNF-α *, and cytokine levels shown to rise in lung tissue | [168] |
Male C57/B6 mice | 0.07 mm (NP) and 5 mm | 0.2 and 2 mg/kg/day | 4 weeks | Suspension through gastric tube | Caused damage to gastrointestinal tract, reduction in expression of tight junction proteins in intestine epithelium, and significant alterations in intestinal microbiota | [169] |
Female Wistar rats | PS, 0.5 mm | 0.06, 0.6, and 6 mg/kg/day | 13 weeks | Replaced water in drinkers with MP concentration | MPs identified in ovarian granulosa cells induce apoptosis and occurrence of ovarian fibrosis | [170] |
Cattle | BPA, 1400 um | 5.8–105.8 ppb and 3.3–30 ppm | Water bodies, soil, and atmosphere | Food, water, inhalation (air), and dermal contact | Reduced cleavage rate and embryo development at blastocyst stage along with modifications to gene expression in cattle | [171] |
Male ICR mice | PE, 5 mm | 0.024, 0.24, and 2.4 mg/kg/da | 5 weeks | Replaced water in drinkers with MP concentration | Less viable spermatozoa in epididymis and higher levels of pro-inflammatory markers (IL-1β * and NF-κB *) | [172] |
Male C57BL/6 mice (30) | PS, 1–10 mm and 50–100 mm | 2.4 mg/kg/day | 8 weeks | Replaced water in drinkers with MP concentration | Alterations in intestinal mucosa affect intestinal flora of hares with inflammation and development of acute intestinal infection, as well as modifications in intestinal mucosa, leading to loss of weight, diarrhea, and death | [173] |
Male Swiss mice | PS 0.023 mm (NP) | 14.6 ng/kg | 3 days | Intraperitoneal injection of MP | MPs cause cognitive deficits, violations of redox balance, and reduction in acetylcholinesterase activity in brain | [174] |
Male CD-1 mice | PE, 0.4–5 mm | 100 mg/kg/day | 4 weeks | Suspension through gastric tube | MPs can penetrate mice’s testes, and MPs containing phthalates accumulate in the testes, liver, and intestines, also increasing reproductive toxicity | [175] |
Pregnant female rat | PS, 0.02 mm | 2.64 × 1014 MP particle | 19th day | Intratracheal administration | Influences heart, maternal lungs, and spleen; found in lungs, liver, placenta, heart, brain, and kidneys of fetuses, indicating MP translocation from mother’s lungs to fetal tissue in late pregnancy | [176] |
Male C57BL/6 mice | PE 10–150 mm | 0.24, 2.4, and 24 mg/kg/day | 5 weeks | MP in food | Alteration in composition of intestinal microbiota, rise in amount of IL-1a * in blood serum, and increase in amount of Treg cells and Th17 * all produce inflammation in intestinal tract | [177] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Xu, C.; Li, K. Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review. Vet. Sci. 2025, 12, 688. https://doi.org/10.3390/vetsci12080688
Ali M, Xu C, Li K. Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review. Veterinary Sciences. 2025; 12(8):688. https://doi.org/10.3390/vetsci12080688
Chicago/Turabian StyleAli, Munwar, Chang Xu, and Kun Li. 2025. "Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review" Veterinary Sciences 12, no. 8: 688. https://doi.org/10.3390/vetsci12080688
APA StyleAli, M., Xu, C., & Li, K. (2025). Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review. Veterinary Sciences, 12(8), 688. https://doi.org/10.3390/vetsci12080688