Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3471 KiB  
Article
Spillover of Trypanosoma lewisi and Trypanosoma musculi Allied Trypanosomes from Rodents to Bats in the Roofs of Human Dwellings: Synanthropic Bats as a Potential New Source of Human Opportunistic Trypanosomes
by Evaristo Villalba-Alemán, Luciana Lima, Paola Andrea Ortiz, Bruno Rafael Fermino, Gladys Elena Grisante, Carla Monadeli Filgueira Rodrigues, Letícia Pereira Úngari, Néstor Añez, Herakles Antonio Garcia and Marta Maria Geraldes Teixeira
Zoonotic Dis. 2024, 4(4), 320-336; https://doi.org/10.3390/zoonoticdis4040028 - 22 Dec 2024
Viewed by 1200
Abstract
Bats and rodents serve as reservoirs for numerous zoonotic pathogens, including species of Trypanosoma and Leishmania. Domestic rats host the flea-transmitted Trypanosoma (Herpetosoma) lewisi, which can be associated with humans, particularly young or immunocompromised individuals. Using Fluorescent Fragment Length [...] Read more.
Bats and rodents serve as reservoirs for numerous zoonotic pathogens, including species of Trypanosoma and Leishmania. Domestic rats host the flea-transmitted Trypanosoma (Herpetosoma) lewisi, which can be associated with humans, particularly young or immunocompromised individuals. Using Fluorescent Fragment Length Barcoding (FFLB) and phylogenetic analyses based on SSU rRNA sequences, we identified two Herpetosoma species, T. lewisi-like and T. musculi-like species, in bats of different families inhabiting rooftops and peridomestic structures in Brazil (44%, 107 bats examined) and Venezuela (50%, 52 bats examined). These species are typically associated with Rattus spp. (domestic rats) and Mus musculus (house mice), respectively. Furthermore, bats were co-infected with up to five other species, including Trypanosoma dionisii, Trypanosoma cruzi marinkellei, and isolates from the Trypanosoma Neobat clade, all strongly associated with bats, and Trypanosoma cruzi and Trypanosoma rangeli, known to infect various mammals, including humans. Therefore, our findings expand the known host range of Herpetosoma to bats, marking the first report of potential spillover of Herpetosoma trypanosomes from rodents to bats and underscoring the potential for the cross-species transmission of flea-borne trypanosomes. These results highlight the need for a One Health approach to assess infection risks associated with trypanosome spillover from synanthropic rodents and bats to humans. Full article
Show Figures

Figure 1

5 pages, 611 KiB  
Case Report
The Attribution of Human Seasonal Influenza H3N2 Virus Detection to the Collector, Not Avian Sources, During the 2022 Highly Pathogenic Avian Influenza Outbreak in Pennsylvania, USA—Implications for Biosafety and Biosecurity
by Deepanker Tewari, Manoj K. Sekhwal, Mary L. Killian, Corey Zellers, Chrislyn Wood Nicholson, Betsy Schroeder, Erica Spackman and Alex Hamberg
Zoonotic Dis. 2024, 4(4), 315-319; https://doi.org/10.3390/zoonoticdis4040027 - 13 Dec 2024
Viewed by 1101
Abstract
Highly pathogenic avian influenza (HPAI) surveillance for influenza A virus (IAV) in the United States is conducted using a National Animal Health Laboratory Network (NAHLN) real-time reverse transcriptase–polymerase chain reaction (rRT-PCR). Samples showing the presence of IAV are confirmed and characterized at the [...] Read more.
Highly pathogenic avian influenza (HPAI) surveillance for influenza A virus (IAV) in the United States is conducted using a National Animal Health Laboratory Network (NAHLN) real-time reverse transcriptase–polymerase chain reaction (rRT-PCR). Samples showing the presence of IAV are confirmed and characterized at the national reference laboratory. During the H5N1 HPAI outbreak in 2022, our laboratory reported the detection of IAV in a PA commercial chicken flock using rRT-PCR targeting the matrix gene, which was negative for the H5/H7 subtypes. IAV was not detected by additional sampling of the birds the following day with rRT-PCR. The virus detected was characterized as a human seasonal H3N2 with whole-genome sequencing (WGS). Further investigation revealed that the collector who visited the farm was diagnosed with an IAV infection. This case report emphasizes the importance of farm biosafety and biosecurity, of conducting regular reviews of worker safety protocols, and of advanced molecular techniques like WGS for viral characterization and epidemiology. Full article
Show Figures

Figure 1

12 pages, 1615 KiB  
Article
Molecular Patterns and Antimicrobial Resistance Characterization of Salmonella enterica Non-Typhoidal from Human, Food, and Environment Samples Isolated in Luanda, Angola
by Moisés Francisco, Adriana Belas, Sofia Santos Costa, Juliana Menezes, Jorge Ramos, Isabel Couto, Miguel Viveiros and Constança Pomba
Zoonotic Dis. 2024, 4(4), 259-270; https://doi.org/10.3390/zoonoticdis4040022 - 21 Oct 2024
Viewed by 1562
Abstract
The aim of this study was to characterize the antimicrobial resistance phenotype and genotype of non-typhoidal Salmonella spp. isolated in Luanda, Angola. Between 2013 and 2015, human clinical samples, food, and environmental samples (n = 290) were collected at different regions of [...] Read more.
The aim of this study was to characterize the antimicrobial resistance phenotype and genotype of non-typhoidal Salmonella spp. isolated in Luanda, Angola. Between 2013 and 2015, human clinical samples, food, and environmental samples (n = 290) were collected at different regions of Luanda city and screened for the presence of Salmonella spp. Bacterial isolates were preliminarily identified using the API 20E Kit, and their identification was confirmed using PCR and serotyping. All Salmonella spp. isolates were tested by minimum inhibitory concentration against 19 antimicrobials. The isolates were also screened using PCR for the presence of resistance genes (blaOXA-1, blaSHV, blaTEM, sul1, sul2, sul3, qnrA, qnrB, qnrS, qnrC, qnrD, aac(6′)-Ib, dfrIa [targeting dfrA1, dfrA5, dfrA15, dfrA15b, dfrA16, dfrA16b] and dfrA12, cmlA, and floR) and typed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Salmonella enterica non-typhoidal was detected in 21.3% of the clinical samples (n = 32/150), 11.1% of the food samples (n = 10/90), and 26% of the environmental samples (n = 13/50). Serotyping revealed that the monophasic variant of Salmonella Typhimurium (Salmonella enterica serovar 4,[5],12:i:-) was detected in 38.1% of the samples. Moreover, serovar Salmonella Enteritidis was the second most frequent. Only 7.3% of the isolates were resistant to at least one antimicrobial. Furthermore, isolates from different origins (clinical, environmental, and food) were associated with the same lineages, Salmonella Enteritidis ST11 and S. enterica ser. Typhimurium ST313. The detection of S. enterica serovar 4,[5],12:i:- in different settings reinforces the need for a One Health approach to control this zoonosis in Angola. Full article
Show Figures

Figure 1

13 pages, 1115 KiB  
Article
An Undetected Expansion, Spread, and Burden of Chikungunya and Dengue Cocirculating Antibodies in Nigeria
by Peter Asaga Mac, Markos Tadele, Thilini Nisansala, Philomena E. Airiohuodion, Chibuzor M. Babalola and Chukwuma Anyaike
Zoonotic Dis. 2024, 4(3), 201-213; https://doi.org/10.3390/zoonoticdis4030018 - 12 Aug 2024
Cited by 1 | Viewed by 1704
Abstract
Chikungunya and dengue are arboviral diseases transmitted by mosquitoes that have been increasingly recognized as public health concerns in Sub-Saharan Africa. Several studies conducted in Nigeria and other West African countries have revealed the seroprevalence burden and cocirculation of antibodies against mosquito-borne infections, [...] Read more.
Chikungunya and dengue are arboviral diseases transmitted by mosquitoes that have been increasingly recognized as public health concerns in Sub-Saharan Africa. Several studies conducted in Nigeria and other West African countries have revealed the seroprevalence burden and cocirculation of antibodies against mosquito-borne infections, thereby revealing a significant burden and clinical outcome complexities that have largely gone undetected. The current research study has important implications for disease surveillance, prevention strategies, and healthcare planning in Nigeria and other Sub-Saharan countries. A cross-sectional study was conducted on 871 outpatients and pregnant women from three regions of Nigeria. CHIKV and DENV immunoblot molecular diagnostic assays were used to analyze the serum samples for the presence of arboviral antibody serological markers IgG (Mikrogen Diagnostik, Germany) with DENV nonstructural protein 1 and DENV Equad and CHIKV virus-like particles (VLPs), according to the manufacturer’s instructions. A total of 871 participants were recruited from three geographical regions in Nigeria. Among them, 17.5% (152/871) were from Abia (southern Nigeria), 34.4% (300/871) were from Kaduna (northern Nigeria), and 48.1% (419/871) were from Nasarawa (central Nigeria). The ages of the participants ranged from 0 months to 80 years, with a mean age of 36.6 years. Of the 871 subjects, 71.0% (619/871) were female, and 29.0% (252/871) were male. The overall cohort detectable antibody seropositivity against CHIKV was 64.9% (565/871), 95% CI (61.74–68.06); DENV, 44.7% (389/871), 95% CI (41.41–47.99); and CHIKV-DENV cocirculation antibodies, 31.6% (95% CI 29–35). This study highlighted the unpredictably high seroprevalence, expansion, magnitude, and undetected burden of chikungunya and dengue in Nigeria. Full article
Show Figures

Figure 1

16 pages, 1214 KiB  
Review
Global Distribution and Molecular Evolution of Bat Coronaviruses
by Mohamed El Sayes, Rebecca Badra, Mohamed A. Ali, Rabeh El-Shesheny and Ghazi Kayali
Zoonotic Dis. 2024, 4(2), 146-161; https://doi.org/10.3390/zoonoticdis4020014 - 14 May 2024
Viewed by 2753
Abstract
Bat coronaviruses cause a wide range of illnesses in humans and animals. Bats are known to harbor a wide diversity of Alphacoronaviruses and Betacoronaviruses. Betacoronaviruses have been linked to Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and other diseases such [...] Read more.
Bat coronaviruses cause a wide range of illnesses in humans and animals. Bats are known to harbor a wide diversity of Alphacoronaviruses and Betacoronaviruses. Betacoronaviruses have been linked to Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and other diseases such as gastroenteritis, bronchiolitis, and pneumonia. In the last 20 years, three betacoronaviruses emerged and caused widespread outbreaks in humans, including two deadly betacoronavirus epidemics, SARS-CoV, with mortality rate of 10%, and MERS-CoV, with mortality rate of 34.7%, and SARS-CoV-2, which caused the COVID-19 pandemic, with mortality rate of 3.4%. Studies have shown that bats are the main natural reservoirs for these viruses or their ancestral viruses. Observed variations in bat coronavirus genomes indicate that these viruses may have a potential to transmit to other hosts in close contact with humans and subsequently transmit to humans. As of today, there are no reported cases of direct coronavirus transmission from bats to humans. One reason for this might be that intermediate hosts are required for the transmission of bat coronaviruses to humans. Further studies are needed to map the amino acids and genomic regions responsible for the interactions between the spike of coronavirus and its receptors. Full article
Show Figures

Figure 1

17 pages, 815 KiB  
Article
Basis for a One Health Approach—Inventory of Routine Data Collections on Zoonotic Diseases in Lower Saxony, Germany
by Anne Schnepf, Katja Hille, Gesine van Mark, Tristan Winkelmann, Karen Remm, Katrin Kunze, Reinhard Velleuer and Lothar Kreienbrock
Zoonotic Dis. 2024, 4(1), 57-73; https://doi.org/10.3390/zoonoticdis4010007 - 6 Feb 2024
Viewed by 2236
Abstract
Two-thirds of human infectious diseases are zoonotic diseases and routine data collections exist for each sector (human, veterinary, environmental). However, these operate separately and the collected data are not integrated across sectors. Publicly available information on these routine data collections in terms of [...] Read more.
Two-thirds of human infectious diseases are zoonotic diseases and routine data collections exist for each sector (human, veterinary, environmental). However, these operate separately and the collected data are not integrated across sectors. Publicly available information on these routine data collections in terms of metadata and the information collected is sparse. The aim was to create an inventory of routine data collections in the Federal State of Lower Saxony, Germany. A systematic screening of existing routine data collections from the human and veterinary sectors on zoonotic infectious diseases was carried out on the basis of expert interviews. A standardised template was used to collect relevant metadata on data collections and pathogens they contain. The template was transferred to Research Electronic Data Capture tools. We recorded metadata for 19 veterinary, 16 human and 2 other data collections, and for 69 different zoonotic pathogens. The frequencies of a selection of metadata were analysed descriptively. The data collections, which served different purposes, differed, e.g., in underlying population and sampling strategy, export format and access to the original data. We identified challenges for integrated analyses of data from different collections, which need to be addressed to develop a One Health monitoring and surveillance system. Full article
Show Figures

Figure 1

18 pages, 748 KiB  
Review
Ecology and Epidemiology of Lyme Disease in Western North America
by Carl Dizon, Tim J. Lysyk, Isabelle Couloigner and Susan C. Cork
Zoonotic Dis. 2023, 3(1), 20-37; https://doi.org/10.3390/zoonoticdis3010004 - 31 Jan 2023
Cited by 4 | Viewed by 5260
Abstract
Lyme disease is the most common vector-borne disease in the United States and Canada. The causative agent of Lyme disease in North America is the spirochete Borrelia burgdorferi. In western North America, the primary vector of Borrelia burgdorferi is the western black-legged [...] Read more.
Lyme disease is the most common vector-borne disease in the United States and Canada. The causative agent of Lyme disease in North America is the spirochete Borrelia burgdorferi. In western North America, the primary vector of Borrelia burgdorferi is the western black-legged tick, Ixodes pacificus. Surveillance and modelling efforts indicate that I. pacificus is primarily found in coastal California, Oregon, Washington and the southern coastal regions of British Columbia However, infection rates with B. burgdorferi among I. pacificus ticks remain low, ranging from 0.6% to 9.9%. Lyme disease case numbers in western North America are also relatively low compared to eastern North America. Enzootic maintenance of B. burgdorferi by hosts in natural environments and climatic factors may influence Lyme disease risk. The borreliacidal western fence lizard, Sceloporus occidentalis, may contribute to the low infection rates observed in I. pacificus ticks, while the migratory nature of avian hosts can allow for long-distance tick dispersal. Moderately warm and moist environments and protection from sunlight define the suitable habitats of I. pacificus ticks. In this review, we discuss the ecology and epidemiology of Lyme disease in relation to I. pacificus, as well as the need for more studies in western North America. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
Show Figures

Figure 1

12 pages, 1021 KiB  
Article
Canada Lynx (Lynx canadensis) as Potential Reservoirs and Sentinels of Toxoplasma gondii in Northern Canada
by Émilie Bouchard, Rajnish Sharma, Adrián Hernández-Ortiz, Thomas S. Jung, N. Jane Harms, Caitlin N. Willier, Rudy Boonstra, Yasmine N. Majchrzak, Michael J. L. Peers, Géraldine-G. Gouin, Batol Al-Adhami, Audrey Simon, Patrick Leighton and Emily J. Jenkins
Zoonotic Dis. 2023, 3(1), 6-17; https://doi.org/10.3390/zoonoticdis3010002 - 9 Jan 2023
Cited by 10 | Viewed by 4414
Abstract
Toxoplasma gondii is a zoonotic parasite globally infecting a wide range of species, including humans. Felids are the only known hosts that can excrete environmentally resistant oocysts into ecosystems. In boreal regions, Canada lynx (Lynx canadensis) are sought by hunters primarily [...] Read more.
Toxoplasma gondii is a zoonotic parasite globally infecting a wide range of species, including humans. Felids are the only known hosts that can excrete environmentally resistant oocysts into ecosystems. In boreal regions, Canada lynx (Lynx canadensis) are sought by hunters primarily for their fur, and they are occasionally eaten. We examined carcasses salvaged from trappers from boreal regions of eastern (n = 97) and western (n = 357) Canada. We detected T. gondii antibodies in fluid from thawed heart tissue using an enzyme-linked immunosorbent assay, DNA in brain and heart via magnetic capture and real-time PCR assay, and presence of DNA in feces using a real-time PCR with melt curve analysis. We detected antibodies against T. gondii and DNA in tissues in 24% and 19% of lynx, respectively. One lynx was positive for DNA of T. gondii in feces, which could indicate intestinal infection and potential for shedding oocysts. Our results indicate that lynx may be a useful sentinel species for monitoring environmental circulation of T. gondii in northern boreal regions and may pose a risk for transmission to other wildlife and to people handling or consuming lynx. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
Show Figures

Figure 1

13 pages, 3428 KiB  
Review
Monkeypox: Re-Emerging Zoonotic Threat
by Rajeev Ranjan and Jitendra Kumar Biswal
Zoonotic Dis. 2022, 2(4), 234-246; https://doi.org/10.3390/zoonoticdis2040019 - 18 Oct 2022
Cited by 6 | Viewed by 6196
Abstract
Monkeypox (MPX) is a relatively unknown and minor resurgent viral zoonotic disease caused by the monkeypox virus (MPXV). The disease can spread from person to person or from animal to person. The disease is most prevalent in the tropical rainforests of West and [...] Read more.
Monkeypox (MPX) is a relatively unknown and minor resurgent viral zoonotic disease caused by the monkeypox virus (MPXV). The disease can spread from person to person or from animal to person. The disease is most prevalent in the tropical rainforests of West and Central Africa. The first MPXV outbreak was recorded in a monkey during 1958 as a small pox-like disease causing flu-like symptoms, such as chills and fever, as well as a rash, and the first MPXV case in a human was in a 9-month-old child in the Democratic Republic of the Congo on 1 September 1970. There were 16,016 laboratory confirmed cases of MPXV infection and five deaths reported in 75 countries/territories/areas across all six WHO Regions as of 22 July 2022. MPXV has a wide host range, including humans, squirrels, mice, rabbits, hamsters, porcupines, non-human primates (orangutans, chimps, sooty mangabeys, cynomolgus monkeys), black-tailed prairie dogs, African brush-tailed porcupines, rats, and shrews. MPXV replicates at the site of inoculation, the respiratory or oropharyngeal mucosa, and spreads to other organs, such as the skin, lungs, and gastrointestinal tract, where clinical signs and symptoms of the disease manifest. Before the rash appears, most patients have prominent lymphadenopathy, which distinguishes human MPX from small pox. This is followed by macules, papules, vesicles, pustules, umbilication, scabbing, and desquamation. Laboratory tools, such as virus isolation, PCR-based assays, haemagglutination inhibition assays, electron microscopy, ELISA, Western blotting, or immunohistochemistry, have been used to confirm diagnoses. Following a confirmatory diagnosis, tecovirimat, an FDA-approved antiviral drug, is currently available to treat severe cases of MPXV infection, along with symptomatic and supportive therapies. Physical and close contact activities, such as sleeping in the same room or on the same bed as the infected person, intimate contact with an infected partner, living in the same house as infected people, and sharing the same cups and plates, must be avoided to prevent the spread of the disease. Vaccination with vaccinia virus against monkeypox is approximately 85% effective and may protect against MPXV infection if administered within 4 days and up to 14 days (without showing any symptoms) after initial contact with a confirmed monkeypox case. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
Show Figures

Figure 1

9 pages, 1726 KiB  
Article
Host–Virus Interactions in Japanese Encephalitis Virus
by Urmi Roy
Zoonotic Dis. 2022, 2(3), 117-125; https://doi.org/10.3390/zoonoticdis2030012 - 5 Aug 2022
Cited by 2 | Viewed by 2986
Abstract
Japanese encephalitis (JE) is a mosquito-borne zoonotic disease that causes severe brain inflammation. The JE virus envelope protein domain III (JEV-ED3) plays a critical role in activating receptor binding and membrane fusion. This communication briefly describes, in a computational approach, how structural changes [...] Read more.
Japanese encephalitis (JE) is a mosquito-borne zoonotic disease that causes severe brain inflammation. The JE virus envelope protein domain III (JEV-ED3) plays a critical role in activating receptor binding and membrane fusion. This communication briefly describes, in a computational approach, how structural changes within the JEV-ED3 mutant epitopes suppress their antibody neutralization function. The simulated results demonstrate that mutant Ser40Lys acts as an antibody neutralization escape while Asp41Arg may play the role of an escape mutant. Additionally, an examination of the double mutants on JEV-ED3 suggests that these mutants may qualify as stronger neutralizing escape agents than their single variants. The structural analysis of this work helps to identify the proper antiviral target sequences and specific monoclonal antibodies for the JEV-ED3 escape mutants. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
Show Figures

Figure 1

22 pages, 2599 KiB  
Review
Zoonotic Significance and Antimicrobial Resistance in Salmonella in Poultry in Bangladesh for the Period of 2011–2021
by Md. Jannat Hossain, Youssef Attia, Fatimah Muhammad Ballah, Md. Saiful Islam, Md. Abdus Sobur, Md. Amirul Islam, Samina Ievy, Asadur Rahman, Akira Nishiyama, Md. Shafiqul Islam, Jayedul Hassan and Md. Tanvir Rahman
Zoonotic Dis. 2021, 1(1), 3-24; https://doi.org/10.3390/zoonoticdis1010002 - 30 Nov 2021
Cited by 30 | Viewed by 10963
Abstract
Antimicrobial resistance (AMR) in Salmonella in poultry poses a serious human health threat as it has zoonotic importance. Poultry is often linked with outbreaks of Salmonella-associated foodborne illness. Since antimicrobials are heavily used in poultry in Bangladesh, multidrug-resistant (MDR) Salmonella is quite [...] Read more.
Antimicrobial resistance (AMR) in Salmonella in poultry poses a serious human health threat as it has zoonotic importance. Poultry is often linked with outbreaks of Salmonella-associated foodborne illness. Since antimicrobials are heavily used in poultry in Bangladesh, multidrug-resistant (MDR) Salmonella is quite frequently found there. MDR Salmonella is challenging to treat with antimicrobials and often causes a severe economic loss in the poultry sector. By horizontal gene transfer and/or evolutionary mutations, antimicrobials primarily exert selection pressure that contributes to antimicrobials resistance. In addition, resistance patterns can vary with variations in time and space. Without having prior knowledge of resistance patterns, no effective drugs could be prescribed. Therefore, it is crucial to have updated knowledge on the status of AMR in Salmonella in Bangladesh for effective treatment and management of the flocks against salmonellosis. There are several review articles on AMR in Salmonella in poultry in Bangladesh; they lack the whole scenario of the country and particularly do not have enough data on the poultry environment. Considering this scenario, in this review, we have focused on AMR in Salmonella in poultry in Bangladesh (2011–2021), with particular emphasis on data from the poultry and farm environments on a divisional zone basis. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
Show Figures

Figure 1

Back to TopTop