Zoonotic Significance and Antimicrobial Resistance in Salmonella in Poultry in Bangladesh for the Period of 2011–2021
Abstract
:1. Introduction
2. Materials and Methods
3. Salmonellosis in Poultry
4. Transmission of Salmonella
5. Zoonotic Importance of Salmonella
6. Overall Prevalence of Salmonella
7. Antimicrobial Resistance Profile of Salmonella
7.1. Resistance to Penicillins
7.2. Resistance to Cephalosporins
7.3. Resistance to Carbapenems
7.4. Resistance to Fluroquinolones
7.5. Resistance to Aminoglycosides
7.6. Resistance to Macrolides
7.7. Resistance to Lincosamides
7.8. Resistance to Tetracyclines
7.9. Resistance to Phenicols
7.10. Resistance to Rifampicin
7.11. Resistance to Glycopeptides
7.12. Resistance to Sulpher Drugs
7.13. Resistance to Polymyxins
8. Public Health Significance of Salmonella
9. Economic Impact of Salmonellosis
10. Salmonellosis Prevention and Control
11. Current Status and Future Research
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ievy, S.; Islam, M.S.; Sobur, M.A.; Talukder, M.; Rahman, M.B.; Khan, M.F.R.; Rahman, M.T. Molecular Detection of Avian Pathogenic Escherichia coli (APEC) for the First Time in Layer Farms in Bangladesh and Their Antibiotic Resistance Patterns. Microorganisms 2020, 8, 1021. [Google Scholar] [CrossRef]
- Livestock Economy. Livestock Economy at a Glance 2019–2020. Department of Livestock Services. Available online: http://www.dls.gov.bd/site/page/22b1143b-9323-44f8-bfd8-647087828c9b/Livestock-Economy (accessed on 14 July 2021).
- Islam, M.S.; Sabuj, A.A.; Haque, Z.F.; Pondit, A.; Hossain, M.G.; Saha, S. Seroprevalence and risk factors of avian reovirus in backyard chickens in different areas of Mymensingh district in Bangladesh. J. Adv. Vet. Anim. Res. 2020, 7, 546–553. [Google Scholar] [CrossRef]
- Hamid, M.A.; Rahman, M.A.; Ahmed, S.; Hossain, K.M. Status of poultry industry in Bangladesh and the role of private sector for its development. Asian J. Poult. Sci. 2017, 11, 1–3. [Google Scholar] [CrossRef]
- Sabuj, A.A.; Mahmud, T.; Barua, N.; Rahman, M.A.; Islam, M.S.; Bary, M.A. Passive surveillance of clinical poultry diseases in an Upazila Government Veterinary Hospital of Bangladesh. Afr. J. Microbiol. Res. 2019, 13, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Paul, A.; Talukder, M.; Ray, K.; Sobur, M.A.; Ievy, S.; Nayeem, M.M.H.; Rahman, S.; Nazir, K.N.; Hossain, M.T.; et al. Migratory birds travelling to Bangladesh are potential carriers of multi-drug resistant Enterococcus spp., Salmonella spp., and Vibrio spp. Saudi J. Biol. Sci. 2021, in press. [Google Scholar] [CrossRef]
- Attia, Y.A.; Ellakany, H.F.; El-Hamid, A.A.; Bovera, F.; Ghazaly, S. Control of Salmonella enteritidis infection in male layer chickens by acetic acid and/or prebiotics, probiotics and antibiotics. Arch. Geflügelk. 2012, 76, 239–245. [Google Scholar]
- Pal, M.; Merera, O.; Abera, F.; Rahman, M.T.; Hazarika, R.A. Salmonellosis: A major foodborne disease of global significance. Beverage Food World. 2015, 12, 21–24. [Google Scholar]
- Gast, R.K. Detecting infections of chickens with recent Salmonella pullorum isolates using standard serological methods. Poult. Sci. 1997, 76, 17–23. [Google Scholar] [CrossRef]
- El-Ghany, W.A.A. Salmonellosis: A food borne zoonotic and public health disease in Egypt. J. Infect. Dev. Ctries. 2020, 14, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; El Zowalaty, M.E.; Rahman, A.T.; Ashour, H.M. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Sobur, M.A.; Rahman, S.; Ballah, F.M.; Ievy, S.; Siddique, M.P.; Rahman, M.; Kafi, M.A.; Rahman, M.T. Detection of blaTEM, blaCTX-M, blaCMY, and blaSHV Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated from Migratory Birds Travelling to Bangladesh. Microb. Ecol. 2021, in press. [Google Scholar] [CrossRef]
- Islam, M.S.; Nayeem, M.M.H.; Sobur, M.A.; Ievy, S.; Islam, M.A.; Rahman, S.; Kafi, M.A.; Ashour, H.M.; Rahman, M.T. Virulence Determinants and Multidrug Resistance of Escherichia coli Isolated from Migratory Birds. Antibiotics 2021, 10, 190. [Google Scholar] [CrossRef]
- Urmi, M.R.; Ansari, W.K.; Islam, M.S.; Sobur, M.A.; Rahman, M.; Rahman, M.T. Antibiotic resistance patterns of Staphylococcus spp. isolated from fast foods sold in different restaurants of Mymensingh, Bangladesh. J. Adv. Vet. Anim. Res. 2021, 8, 274–281. [Google Scholar] [CrossRef]
- Orubu, E.S.F.; Samad, M.A.; Rahman, M.T.; Zaman, M.H.; Wirtz, V.J. Mapping the Antimicrobial Supply Chain in Bangladesh: A Scoping-Review-Based Ecological Assessment Approach. Glob. Health Sci. Pract. 2021, 28, 5963–5970. [Google Scholar] [CrossRef]
- Orubu, E.S.; Zaman, M.H.; Rahman, M.T.; Wirtz, V.J. Veterinary antimicrobial resistance containment in Bangladesh: Evaluating the national action plan and scoping the evidence on implementation. J. Glob. Antimicrob. Resist. 2020, 21, 105–115. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Antimicrobial Resistance. 2015. Available online: https://apps.who.int/iris/handle/10665/193736 (accessed on 14 July 2021).
- World Health Organization. Bangladesh: Antimicrobial Resistance Containment in Bangladesh 2017–2022. Available online: https://www.who.int/publications/m/item/bangladesh-antimicrobial-resistance-containment-in-bangladesh-2017-2022 (accessed on 14 July 2021).
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2020, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duong, V.T.; Tuyen, H.T.; Van Minh, P.; Campbell, J.I.; Phuc, H.L.; Nhu, T.D.; Tu, L.T.; Chau, T.T.; Nhi, L.T.; Hung, N.T.; et al. No clinical benefit of empirical antimicrobial therapy for pediatric diarrhea in a high-usage, high-resistance setting. Clin. Infect. Dis. 2018, 66, 504–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwamoto, M.; Reynolds, J.; Karp, B.E.; Tate, H.; Fedorka-Cray, P.J.; Plumblee, J.R.; Hoekstra, R.M.; Whichard, J.M.; Mahon, B.E. Ceftriaxone-resistant nontyphoidal Salmonella from humans, retail meats, and food animals in the United States, 1996–2013. Foodborne Pathog. Dis. 2017, 14, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Tyson, G.H.; Tate, H.P.; Zhao, S.; Li, C.; Dessai, U.; Simmons, M.; McDermott, P.F. Identification of plasmid-mediated quinolone resistance in Salmonella isolated from swine ceca and retail pork chops in the United States. Antimicrob. Agents Chemother. 2017, 61, e01318-17. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.M.; Rahman, M.M.; Mahbub, K.R. Characterization of antibiotic resistant Salmonella spp. isolated from chicken eggs of Dhaka city. J. Sci. Res. 2011, 3, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Akond, M.A.; Shirin, M.; Alam, S.; Hassan, S.M.; Rahman, M.M.; Hoq, M. Frequency of drug resistant Salmonella spp. isolated from poultry samples in Bangladesh. Stamford J. Microbiol. 2012, 2, 15–19. [Google Scholar] [CrossRef]
- Jahan, F.; Kabir, S.L.; Amin, M.M. Identification and antimicrobial resistance profiles of Salmonellae isolated from the broiler dressing plants associated with their environments. Adv. Res. J. Microbiol. 2013, 1, 1–9. [Google Scholar]
- Sultana, M.; Bilkis, R.; Diba, F.; Hossain, M.A. Predominance of multidrug resistant zoonotic Salmonella Enteritidis genotypes in poultry of Bangladesh. J. Poult. Sci. 2014, 51, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M.; Amin, K.B.; Ahaduzzaman, M.; Alam, M.; Faruk, M.S.; Uddin, I. Antimicrobial resistance pattern against E. coli and Salmonella in layer poultry. Res. J. Vet. Pract. 2014, 2, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Aditya, A. Drug resistant Salmonella in broiler chicken sold at local market in Bangladesh and its public health significance. Afr. J. Biotechnol. 2015, 14, 2995–3000. [Google Scholar] [CrossRef] [Green Version]
- Al-Salauddin, A.S.; Hossain, M.F.; Dutta, A.; Mahmud, S.; Islam, M.S.; Saha, S.; Kabir, S.L. Isolation, identification, and antibiogram studies of Salmonella species and Escherichia coli from boiler meat in some selected areas of Bangladesh. Int. J. Basic Clin. Pharmacol. 2015, 4, 1000. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, T.; Hassan, M.M.; Alam, M.; Khan, M.M.; Bari, M.S.; Islam, A. Prevalence and multidrug-resistant pattern of Salmonella from the eggs and egg-storing trays of retail markets of Bangladesh. Int. J. One Health 2016, 2, 7–11. [Google Scholar] [CrossRef]
- Parvej, M.S.; Nazir, K.N.; Rahman, M.B.; Jahan, M.; Khan, M.F.; Rahman, M. Prevalence and characterization of multi-drug resistant Salmonella enterica serovar Gallinarum biovar Pullorum and Gallinarum from chicken. Vet. World 2016, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Paul, P.; Akther, S.; Ali, M.Z.; Banu, H.; Khan, M.S.; Khatun, M.M. Isolation, identification and antibiogram study of Salmonella spp. from poultry farm environment. Int. J. Anim. Biol. 2017, 3, 5–11. [Google Scholar]
- Mamun, M.A.; Kabir, S.L.; Islam, M.M.; Lubna, M.; Islam, S.S.; Akhter, A.T.; Hossain, M.M. Molecular identification and characterization of Salmonella species isolated from poultry value chains of Gazipur and Tangail districts of Bangladesh. Afr. J. Microbiol. Res. 2017, 11, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Rahman, A.K.; Islam, M.A.; Alam, M.M. Detection of multi-drug resistant Salmonella from milk and meat in Bangladesh. Bangladesh J. Vet. Med. 2018, 16, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.K.; Kabir, S.L.; Haque, A.Z.; Sarker, Y.A.; Sikder, M.H. Molecular detection and characterization of Escherichia coli, Salmonella spp. and Campylobacter spp. isolated from broiler meat in Jamalpur, Tangail, Netrokona and Kishoreganj districts of Bangladesh. Afr. J. Microbiol. Res. 2018, 12, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Hossain, K.M.; Sarker, M.M.; Hamid, S.A. Prevalence and antibiotic susceptibility of Salmonella from chicken eggs in Naogaon district of Bangladesh. J. Adv. Microbiol. 2019, 28, 1–6. [Google Scholar] [CrossRef]
- Chaudhary, P.K.; Salam, S.A.; Reza, M.A.; Ahaduzzaman, M. High prevalence of ciprofloxacin and ceftriaxone resistance Salmonella in the retail chicken market of Chattogram, Bangladesh. Turk. J. Vet. Res. 2019, 3, 51–55. [Google Scholar]
- Alam, S.B.; Mahmud, M.; Akter, R.; Hasan, M.; Sobur, A.; Nazir, K.N.H.; Noreddin, A.; Rahman, T.; El Zowalaty, M.E.; Rahman, M. Molecular Detection of Multidrug Resistant Salmonella Species Isolated from Broiler Farm in Bangladesh. Pathogens. 2020, 9, 201. [Google Scholar] [CrossRef] [Green Version]
- Mridha, D.; Uddin, M.N.; Alam, B.; Akhter, A.T.; Islam, S.S.; Islam, M.S.; Khan, M.S.; Kabir., S.L. Identification and characterization of Salmonella spp. from samples of broiler farms in selected districts of Bangladesh. Vet. World 2020, 13, 275. [Google Scholar] [CrossRef]
- Karim, S.J.; Islam, M.; Sikder, T.; Rubaya, R.; Halder, J.; Alam, J. Multidrug-resistant Escherichia coli and Salmonella spp. isolated from pigeons. Vet. World 2020, 13, 2156. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.J.; Islam, M.S.; Sobur, M.A.; Zaman, S.B.; Nahar, A.; Rahman, M.; Rahman, M.T. Exploring Poultry Farm Environment for Antibiotic Resistant Escherichia coli, Salmonella spp., and Staphylococcus spp. Having Public Health Significance. J. Bangladesh Agric. Univ. 2020, 18, 615–622. [Google Scholar] [CrossRef]
- Tawyabur, M.; Islam, M.S.; Sobur, M.A.; Hossain, M.J.; Mahmud, M.M.; Paul, S.; Hossain, M.T.; Ashour, H.M.; Rahman, M.T. Isolation and Characterization of Multidrug-Resistant Escherichia coli and Salmonella spp. from Healthy and Diseased Turkeys. Antibiotics 2020, 9, 770. [Google Scholar] [CrossRef] [PubMed]
- Parvin, M.S.; Hasan, M.M.; Ali, M.Y.; Chowdhury, E.H.; Rahman, M.T.; Islam, M.T. Prevalence and Multidrug Resistance Pattern of Salmonella Carrying Extended-Spectrum β-Lactamase in Frozen Chicken Meat in Bangladesh. J. Food Prot. 2020, 83, 2107–2121. [Google Scholar] [CrossRef]
- Uddin, M.B.; Hossain, S.M.B.; Hasan, M.; Alam, M.N.; Debnath, M.; Begum, R.; Roy, S.; Harun-Al-Rashid, A.; Chowdhury, M.S.R.; Rahman, M.M.; et al. Multidrug Antimicrobial Resistance and Molecular Detection of mcr-1 Gene in Salmonella Species Isolated from Chicken. Animals 2021, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Sarker, B.R.; Ghosh, S.; Chowdhury, S.; Dutta, A.; Chandra Deb, L.; Krishna Sarker, B.; Sultana, T.; MozafforHossain, K.M. Prevalence and antimicrobial susceptibility profiles of non-typhoidal Salmonella isolated from chickens in Rajshahi, Bangladesh. Vet. Med. Sci. 2021, 7, 820–830. [Google Scholar] [CrossRef]
- Talukder, M.; Islam, M.S.; Ievy, S.; Sobur, M.A.; Ballah, F.M.; Najibullah, M.; Rahman, M.B.; Rahman, M.T.; Khan, M.F.R. Detection of multidrug resistant Salmonella spp. from healthy and diseased broilers having potential public health significance. J. Adv. Biotechnol. Exp. Ther. 2021, 4, 248–255. [Google Scholar] [CrossRef]
- Siddiky, N.A.; Sarker, M.S.; Khan, M.S.R.; Begum, R.; Kabir, M.E.; Karim, M.R.; Rahman, M.T.; Mahmud, A.; Samad, M.A. Virulence and Antimicrobial Resistance Profiles of Salmonella enterica Serovars Isolated from Chicken at Wet Markets in Dhaka, Bangladesh. Microorganisms 2021, 9, 952. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.K.M.Z.; Akter, M.R.; Islam, S.S.; Alam, J.; Neogi, S.B.; Yamasaki, S.; Kabir, S.M.L. Salmonella Gallinarum in Small-Scale Commercial Layer Flocks: Occurrence, Molecular Diversity and Antibiogram. Vet. Sci. 2021, 8, 71. [Google Scholar] [CrossRef]
- Dar, M.A.; Ahmad, S.M.; Bhat, S.A.; Ahmed, R.; Urwat, U.; Mumtaz, P.T.; Dar, T.A.; Shah, R.A.; Ganai, N.A. Salmonella typhimurium in poultry: A review. World's Poult. Sci. J. 2017, 73, 345–354. [Google Scholar] [CrossRef]
- Judd, M.C.; Hoekstra, R.M.; Mahon, B.E.; Fields, P.I.; Wong, K.K. Epidemiologic patterns of human Salmonella serotype diversity in the USA, 1996–2016. Epidemiol. Infect. 2019, 147, e187. [Google Scholar] [CrossRef] [Green Version]
- Barua, H.; Biswas, P.K.; Talukder, K.A.; Olsen, K.E.; Christensen, J.P. Poultry as a possible source of non-typhoidal Salmonella enterica serovars in humans in Bangladesh. Vet. Microbiol. 2014, 168, 372–380. [Google Scholar] [CrossRef]
- Siddiky, N.A.; Khan, M.S.R.; Sarker, M.S.; Bhuiyan, M.K.J.; Mahmud, A.; Rahman, M.T.; Ahmed, M.M.; Samad, M.A. Knowledge, attitude and practice of chicken vendors on food safety and foodborne pathogens at wet markets in Dhaka, Bangladesh. Food Control 2021, 131, 108456. [Google Scholar] [CrossRef]
- Barua, H.; Biswas, P.K.; Olsen, K.E.; Christensen, J.P. Prevalence and characterization of motile Salmonella in commercial layer poultry farms in Bangladesh. PLoS ONE. 2012, 7, e35914. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Islam, M.N.; Sharifuzzaman, F.M.; Rahman, M.A.; Sharifuzzaman, J.U.; Sarker, E.H.; Shahiduzzaman, M.; Mostofa, M.; Sharifuzzaman, M.M. Isolation and identification of Escherichia coli and Salmonella from poultry litter and feed. Int. J. Nat. Soc. Sci. 2014, 1, 1–7. [Google Scholar]
- Suresh, T.; Hatha, A.A.M.; Sreenivasan, D.; Sangeetha, N.; Lashmanaperumalsamy, P. Prevalence and antimicrobial resistance of Salmonella enteritidis and other salmonellas in the eggs and egg-storing trays from retails markets of Coimbatore, South India. Food Microbiol. 2006, 23, 294–299. [Google Scholar] [CrossRef]
- Barbour, E.K.; Ayyash, D.B.; Alturkistni, W.; Alyahiby, A.; Yaghmoor, S.; Iyer, A.; Yousef, J.; Kumosani, T.; Harakeh, S. Impact of sporadic reporting of poultry Salmonella serovars from selected developing countries. J. Infect. Dev. Ctries. 2015, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wigley, P.; Hulme, S.D.; Powers, C.; Beal, R.K.; Berchieri, A., Jr.; Smith, A.; Barrow, P. Infection of the reproductive tract and eggs with Salmonella enterica serovar pullorum in the chicken is associated with suppression of cellular immunity at sexual maturity. Infect. Immun. 2005, 73, 2986–2990. [Google Scholar] [CrossRef] [Green Version]
- Haider, G.; Chowdhury, E.H.; Hossain, M. Mode of vertical transmission of Salmonella enterica sub. enterica serovar Pullorum in chickens. Afr. J. Microbiol. Res. 2014, 8, 1344–1351. [Google Scholar] [CrossRef] [Green Version]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wibisono, F.M.; Wibisono, F.J.; Effendi, M.H.; Plumeriastuti, H.; Hidayatullah, A.R.; Hartadi, E.B.; Sofiana, E.D. A review of salmonellosis on poultry farms: Public health importance. Syst. Rev. Pharm. 2020, 11, 481–486. [Google Scholar]
- Dos Santos, A.M.P.; Ferrari, R.G.; Conte-Junior, C.A. Virulence factors in Salmonella typhimurium: The sagacity of a bacterium. Curr. Microbiol. 2019, 76, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Sanabria, R.; Alvarado, A.M. Preharvest Salmonella risk contamination and the control strategies. Current Topics in Salmonella and Salmonellosis: InTechOpen 2017, 11, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Yanestria, S.M.; Rahmaniar, R.P.; Wibisono, F.J.; Effendi, M.H. Detection of invA gene of Salmonella from milkfish (Chanoschanos) at Sidoarjo wet fish market, Indonesia, using polymerase chain reaction technique. Vet. World 2019, 12, 170. [Google Scholar] [CrossRef] [Green Version]
- Loharikar, A.; Vawter, S.; Warren, K.; Deasy III, M.; Moll, M.; Sandt, C.; Gilhousen, R.; Villamil, E.; Rhorer, A.; Briere, E.; et al. Outbreak of human Salmonella typhimurium infections linked to contact with baby poultry from a single agricultural feed store chain and mail-order hatchery, 2009. Pediatric Infect. Dis. J. 2013, 32, 8–12. [Google Scholar] [CrossRef]
- Hedican, E.; Miller, B.; Ziemer, B.; LeMaster, P.; Jawahir, S.; Leano, F.; Smith, K. Salmonellosis outbreak due to chicken contact leading to a foodborne outbreak associated with infected delicatessen workers. Foodborne Pathog. Dis. 2010, 7, 995–997. [Google Scholar] [CrossRef]
- Ricardo, A.; Soncini, M.V.D. Reducing Risks of Salmonella infections in Poultry. Poultry World. Available online: https://www.poultryworld.net/Special-Focus/Salmonella-special/Reducing-risks-of-Salmonella-infections-in-poultry/ (accessed on 16 July 2021).
- Zaheer, T. Salmonellosis: A Concise Review of One of Major Zoonotic Meat Borne Illness. Poultry Industry. 2018. Available online: https://en.engormix.com/poultry-industry/articles/salmonellosis-concise-review-one-t41243.htm (accessed on 16 July 2021).
- Salmonella as a Zoonosis. SVA Natl. Vet. Institute. 2020. Available online: https://www.sva.se/en/our-topics/feed-safety/salmonella-as-a-zoonosis/ (accessed on 16 July 2021).
- Orpí, J.P. Importance of Salmonellosis as a Zoonosis. Veterinary Digital. 2020. Available online: https://www.veterinariadigital.com/en/articulos/importance-of-salmonellosis-as-a-zoonosis/ (accessed on 16 July 2021).
- Hoque, M.; Mohiuddin, R.; Khan, M.; Hannan, M.; Alam, M. Outbreak of Salmonella in Poultry of Bangladesh and possible remedy. J. Adv. Biotechnol. Exp. 2019, 2, 87. [Google Scholar] [CrossRef]
- Plym, L.F.; Wierup, M. Salmonella contamination: A significant challenge to the global marketing of animal food products. Rev. Sci. Tech. 2006, 25, 541–554. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, C.M.; Wu, G.J.; Zhao, H.Y.; He, T.; Cao, X.Y.; Dai, L.; Xia, L.N.; Qin, S.S.; Shen, J.Z. Prevalence of antimicrobial resistance among Salmonella isolates from chicken in China. Foodborne Pathog. Dis. 2019, 8, 45–53. [Google Scholar] [CrossRef]
- Merchant, I.A.; Packer, R.A. Veterinary Bacteriology and Virology, 7th ed.; The Iowa University Press: Ames, IA, USA, 1969; pp. 286–306. [Google Scholar]
- Kardos, N.; Demain, A.L. Penicillin: The medicine with the greatest impact on therapeutic outcomes. Appl. Microbiol. Biotechnol. 2011, 92, 677–687. [Google Scholar] [CrossRef]
- Mir, I.A.; Kashyap, S.K.; Maherchandani, S. Isolation, serotype diversity and antibiogram of Salmonella enterica isolated from different species of poultry in India. Asian Pac. J. Trop. Biomed. 2015, 5, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.; Kumar, D.; Hussain, S.; Pathak, A.; Shukla, M.; Kumar, V.P.; Anisha, P.N.; Rautela, R.; Upadhyay, A.K.; Singh, S.P. Prevalence, antimicrobial resistance and virulence genes characterization of nontyphoidal Salmonella isolated from retail chicken meat shops in Northern India. Food Control 2019, 102, 104–111. [Google Scholar] [CrossRef]
- Sabry, M.A.; Abdel-Moein, K.A.; Abdel-Kader, F.; Hamza, E. Extended-spectrum β-lactamase-producing Salmonella serovars among healthy and diseased chickens and their public health implication. J. Glob. Antimicrob. Resist. 2020, 22, 742–748. [Google Scholar] [CrossRef]
- Wajid, M.; Awan, A.B.; Saleemi, M.K.; Weinreich, J.; Schierack, P.; Sarwar, Y.; Ali, A. Multiple drug resistance and virulence profiling of Salmonella enterica serovars Typhimurium and Enteritidis from poultry farms of Faisalabad, Pakistan. Microb. Drug Resist. 2019, 25, 133–142. [Google Scholar] [CrossRef]
- Giuriatti, J.; Stefani, L.M.; Brisola, M.C.; Crecencio, R.B.; Bitner, D.S.; Faria, G.A. Salmonella Heidelberg: Genetic profile of its antimicrobial resistance related to extended spectrum β-lactamases (ESBLs). Microb. Pathog. 2017, 109, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.I.; Saraiva, M.M.; Casas, M.R.; Oliveira, G.M.; Cardozo, M.V.; Benevides, V.P.; Barbosa, F.O.; FreitasNeto, O.C.; Almeida, A.M.; Berchieri, A. High occurrence of β-lactamase-producing Salmonella Heidelberg from poultry origin. PLoS ONE 2020, 15, e0230676. [Google Scholar] [CrossRef]
- Wang, W.; Peng, Z.; Baloch, Z.; Hu, Y.; Xu, J.; Zhang, W.; Fanning, S.; Li, F. Genomic characterization of an extensively-drug resistance Salmonella enterica serotype Indiana strain harboring blaNDM-1 gene isolated from a chicken carcass in China. Microbiol. Res. 2017, 204, 48–54. [Google Scholar] [CrossRef]
- Loren, G.; Yamamoto, M.D. Case Based Pediatrics for Medical Students and Residents; Department of Pediatrics, University of Hawaii John, A. Burns School of Medicine: Honolulu, HI, USA, 2003. [Google Scholar]
- Kim, J.S.; Yun, Y.S.; Kim, S.J.; Jeon, S.E.; Lee, D.Y.; Chung, G.T.; Yoo, C.K.; Kim, J. Rapid emergence and clonal dissemination of CTX-M-15–producing Salmonella enterica serotype Virchow, South Korea. Emerg. Infect. Dis. 2016, 22, 68. [Google Scholar] [CrossRef] [Green Version]
- Dutil, L.; Irwin, R.; Finley, R.; Ng, L.K.; Avery, B.; Boerlin, P.; Bourgault, A.M.; Cole, L.; Daignault, D.; Desruisseau, A.; et al. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg. Infect. Dis. 2010, 16, 48. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Kim, Y.B.; Lim, S.K.; Lee, Y.J.; Seo, K.W. Characteristics of cephalosporin-resistant Salmonella isolates from poultry in Korea, 2010–2017. Poult. Sci. 2019, 98, 957–965. [Google Scholar] [CrossRef]
- Dunne, E.F.; Fey, P.D.; Kludt, P.; Reporter, R.; Mostashari, F.; Shillam, P.; Wicklund, J.; Miller, C.; Holland, B.; Stamey, K.; et al. Emergence of domestically acquired ceftriaxone-resistant Salmonella infections associated with AmpCβ-lactamase. JAMA 2000, 28, 3151–3156. [Google Scholar] [CrossRef] [Green Version]
- Zhanel, G.G.; Wiebe, R.; Dilay, L.; Thomson, K.; Rubinstein, E.; Hoban, D.J.; Noreddin, A.M.; Karlowsky, J.A. Comparative review of the carbapenems. Drugs 2007, 67, 1027–1052. [Google Scholar] [CrossRef]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791. [Google Scholar] [CrossRef]
- Patel, G.; Bonomo, R. “Stormy waters ahead”: Global emergence of carbapenemases. Front. Microbiol. 2013, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, A.; Baltić, T.; Velebit, B.; Babić, M.; Milojević, L.; Đorđević, V. Antimicrobial resistance among Salmonella entericaserovarInfantis from broiler carcasses in Serbia. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012077. [Google Scholar] [CrossRef] [Green Version]
- Mingeot-Leclercq, M.P.; Glupczynski, Y.; Tulkens, P.M. Aminoglycosides: Activity and resistance. Antimicrob. Agents Chemother. 1999, 43, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Giguere, S.; Prescott, J.F.; Baggot, J.D.; Walker, R.D.; Dowling, P.M. Antimicrobial Therapy in Veterinary Medicine, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2006; ISBN 978-0-8138-0656-3. [Google Scholar]
- Tîrziu, E.; Bărbălan, G.; Morar, A.; Herman, V.; Cristina, R.T.; Imre, K. Occurrence and antimicrobial susceptibility profile of Salmonella spp. in raw and ready-to-eat foods and Campylobacter spp. in retail raw chicken meat in Transylvania, Romania. Foodborne Pathog. Dis. 2020, 17, 479–484. [Google Scholar] [CrossRef] [Green Version]
- CardosoI, M.O.; RibeiroI, A.R.; Santos, L.R.; PilottoI, F.; Moraes, I.H.; Salle, I.C.T.P.; Rocha, I.L.S.; Nascimento, I.V.P. Resistência antimicrobiana em Salmonella Enteritidis isoladas de carcaças de frango. Braz. J. Microbiol. 2006, 37, 368–371. [Google Scholar]
- “Clindamycin Hydrochloride”. The American Society of Health-System Pharmacists. Archived from the Original on 5 September 2015. Retrieved 4 September 2015. Available online: https://www.drugs.com/monograph/clindamycin-systemic.html (accessed on 17 July 2021).
- Yildirim, Y.; Gonulalan, Z.; Pamuk, S.; Ertas, N. Incidence and antibiotic resistance of Salmonella spp. on raw chicken carcasses. Food Res. Int. 2011, 44, 725–728. [Google Scholar] [CrossRef]
- Waghamare, R.N.; Paturkar, A.M.; Vaidya, V.M.; Zende, R.J.; Dubal, Z.N.; Dwivedi, A.; Gaikwad, R.V. Phenotypic and genotypic drug resistance profile of Salmonella serovars isolated from poultry farm and processing units located in and around Mumbai city, India. Vet. World 2018, 11, 682. [Google Scholar] [CrossRef] [Green Version]
- “Chloramphenicol”. The American Society of Health-System Pharmacists. Archived from the Original on 25 June 2015. Retrieved 1 August 2015. Available online: https://www.drugs.com/monograph/chloramphenicol.html (accessed on 17 July 2021).
- El-Sharkawy, H.; Tahoun, A.; El-Gohary, A.E.; El-Abasy, M.; El-Khayat, F.; Gillespie, T.; Kitade, Y.; Hafez, H.M.; Neubauer, H.; El-Adawy, H. Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathog. 2017, 9, 1–2. [Google Scholar] [CrossRef] [Green Version]
- “Rifampin”. The American Society of Health-System Pharmacists. Archived from the Original on 7 September 2015. Retrieved 1 August 2015. Available online: https://www.drugs.com/monograph/rifampin.html (accessed on 17 July 2021).
- Zdragas, A.; Mazaraki, K.; Vafeas, G.; Giantzi, V.; Papadopoulos, T.; Ekateriniadou, L. Prevalence, seasonal occurrence and antimicrobial resistance of Salmonella in poultry retail products in Greece. Lett. Appl. Microbiol. 2012, 55, 308–313. [Google Scholar] [CrossRef]
- Ramatla, T.; Taioe, M.O.; Thekisoe, O.M.; Syakalima, M. Confirmation of antimicrobial resistance by using resistance genes of isolated Salmonella spp. in chicken houses of north west, South Africa. World 2019, 9, 158–165. [Google Scholar] [CrossRef]
- “Vancomycin”. Drugs.com. 2 December 2019. Retrieved 24 December 2019. Available online: https://www.drugs.com/international/vancomycin.html (accessed on 17 July 2021).
- Singh, R.; Yadav, A.S.; Tripathi, V.; Singh, R.P. Antimicrobial resistance profile of Salmonella present in poultry and poultry environment in north India. Food Control 2013, 33, 545–548. [Google Scholar] [CrossRef]
- “Co-trimoxazole”. The American Society of Health-System Pharmacists. Archived from the Original on 6 September. Retrieved 1 August 2015. Available online: https://www.drugs.com/monograph/co-trimoxazole.html (accessed on 17 July 2021).
- Chuah, L.O.; Syuhada, A.K.S.; Suhaimi, I.M.; Hanim, T.F.; Rusul, G. Genetic relatedness, antimicrobial resistance and biofilm formation of Salmonella isolated from naturally contaminated poultry and their processing environment in northern Malaysia. Food Res. Int. 2018, 105, 743–751. [Google Scholar] [CrossRef]
- Tibaijuka, B.; Molla, B.; Hildebrandt, G.; Kleer, J.; Salah, W. Antimicrobila resistance to Salmonellae isolated from retail raw chicken meat and giblets in Ethiopia. Bull. Anim. Health Prod. Afr. 2002, 50, 86–95. [Google Scholar] [CrossRef]
- Adesiji, Y.O.; Deekshit, V.K.; Karunasagar, I. Antimicrobial-resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Sci. Nutr. 2014, 2, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Phiri, N.; Mainda, G.; Mukuma, M.; Sinyangwe, N.N.; Banda, L.J.; Kwenda, G.; Muligisa-Muonga, E.; Flavien, B.N.; Mwansa, M.; Yamba, K.; et al. Antibiotic-resistant Salmonella species and Escherichia coli in broiler chickens from farms, abattoirs and open markets in selected districts of Zambia. J. Epidemiol. Res. 2020, 6, 1. [Google Scholar] [CrossRef]
- Hoelzer, K.; Wong, N.; Thomas, J.; Talkington, K.; Jungman, E.; Coukell, A. Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Vet. Res. 2017, 13, 1–38. [Google Scholar] [CrossRef]
- Quesada, A.; Ugarte-Ruiz, M.; Iglesias, M.R.; Porrero, M.C.; Martínez, R.; Florez-Cuadrado, D.; Campos, M.J.; García, M.; Píriz, S.; Sáez, J.L.; et al. Detection of plasmid mediated colistin resistance (MCR-1) in Escherichia coli and Salmonella enterica isolated from poultry and swine in Spain. Res. Vet. Sci. 2016, 105, 134–135. [Google Scholar] [CrossRef]
- Moreno, L.Z.; Gomes, V.T.; Moreira, J.; de Oliveira, C.H.; Peres, B.P.; Silva, A.P.S.; Thakur, S.; La Ragione, R.M.; Moreno, A.M. First report of mcr-1-harboring Salmonella enterica serovar Schwarzengrund isolated from poultry meat in Brazil. Diagn. Microbiol. Infect. Dis. 2019, 93, 376–379. [Google Scholar] [CrossRef]
- Mogasale, V.; Maskery, B.; Ochiai, R.L.; Lee, J.S.; Mogasale, V.V.; Ramani, E.; Kim, Y.E.; Park, J.K.; Wierzba, T.F. Burden of typhoid fever in low-income and middle-income countries: A systematic, literature-based update with risk-factor adjustment. Lancet Glob. Health. 2014, 2, e570–e580. [Google Scholar] [CrossRef] [Green Version]
- Stanaway, J.D.; Reiner, R.C.; Blacker, B.F.; Goldberg, E.M.; Khalil, I.A.; Troeger, C.E.; Andrews, J.R.; Bhutta, Z.A.; Crump, J.A.; Im, J.; et al. The global burden of typhoid and paratyphoid fevers: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Theiss-Nyland, K.; Qadri, F.; Colin-Jones, R.; Zaman, K.; Khanam, F.; Liu, X.; Voysey, M.; Khan, A.; Hasan, N.; Ashher, F.; et al. Assessing the impact of a Vi-polysaccharide conjugate vaccine in preventing typhoid infection among Bangladeshi children: A protocol for a phase IIIb trial. Clin. Infect. Dis. 2019, 68, S74–S82. [Google Scholar] [CrossRef]
- Sockett, P.N.; Roberts, J.A. The social and economic impact of salmonellosis: A report of a national survey in England and Wales of laboratory-confirmed Salmonella infections. Epidemiol. Infect. 1991, 107, 335–347. [Google Scholar] [CrossRef] [Green Version]
- D’Aoust, J.Y. Salmonella and the international food trade. Int. J. Food Microbiol. 1994, 24, 11–31. [Google Scholar] [CrossRef]
- WHO. WHO Media Centre. 2005. Available online: https://www.who.int/ (accessed on 17 July 2021).
- CDC. Salmonella. Centers for Disease Control and Prevention. 1600 Clifton Road Atlanta, GA 30329-4027 USA, 2018. Available online: https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf (accessed on 17 July 2021).
- USDA’s Economic Research Service (ERS). 1989. Available online: https://www.ers.usda.gov/data-products/ (accessed on 17 July 2021).
- Scharff, R.L. Economic burden from health losses due to foodborne illness in the United States. J. Food Prot. 2012, 75, 123–131. [Google Scholar] [CrossRef]
- Hoffmann, S.; Batz, M.B.; Morris, J.G. Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J. Food Prot. 2012, 75, 1292–1302. [Google Scholar] [CrossRef]
- Scallan, E.; Mahon, B.E.; Hoekstra, R.M.; Griffin, P.M. Estimates of illnesses, hospitalizations and deaths caused by major bacterial enteric pathogens in young children in the United States. Pediatric Infect. Dis. J. 2013, 32, 217–221. [Google Scholar] [CrossRef]
- Suksathit, S.; Tangwatcharin, P. Activity of organic acid salts in combination with lauric arginate against Listeria monocytogenes and Salmonella Rissen. Sci. Asia 2013, 39, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Van Duijkeren, E.W.J.B.; Wannet, W.J.B.; Houwers, D.J.; Van Pelt, W. Serotype and phage type distribution of Salmonella strains isolated from humans, cattle, pigs, and chickens in the Netherlands from 1984 to 2001. J. Clin. Microbiol. 2002, 40, 3980–3985. [Google Scholar] [CrossRef] [Green Version]
- Vandeplas, S.; Dauphin, R.D.; Beckers, Y.; Thonart, P.; Thewis, A. Salmonella in chicken: Current and developing strategies to reduce contamination at farm level. J. Food Prot. 2010, 73, 774–785. [Google Scholar] [CrossRef]
- Saravanan, S.; Purushothaman, V.; Murthy, T.R.G.K.; Sukumar, K.; Srinivasan, P.; Gowthaman, V.; Balusamy, M.; Atterbury, R.; Kuchipudi, S.V. Molecular epidemiology of Nontyphoidal Salmonella in poultry and poultry products in India: Implications for human health. Indian J. Microbiol. 2015, 55, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Media-OIE-World Organisation for Animal Health. Annual Report. 2019. Available online: https://www.report2019oie.fr/en/ (accessed on 18 July 2021).
- Wibisono, F.J.; Sumiarto, B.; Untari, T.; Effendi, M.H.; Permatasari, D.A.; Witaningrum, A.M. CTX Gene of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli on Broilers in Blitar, Indonesia. Syst. Rev. Pharm. 2020, 11, 396–403. [Google Scholar] [CrossRef]
- Van Immerseel, F.; De Zutter, L.; Houf, K.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. Strategies to control Salmonella in the broiler production chain. World’s Poult. Sci. J. 2009, 65, 367–392. [Google Scholar] [CrossRef] [Green Version]
- Effendi, M.H.; Cicilia, R.; Rahmahani, J.; Tyasningsih, W. Public Awareness for Antimicrobial Resistance from Escherichia coli Isolated from Beef Sold on Several Wet Market in Surabaya, Indonesia. Indian J. Public Health Res. Dev. 2020, 11, 295–300. [Google Scholar] [CrossRef]
- Antunes, P.; Mourão, J.; Campos, J.; Peixe, L. Salmonellosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Widodo, A.; Effendi, M.H.; Khairullah, A.R. Extended-spectrum beta-lactamase (ESBL)-producing Eschericia coli from livestock. Sys. Rev. Pharm. 2020, 11, 382–392. [Google Scholar]
- Barrow, P.A.; Huggins, M.B.; Lovell, M.A.; Simpson, J.M. Observations on the pathogenesis of experimental Salmonella typhimurium infection in chickens. Res. Vet. Sci. 1987, 42, 194–199. [Google Scholar] [CrossRef]
- Salmonella. European Food Safety Authority-EFSA. Available online: https://www.efsa.europa.eu/en/topics/topic/salmonella (accessed on 18 July 2021).
- Brives, C.; Pourraz, J. Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. Palgrave Commun. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Nikkhahi, F.; Dallal, M.M.S.; Alimohammadi, M.; Foroushani, A.R.; Rajabi, Z.; Fardsanei, F.; Imeni, S.M.; Bonab, P.T. Phage therapy: Assessment of the efficacy of a bacteriophage isolated in the treatment of salmonellosis induced by Salmonella enteritidis in mice. Gastroenterol. Hepatol. Bed Bench. 2017, 10, 131–136. [Google Scholar] [PubMed]
Study Year/Study Location | Sample Category | Sample Size | Sample Type | Isolation Method Culture/Confirm by PCR | Resistance Phenotype | Detection Disk Diffusion/Genotype by PCR | Resistance Genotype | References |
---|---|---|---|---|---|---|---|---|
2010/Dhaka | Layer | 100 | Egg surface | Culture | Amoxicillin (87.50%), Ampicillin (87.50%), Erythromycin (62.50%), Cephalexin (50%), Doxycycline (50%), Ceftazidime (37.50%), Nalidixic acid (25%) | Disk diffusion | - | [23] |
2008–2010/Dhaka | Layer | 300 | Cloacal swab, intestinal fluid, egg surface, hand wash and soil | Culture | Penicillin (100%), Tetracycline (100%), Erythromycin (82%), Ampicillin (88%), Rifampicin (60%), Cephalexin (65%), Chloramphenicol (58%), Cefixine (50%), Norfloxacin (20%), Ciprofloxacin (20%), Nalidixic acid (20%) | Disk diffusion | - | [24] |
2011/Mymensingh | Broiler | 60 | Dressing water, devices and environmental swabs | Culture | Ampicillin (100%), Chloramphenicol (100%), Streptomycin (100%), Nalidixic acid (100%), Tetracycline (100%), Erythromycin (100%), Azithromycin (81.25%), Gentamicin (81.25%) | Disk diffusion | - | [25] |
2009–2010/Savar | Layer | 67 | Poultry samples | Culture/PCR | Rifampicin (88%), Clindamycin (84%), Oxacillin (84%), Vancomycin (78%), Doxycycline (52%), Levofloxacin (50%), Azithromycin (25%), Ceftriaxone (10%) | Disk diffusion/PCR | - | [26] |
2012/Chittagong | Layer | 30 | Dead birds | Culture | Amoxicillin (100%), Tetracycline (100%), Enrofloxacin (87.50%), Ciprofloxacin (87.50%), Pefloxacin (87.50%), Doxycycline (50%), Colistin (50%), Kanamycin (50%) | Disk diffusion | - | [27] |
2014/Mymensingh | Broiler | 50 | Cloacal swabs | Culture/PCR | Amoxicillin (87.50%), Cloxacillin (87.50%), Erythromycin (87.50%), Colistin (50%), Ciprofloxacin (31.25%) | Disk diffusion/PCR | - | [28] |
2015/Mymensingh, Gazipur and Sherpur | Broiler | 60 | Dressed broiler carcass | Culture/PCR | Amoxicillin (82%), Erythromycin (82%), Tetracycline (68%), Streptomycin (38%), Azithromycin (22%) | Disk diffusion/PCR | - | [29] |
2013/Chittagong | Layer | 310 | Eggs, egg surface, and trays | Culture | Ampicillin (100%), Amoxicillin (100%), Erythromycin (90%), Tetracycline (94.50%), Ciprofloxacin (49.50%), Colistin (60%), Enrofloxacin (60%), Pefloxacin (12.50%) | Disk diffusion | - | [30] |
2015/Mymensingh | Layer | 150 | Droppings and Cloacal swabs | Culture/PCR | 81.81% isolates were resistant to Amoxicillin, Doxycycline, Kanamycin, Gentamicin, and Tetracycline and 45.46% isolates to Ciprofloxacin | Disk diffusion/PCR | - | [31] |
2012/Mymensingh | Layer | 60 | Cloacal swabs, intestinal fluid, egg surface, feces, air and hand washings | Culture | Erythromycin (100%), Tetracycline (100%), Nalidaxic Acid (100%) and 40% to Ampicillin, Amoxicillin, Sulfamethoxazole, Kanamycin and Chloramphenicol | Disk diffusion | - | [32] |
2015–2016/Gazipur and Tangail | Broiler | 153 | Chick meconium, cloacal swabs, dead birds, feed, water and floor and vehicles swabs | Culture/PCR | Erythromycin (100%), Tetracycline (100%), Azithromycin (47.22%), Amoxicillin (38.89%) | Disk diffusion/PCR | - | [33] |
2016–2017/Gazipur and Mymensingh | Broiler | 51 | Chicken Meat | Culture/PCR | Erythromycin (100%), Doxycycline (79.31%), Sulfamethoxazole (75.86%), Azithromycin (72.41%), Oxytetracycline (66.67%), Amoxicillin (44.83%) | Disk diffusion/PCR | - | [34] |
2017/Jamalpur, Tangail, Kishoreganj and Netrokona | Broiler | 20 | Dressed broilers | Culture | Tetracycline (85.71%), Erythromycin (64.28%), Streptomycin (50%), Amoxicillin (28.57%), Azithromycin (28.57%) | Disk Diffusion | - | [35] |
2017/Naogoan | Layer | 180 | Egg samples | Culture | Ciprofloxacin (7.14%),Ceftriaxone (14.29%), Gentamicin (21.43%), Chloramphenicol (28.57%), Ampicillin (71.42%), Amoxicillin (92.86%) | Disk diffusion | - | [36] |
2019/Chattogram | Sonali Chicken | 50 | Fecal sample | Culture | Ceftriaxone (96.42%) and Ciprofloxacin (71.42%) | Disk diffusion | - | [37] |
2017/Mymensingh | Broiler | 100 | Cloacal swabs, litter and feeds | Culture/PCR | Tetracycline (97.14%), Chloramphenicol (94.28%), Ampicillin (82.85%), Streptomycin (77.14%) | Disk diffusion/PCR | tetA(97.14%), floR(94.28% blaTEM-1(82.85%), aadA1(77.14%) and intl1(20%) genes | [38] |
2017/Dhaka, Gazipur, and Tangail | Broiler | 352 | Clocal swabs, whole carcass, feed, water and hand washes | Culture/PCR | Erythromycin (81.72%), Tetracycline (80%), Amoxicillin (42.73%), Azithromycin (47.27%). | Disk diffusion/PCR | - | [39] |
Dhaka/2017 | Pigeon | 40 | Oral and cloacal swabs | Culture | Tetracycline (100%), Nalidixic acid (81.82%), Erythromycin (45.45%), Amoxicillin (36.36%), Ampicillin (27.27%), Azithromycin (27.27%), Levofloxacin (18.18%) | Disk diffusion | - | [40] |
2018/Mymensingh | Broiler | 75 | Droppings, litter, feed, hand wash, water and air | Culture | Oxacillin (100%), Ampicillin (66.67%), Colistin (54.55%), Chloramphenicol (42.42%), Gentamicin (42.42%), Ciprofloxacin (27.27%), Oxytetracycline (27.27%) | Disk diffusion | - | [41] |
2018–2019/Mymensingh and Tangail | Turkey | 55 | Feces and intestinal contents | Culture/PCR | Erythromycin (100%), Tetracycline (100%), Ciprofloxacin (44.44%), Meropenem (40.74%) | Disk diffusion/PCR | tetA gene (92.59%) | [42] |
2019/Dhaka, Sylhet, Mymensingh, Chattogram, and Rajshahi | Broiler | 113 | Frozen Chicken Meat Sample | Culture/PCR | Oxytetracycline (100%), Sulfamethoxazole (89.20%), Tetracycline (86.50%), Nalidixic acid (83.80%), Amoxicillin (74.30%), Pefloxacin (70.30%), Imipenem (48.60%) | Disk diffusion/PCR | blaCTX-M-1(2.7%), blaNDM-1 (20.3%), qnrA(4.1%) and qnrS (6.8%) genes | [43] |
2019/Gazipur, Narsingdi, Tangail and Brahmanbaria | Layer | 82 | Blood, Liver and Intestine | Culture/PCR | Colistin (92.68%), Oxytetracycline (86.59%), Co-Trimoxazole (76.83%), Ciprofloxacin (73.17%), Enrofloxacin (65.85%) | Disk diffusion/PCR | mcr−1 gene (6.09%) | [44] |
2016/Rajshahi | Broiler and Layer | 120 | Cloacal swabs | Culture | Penicillin (100%), Nalidixic acid (100%), Sulfamethoxazole (55%), Ampicillin (40%), Amoxicillin (25%) | Disk diffusion | - | [45] |
2018–2019/Mymensingh, Jamalpur | Broiler | 70 | Feces, meatand visceral organ | Culture/PCR | Amoxicillin (100%), Tetracycline (90.48%), Ceftazidime (61.90%), Chloramphenicol (38.10%) and Colistin (33.33%) | Disk diffusion/PCR | - | [46] |
2019/Dhaka | Broiler, Sonali and Native | 870 | Cecal contents | Culture/PCR | 100% to Ciprofloxacin, Streptomycin and Tetracycline. 86.70% to Nalidixic acid and Gentamicin. Ampicillin (72.70%), 20% to Amoxicillin, Chloramphenicol, Sulfamethoxazole, Cefixime and Ceftriaxone | Disk diffusion/PCR | blaTEM (73.3%), tetA (100%), sul1 (80.2%) and strA/B (33.3%) genes | [47] |
2020/Dhaka, Mymensingh, Rangpur, Sylhet, and Chattogram | Layer | 765 | Cloacal swabs (535), visceral organs (50), and droppings (180) | Culture/PCR | Amoxicillin (49.70%), Sulfamethoxazole (47.70%), Erythromycin (43.70%), Azithromycin (31%), Oxytetracycline (79.70%), Doxycycline (61.40%), Ciprofloxacin (30%), Gentamicin (32%) | Disk diffusion/PCR | - | [48] |
Host. | Serovars | Major Symptoms | Zoonotic Importance |
---|---|---|---|
Human | Salmonella enterica serovar Typhi (S. Typhi) | Typhoid fever | Yes |
Salmonella enterica serovar Paratyphi (S. Paratyphi) | Paratyphoid fever | Yes | |
S. Typhimurium | Non-typhoidal Salmonellosis/Enteritis | Yes | |
S. Enteritidis | Non-typhoidal Salmonellosis/Enteritis | Yes | |
Poultry | S. Gallinarum | Fowl typhoid | Yes |
S. Pullorum | Pullorum disease | Yes | |
S. Typhi | Salmonellosis | Yes | |
S. Enteritidis | Salmonellosis | Yes | |
Ducks | S. Anatum | Keel disease | Yes |
Sheep and goats | S. Abortusovis | Salmonellosis | Yes |
S. Anatum | Salmonellosis | Yes | |
S. Montevideo | Salmonellosis | Yes | |
Cattle | S. Dublin | Salmonellosis | Yes |
S. Typhimurium | Salmonellosis | Yes | |
S. Newport | Salmonellosis | Yes | |
Horses | S. Anatum | Salmonellosis | Yes |
S. Agona | Salmonellosis | Yes | |
S. Enteritidis | Salmonellosis | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.J.; Attia, Y.; Ballah, F.M.; Islam, M.S.; Sobur, M.A.; Islam, M.A.; Ievy, S.; Rahman, A.; Nishiyama, A.; Islam, M.S.; et al. Zoonotic Significance and Antimicrobial Resistance in Salmonella in Poultry in Bangladesh for the Period of 2011–2021. Zoonotic Dis. 2021, 1, 3-24. https://doi.org/10.3390/zoonoticdis1010002
Hossain MJ, Attia Y, Ballah FM, Islam MS, Sobur MA, Islam MA, Ievy S, Rahman A, Nishiyama A, Islam MS, et al. Zoonotic Significance and Antimicrobial Resistance in Salmonella in Poultry in Bangladesh for the Period of 2011–2021. Zoonotic Diseases. 2021; 1(1):3-24. https://doi.org/10.3390/zoonoticdis1010002
Chicago/Turabian StyleHossain, Md. Jannat, Youssef Attia, Fatimah Muhammad Ballah, Md. Saiful Islam, Md. Abdus Sobur, Md. Amirul Islam, Samina Ievy, Asadur Rahman, Akira Nishiyama, Md. Shafiqul Islam, and et al. 2021. "Zoonotic Significance and Antimicrobial Resistance in Salmonella in Poultry in Bangladesh for the Period of 2011–2021" Zoonotic Diseases 1, no. 1: 3-24. https://doi.org/10.3390/zoonoticdis1010002
APA StyleHossain, M. J., Attia, Y., Ballah, F. M., Islam, M. S., Sobur, M. A., Islam, M. A., Ievy, S., Rahman, A., Nishiyama, A., Islam, M. S., Hassan, J., & Rahman, M. T. (2021). Zoonotic Significance and Antimicrobial Resistance in Salmonella in Poultry in Bangladesh for the Period of 2011–2021. Zoonotic Diseases, 1(1), 3-24. https://doi.org/10.3390/zoonoticdis1010002