Spillover of Trypanosoma lewisi and Trypanosoma musculi Allied Trypanosomes from Rodents to Bats in the Roofs of Human Dwellings: Synanthropic Bats as a Potential New Source of Human Opportunistic Trypanosomes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Studied Areas, Bat Captures, and Blood Collection
2.2. DNA Extraction and Fluorescent Fragment Length Barcoding (FFLB)
2.3. Nested-PCR for the Identification of Trypanosomes in Bat Blood Samples
2.4. Phylogenetic and Single Nucleotide Polymorphism (SNP) Analyses of SSU rRNA Gene Sequences
3. Results and Discussion
3.1. Trypanosoma (Herpetosoma) spp. and Other Trypanosomes Identified by FFLB in Synanthropic Bats
3.2. Phylogenetic Analyses of Herpetosoma Trypanosomes from Bats and Rodents Using SSU rRNA Sequences
3.3. Trypanosomes in Bat Blood Smears and Haemocultures
3.4. Biological, Ecological and Geographical Characteristics of Bats Harboring Herpetosoma spp.
3.5. Active or Transient Infections of Bats by T. lewisi-like and T. musculi-like Species?
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayman, D.T.; Bowen, R.A.; Cryan, P.M.; McCracken, G.F.; O’Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L. Ecology of zoonotic infectious diseases in bats: Current knowledge and future directions. Zoonoses Public Health 2013, 60, 2–21. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Blasdell, K.R.; Morand, S.; Laurance, S.G.W.; Doggett, S.L.; Hahs, A.; Trinh, K.; Perera, D.; Firth, C. Rats and the city: Implications of urbanization on zoonotic disease risk in Southeast Asia. Proc. Natl. Acad. Sci. USA 2022, 119, e2112341119. [Google Scholar] [CrossRef] [PubMed]
- Dhivahar, J.; Parthasarathy, A.; Krishnan, K.; Kovi, B.S.; Pandian, G.N. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023, 9, e22351. [Google Scholar] [CrossRef]
- Hoare, C.A. The Trypanosomes of Mammals: A Zoological Monograph; Part 2 Systematic; Blackwell Scientific Publications: Oxford, UK, 1972; pp. 123–625. [Google Scholar]
- Maia da Silva, F.M.; Marcili, A.; Ortiz, P.A.; Epiphanio, S.; Campaner, M.; Catão-Dias, J.L.; Shaw, J.J.; Camargo, E.P.; Teixeira, M.M.G. Phylogenetic, morphological and behavioural analyses support host switching of Trypanosoma (Herpetosoma) lewisi from domestic rats to primates. Infect. Genet. Evol. 2010, 10, 522–529. [Google Scholar] [CrossRef]
- Cavazzana, M.; Marcili, A.; Lima, L.; da Silva, F.M.; Junqueira, Â.C.V.; Veludo, H.H.; Viola, L.B.; Campaner, M.; Nunes, V.L.B.; Paiva, F.; et al. Phylogeographical, ecological and biological patterns shown by nuclear (ssrRNA and gGAPDH) and mitochondrial (Cyt b) genes of trypanosomes of the subgenus Schizotrypanum parasitic in Brazilian bats. Int. J. Parasitol. 2010, 40, 345–355. [Google Scholar] [CrossRef]
- Hamilton, P.B.; Teixeira, M.M.G.; Stevens, J.R. The Evolution of Trypanosoma cruzi: The ’Bat Seeding’ Hypothesis. Trends Parasitol. 2012, 28, 136–141. [Google Scholar] [CrossRef]
- Espinosa-Álvarez, O.; Ortiz, P.A.; Lima, L.; Costa-Martins, A.G.; Serrano, M.G.; Herder, S.; Buck, G.A.; Camargo, E.P.; Hamilton, P.B.; Stevens, J.R.; et al. Trypanosoma rangeli is phylogenetically closer to Old World trypanosomes than to Trypanosoma cruzi. Int. J. Parasitol. 2018, 48, 569–584. [Google Scholar] [CrossRef]
- Pinto, C.M.; Ocaña-Mayorga, S.; Tapia, E.E.; Lobos, S.E.; Zurita, A.P.; Aguirre-Villacís, F.; MacDonald, A.; Villacís, A.G.; Lima, L.; Teixeira, M.M.G.; et al. Bats, trypanosomes, and triatomines in Ecuador: New insights into the diversity, transmission, and origins of Trypanosoma cruzi and Chagas disease. PLoS ONE 2015, 10, e0139999. [Google Scholar] [CrossRef]
- Dario, M.A.; Lisboa, C.V.; Costa, L.M.; Moratelli, R.; Nascimento, M.P.; Costa, L.P.; Reis Leite, Y.L.; Llewellyn, M.S.; Das Chagas Xavier, S.C.C.; Rodrigues Roque, A.L.; et al. High Trypanosoma spp. diversity is maintained by bats and triatomines in Espírito Santo state, Brazil. PLoS ONE 2017, 12, e0188412. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, X.; Zhang, N.; Li, J.; Gong, P.; He, B.; Zhang, X. First report of the prevalence and genotype of Trypanosoma spp. in bats in Yunnan Province, Southwestern China. Acta Trop. 2019, 198, e105105. [Google Scholar] [CrossRef] [PubMed]
- Clément, L.; Dietrich, M.; Markotter, W.; Fasel, N.J.; Monadjem, A.; López-Baucells, A.; Scaravelli, D.; Théou, P.; Pigeault, R.; Ruedi, M.; et al. Out of Africa: The origins of the protozoan blood parasites of the Trypanosoma cruzi clade found in bats from Africa. Mol. Phylogenet. Evol. 2020, 145, 106705. [Google Scholar] [CrossRef] [PubMed]
- Thiombiano, N.G.; Boungou, M.; Chabi, B.A.M.; Oueda, A.; Werb, O.; Schaer, J. First investigation of blood parasites of bats in Burkina Faso detects Hepatocystis parasites and infections with diverse Trypanosoma spp. Parasitol. Res. 2023, 122, 3121–3129. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.M.; de Oliveira, C.E.; Santos, F.M.; Sano, N.Y.; Martinez, É.V.; Alves, F.M.; Tavares, L.E.R.; Roque, A.L.R.; Jansen, A.M.; Herrera, H.M. Trypanosomatid diversity in a bat community of an urban area in Campo Grande, Mato Grosso do Sul, Brazil. Infect. Genet. Evol. 2024, 118, 105563. [Google Scholar] [CrossRef]
- Ortiz, P.A.; Garcia, H.A.; Lima, L.; da Silva, F.M.; Campaner, M.; Pereira, C.L.; Jittapalapong, S.; Neves, L.; Desquesnes, M.; Camargo, E.P.; et al. Diagnosis and Genetic Analysis of the Worldwide Distributed Rattus-borne Trypanosoma (Herpetosoma) lewis and Its Allied Species in Blood and Fleas of Rodents. Infect. Genet. Evol. 2018, 63, 380–390. [Google Scholar] [CrossRef]
- Mafie, E.; Saito-Ito, A.; Kasai, M.; Hatta, M.; Rivera, P.T.; Ma, X.H.; Chen, E.R.; Sato, H.; Takada, N. Integrative taxonomic approach of trypanosomes in the blood of rodents and soricids in Asian countries, with the description of three new species. Parasitol. Res. 2019, 118, 97–109. [Google Scholar] [CrossRef]
- Goodrich, I.; McKee, C.; Kosoy, M. Trypanosoma (Herpetosoma) diversity in rodents and lagomorphs of New Mexico with a focus on epizootological aspects of infection in Southern Plains woodrats (Neotoma micropus). PLoS ONE 2020, 15, e0244803. [Google Scholar] [CrossRef]
- Votýpka, J.; Stříbrná, E.; Modrý, D.; Bryja, J.; Bryjová, A.; Lukeš, J. Unexpectedly high diversity of trypanosomes in small sub-Saharan mammals. Int. J. Parasitol. 2022, 52, 647–658. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Han, X.; Hornok, S.; Wang, H.; Wang, N.; Liu, G.; Yang, M.; Wang, Y. Novel Trypanosomatid species detected in Mongolian pikas (Ochotona pallasi) and their fleas in northwestern China. Parasit. Vectors 2024, 17, 152. [Google Scholar] [CrossRef]
- Averis, S.; Thompson, R.C.A.; Lymbery, A.J.; Wayne, A.F.; Morris, K.D.; Smith, A. The diversity, distribution and host-parasite associations of trypanosomes in Western Australian wildlife. Parasitology 2009, 136, 1269–1279. [Google Scholar] [CrossRef]
- Maraghi, S.; Wallbanks, K.R.; Molyneux, D.H. Oral transmission of trypanosomes of the subgenus Herpetosoma from small mammals. Parasitol. Res. 1995, 81, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Telfer, S.; Burthe, S.; Bennett, M.; Begon, M. A role for vector-independent transmission in rodent trypanosome infection? Int. J. Parasitol. 2006, 36, 1359–1366. [Google Scholar] [CrossRef]
- Viens, P.; Roger, M.; Dubois, R. Influence of pregnancy on mouse immunity to Trypanosoma musculi. Trans. R. Soc. Trop. Med. Hyg. 1983, 77, 274–275. [Google Scholar] [CrossRef] [PubMed]
- Albright, J.; Albright, J. Rodent trypanosomes: Their conflict with the immune system of the host. Parasitol. Today 1991, 7, 137–140. [Google Scholar] [CrossRef]
- Monroy, F.P.; Dusanic, D.G. The kidney stage of Trypanosoma musculi: A distinct stage in the life cycle? Trends Parasitol. 2000, 16, 107–110. [Google Scholar] [CrossRef]
- Budovsky, A.; Prinsloo, I.; El-On, J. Pathological developments mediated by cyclophosphamide in rats infected with Trypanosoma lewisi. Parasitol. Int. 2006, 55, 237–242. [Google Scholar] [CrossRef]
- Gao, J.M.; Yi, S.Q.; Geng, G.Q.; Xu, Z.S.; Hide, G.; Lun, Z.R.; Lai, D.H. Infection with Trypanosoma lewisi or Trypanosoma musculi may promote the spread of Toxoplasma gondii. Parasitology 2021, 148, 703–711. [Google Scholar] [CrossRef]
- Wyatt, K.B.; Campos, P.F.; Gilbert, M.T.; Kolokotronis, S.O.; Hynes, W.H.; DeSalle, R.; Ball, S.J.; Daszak, P.; MacPhee, R.D.; Greenwood, A.D. Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLoS ONE 2008, 3, e3602. [Google Scholar] [CrossRef]
- Desquesnes, M.; Dávila, A.M. Applications of PCR-Based Tools for Detection and Identification of Animal Trypanosomes: A Review and Perspectives. Vet. Parasitol. 2002, 109, 213–231. [Google Scholar] [CrossRef]
- Tang, H.J.; Lan, Y.G.; Wen, Y.Z.; Zhang, X.C.; Desquesnes, M.; Yang, T.B.; Yu, X.B.; Lun, Z.R. Detection of Trypanosoma lewisi from wild rats in Southern China and its genetic diversity based on the ITS1 and ITS2 sequences. Infect. Genet. Evol. 2012, 12, 1046–1051. [Google Scholar] [CrossRef]
- Cassan, C.; Diagne, C.A.; Tatard, C.; Gauthier, P.; Dalecky, A.; Bâ, K.; Kane, M.; Niang, Y.; Diallo, M.; Sow, A.; et al. Leishmania major and Trypanosoma lewisi infection in invasive and native rodents in Senegal. PLoS Negl. Trop. Dis. 2018, 12, e0006615. [Google Scholar] [CrossRef] [PubMed]
- Dobigny, G.; Gauthier, P.; Houéménou, G.; Dossou, H.J.; Badou, S.; Etougbétché, J.; Tatard, C.; Truc, P. Spatio-temporal survey of small mammal-borne Trypanosoma lewisi in Cotonou, Benin, and the potential risk of human infection. Infect. Genet. Evol. 2019, 75, 103967. [Google Scholar] [CrossRef] [PubMed]
- Babyesiza, W.S.; Katakweba, A.; Fornůsková, A.; Ssuunaf, J.; Akoth, S.; Mpagi, J.; Goüy de Bellocq, J.; Bryja, J.; Votýpka, J. Trypanosome Diversity in Small Mammals in Uganda and the Spread of Trypanosoma lewisi to Native Species. Parasitol. Res. 2024, 123, 54. [Google Scholar] [CrossRef] [PubMed]
- Milocco, C.; Kamyingkird, K.; Desquesnes, M.; Jittapalapong, S.; Herbreteau, V.; Chaval, Y.; Douangboupha, B.; Morand, S. Molecular demonstration of Trypanosoma evansi and Trypanosoma lewisi DNA in wild rodents from Cambodia, Lao PDR, and Thailand. Transbound. Emerg. Dis. 2013, 60, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Archer, C.E.; Schoeman, M.C.; Appleton, C.C.; Mukaratirwa, S.; Hope, K.J.; Matthews, G. Predictors of Trypanosoma lewisi in Rattus norvegicus from Durban, South Africa. J. Parasitol. 2018, 104, 187–195. [Google Scholar] [CrossRef]
- Garcia, H.A.; Rangel, C.J.; Ortiz, P.A.; Calzadilla, C.O.; Coronado, R.A.; Silva, A.J.; Peréz, A.M.; Lecuna, J.C.; García, M.E.; Aguirre, A.M.; et al. Zoonotic trypanosomes in rats and fleas of Venezuelan slums. Ecohealth 2019, 16, 523–533. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, S.; Bhutia, W.D.; Vaid, R.K.; Kumar, S. Atypical human trypanosomosis: Potentially emerging disease with lack of understanding. Zoonoses Public Health 2022, 69, 259–276. [Google Scholar] [CrossRef]
- Nguyen, L.K.H.; Koizumi, N.; Ung, T.H.T.; Le, T.T.; Hirayama, K.; Hasebe, F.; Hoang, V.M.P.; Khong, M.T.; Le, T.Q.M.; Miura, K. Detection of Trypanosoma lewisi DNA from Rattus norvegicus and Rattus rattus in Hanoi, Vietnam. Vector Borne Zoonotic Dis. 2022, 22, 159–161. [Google Scholar] [CrossRef]
- Tanthanathipchai, N.; Mitsuwan, W.; Chaisiri, K.; Thaikoed, S.; Pereira, M.L.; Paul, A.K.; Saengsawang, P. Trypanosoma lewisi in blood of Rattus rattus complex residing in human settlements, Nakhon Si Thammarat, Thailand: Microscopic and molecular investigations. Comp. Immunol. Microbiol. Infect. Dis. 2023, 98, 102010. [Google Scholar] [CrossRef]
- Islam, M.M.; Farag, E.; Hassan, M.M.; Enan, K.A.; Mohammadi, A.; Aldiqs, A.K.; Alhussain, H.; Al Musalmani, E.; Al-Zeyara, A.A.; Al-Romaihi, H.; et al. Rodent-borne parasites in Qatar: A possible risk at the human-animal-ecosystem interface. One Health 2024, 18, 100708. [Google Scholar] [CrossRef]
- Johnson, P.D. A case of infection by Trypanosoma lewisi in a child. Trans. R. Soc. Trop. Med. Hyg. 1933, 26, 467–468. [Google Scholar] [CrossRef]
- Shrivastava, K.K.; Shrivastava, G.P. Two cases of Trypanosoma (Herpetosoma) species infection of man in India. Trans. R. Soc. Trop. Med. Hyg. 1974, 68, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Howie, S.; Guy, M.; Fleming, L.; Bailey, W.; Noyes, H.; Faye, J.A.; Pepin, J.; Greenwood, B.; Whittle, H.; Molyneux, D.; et al. A Gambian infant with fever and an unexpected blood film. PLoS Med. 2006, 3, 1508–1512. [Google Scholar] [CrossRef] [PubMed]
- Sarataphan, N.; Vongpakorn, M.; Nuansrichay, B.; Autarkool, N.; Keowkarnkah, T.; Rodtian, P.; Stich, R.W.; Jittapalapong, S. Diagnosis of a Trypanosoma lewisi-like (Herpetosoma) infection in a sick infant from Thailand. J. Med. Microbiol. 2007, 56, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Lun, Z.; Reid, S.A.; Lai, D.; Li, F. Atypical human trypanosomiasis: A neglected disease or just an unlucky accident? Trends Parasitol. 2009, 25, 107–108. [Google Scholar] [CrossRef]
- Verma, A.; Manchanda, S.; Kumar, N.; Sharma, A.; Goel, M.; Banerjee, P.S.; Garg, R.; Singh, B.P.; Balharbi, F.; Lejon, V.; et al. Trypanosoma lewisi or T. lewisi-like infection in a 37-day-old Indian infant. Am. J. Trop. Med. Hyg. 2011, 85, 221–224. [Google Scholar] [CrossRef]
- Truc, P.; Büscher, P.; Cuny, G.; Gonzatti, M.I.; Jannin, J.; Joshi, P.; Prayag, J.; Lun, Z.; Mittioli, R.; Pays, E.; et al. Atypical human infections by animal trypanosomes. PLoS Negl. Trop. Dis. 2013, 7, e2256. [Google Scholar] [CrossRef]
- Lun, Z.R.; Wen, Y.Z.; Uzureau, P.; Lecordier, L.; Lai, D.H.; Lan, Y.G.; Desquesnes, M.; Geng, G.Q.; Yang, T.B.; Zhou, W.L.; et al. Resistance to normal human serum reveals Trypanosoma lewisi as an underestimated human pathogen. Mol. Biochem. Parasitol. 2015, 199, 58–61. [Google Scholar] [CrossRef]
- Mafie, E.; Rupa, F.H.; Setsuda, A.; Saito-Ito, A.; Sato, H. Brief review on atypical human trypanosomiasis of Trypanosoma lewisi. Jpn. J. Vet. Res. 2016, 15, 24–33. [Google Scholar]
- Jain, P.; Goyal, V.K.; Agrawal, R. An atypical Trypanosoma lewisi infection in a 22-day-old neonate from India: An emergent zoonosis. Indian J. Pathol. Microbiol. 2023, 66, 199–201. [Google Scholar] [CrossRef]
- Desquesnes, M.; Yangtara, S.; Kunphukhieo, P.; Jittapalapong, S.; Herder, S. Zoonotic trypanosomes in Southeast Asia: Attempts to control Trypanosoma lewisi using human and animal trypanocidal drugs. Infect. Genet. Evol. 2016, 44, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Deborggraeve, S.; Koffi, M.; Jamonneau, V.; Bonsu, F.A.; Queyson, R.; Simarro, P.P.; Herdewijn, P.; Büscher, P. Molecular analysis of archived blood slides reveals an atypical human Trypanosoma infection. Diagn. Microbiol. Infect. Dis. 2008, 61, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Desquesnes, M.; Kamyingkird, K.; Yangtara, S.; Milocco, C.; Ravel, S.; Wang, M.H.; Lun, Z.R.; Morand, S.; Jittapalapong, S. Specific primers for PCR amplification of the ITS1 (ribosomal DNA) of Trypanosoma lewisi. Infect. Genet. Evol. 2011, 11, 1361–1367. [Google Scholar] [CrossRef]
- Hong, K.; Zhang, X.; Fusco, O.A.; Lan, Y.G.; Lun, Z.R.; Lai, D.H. PCR-based identification of Trypanosoma lewisi and Trypanosoma musculi using maxicircle kinetoplast DNA. Acta Trop. 2017, 171, 207–212. [Google Scholar] [CrossRef]
- Lima, L.; Da Silva, F.M.; Neves, L.; Attias, M.; Takata, C.S.; Campaner, M.; De Souza, W.; Hamilton, P.B.; Teixeira, M.M.G. Evolutionary insights from bat trypanosomes: Morphological, developmental and phylogenetic evidence of a new species, Trypanosoma (Schizotrypanum) erneyi sp. nov., in African bats closely related to Trypanosoma (Schizotrypanum) cruzi and allied species. Protist 2012, 163, 856–872. [Google Scholar] [CrossRef]
- Lima, L.; Espinosa-Álvarez, O.; Hamilton, P.B.; Neves, L.; Takata, C.S.; Campaner, M.; Attias, M.; De Souza, W.; Camargo, E.P.; Teixeira, M.M.G. Trypanosoma livingstonei: A new species from African bats supports the bat seeding hypothesis for the Trypanosoma cruzi clade. Parasites Vectors 2013, 6, 221. [Google Scholar] [CrossRef]
- Hamilton, P.B.; Adams, E.R.; Malele, I.I.; Gibson, W.C. A novel, high-throughput technique for species identification reveals a new species of tsetse-transmitted trypanosome related to the Trypanosoma brucei subgenus, Trypanozoon. Infect. Genet. Evol. 2008, 8, 26–33. [Google Scholar] [CrossRef]
- Hamilton, P.B.; Lewis, M.D.; Cruickshank, C.; Gaunt, M.W.; Yeo, M.; Llewellyn, M.S.; Silva, F.M.; Stevens, J.R.; Miles, M.A.; Teixeira, M.M.G. Identification and lineage genotyping of South American trypanosomes using fluorescent fragment length barcoding. Infect. Genet. Evol. 2011, 11, 44–51. [Google Scholar] [CrossRef]
- Vergara-Meza, J.G.; Brilhante, A.F.; Valente, V.d.C.; Villalba-Alemán, E.; Ortiz, P.A.; Cosmiro de Oliveira, S.; Rodrigues Cavalcante, M.; Julião, G.R.; Gonçalves, M.C.; Valente, A.S.; et al. Trypanosoma cruzi and Trypanosoma rangeli in Acre, Brazilian Amazonia: Coinfection and notable genetic diversity in an outbreak of orally acquired acute Chagas disease in a forest community, wild reservoirs, and vectors. Parasitologia 2022, 2, 350–365. [Google Scholar] [CrossRef]
- Swofford, D.L. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0 Beta 10; Sinauer Associates: Sunderland, MA, USA, 2002.
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Jombart, T.; Ahmed, I. adegenet 1.3-1: New Tools for the Analysis of Genome-Wide SNP Data. Bioinformatics 2011, 27, 3070–3071. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T. adegenet: A R Package for the Multivariate Analysis of Genetic Markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Garcia, H.A.; Rodrigues, C.M.F.; Rodrigues, A.C.; Pereira, D.L.; Pereira, C.L.; Camargo, E.P.; Hamilton, P.B.; Teixeira, M.M.G. Remarkable Richness of Trypanosomes in Tsetse Flies (Glossina morsitans morsitans and Glossina pallidipes) from the Gorongosa National Park and Niassa National Reserve of Mozambique Revealed by Fluorescent Fragment Length Barcoding (FFLB). Infect. Genet. Evol. 2018, 63, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.H.; Lima, L.; Schubach, A.O.; Teixeira, M.M.G. Trypanosoma madeirae sp. n.: A species of the clade T. cruzi associated with the neotropical common vampire bat Desmodus rotundus. Int. J. Parasitol. Parasites Wildl. 2019, 8, 71–81. [Google Scholar] [CrossRef]
- Sato, H.; Osanai, A.; Kamiya, H.; Obara, Y.; Jiang, W.; Zhen, Q.; Chai, J.; Ito, M. Characterization of SSU and LSU rRNA genes of three Trypanosoma (Herpetosoma) grosi isolates maintained in Mongolian jirds. Parasitology 2005, 130, 157–167. [Google Scholar] [CrossRef]
- Kim, H.J.; Han, B.; Lee, H.; Ju, J.W.; Shin, H. Current Status of Trypanosoma grosi and Babesia microti in Small Mammals in the Republic of Korea. Animals 2024, 14, 989. [Google Scholar] [CrossRef]
- Maia da Silva, F.; Marcili, A.; Lima, L.; Cavazzana, M., Jr.; Ortiz, P.A.; Campaner, M.; Takeda, G.F.; Paiva, F.; Nunes, V.L.B.; Camargo, E.P.; et al. Trypanosoma rangeli isolates of bats from Central Brazil: Genotyping and phylogenetic analysis enable description of a new lineage using spliced-leader gene sequences. Acta Trop. 2008, 109, 199–207. [Google Scholar] [CrossRef]
- Maia da Silva, F.; Naiff, R.D.; Marcili, A.; Gordo, M.; D’Affonseca, J.A.; Naiff, M.F.; Franco, A.M.R.; Campaner, M.; Valente, V.; Valente, S.A.; et al. Infection rates and genotypes of Trypanosoma rangeli and Trypanosoma cruzi infecting free-ranging Saguinus bicolor (Callitrichidae), a critically endangered primate of the Amazon Rainforest. Acta Trop. 2008, 107, 168–173. [Google Scholar] [CrossRef]
- Molinari, J.; Moreno, S.A. The correct subgeneric name of Trypanosoma rangeli Tejera, 1920 (Euglenozoa: Trypanosomatidae), a human-infective endoparasite of neotropical mammals. Zootaxa. 2018, 4418, 98–100. [Google Scholar] [CrossRef]
- Lima, L.; Espinosa-Álvarez, O.; Pinto, C.M.; Cavazzana Jr, M.; Pavan, A.C.; Carranza, J.C.; Lim, B.K.; Campaner, M.; Takata, C.S.A.; Camargo, E.P.; et al. New insights into the evolution of the Trypanosoma cruzi clade provided by a new trypanosome species tightly linked to Neotropical Pteronotus bats and related to an Australian lineage of trypanosomes. Parasites Vectors 2015, 8, 1255. [Google Scholar] [CrossRef]
- Jittapalapong, S.; Inpankaew, T.; Sarataphan, N.; Herbreteau, V.; Hugot, J.P. Molecular detection of divergent trypanosomes among rodents of Thailand. Infect. Genet. Evol. 2008, 8, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Pumhom, P.; Pognon, D.; Yangtara, S.; Thaprathorn, N.; Milocco, C.; Douangboupha, B.; Herder, S.; Chaval, Y.; Morand, S.; Jittapalapong, S.; et al. Molecular prevalence of Trypanosoma spp. in wild rodents of Southeast Asia: Influence of human settlement habitat. Epidemiol. Infect. 2014, 142, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Salzer, J.S.; Pinto, C.M.; Grippi, D.C.; Williams-Newkirk, A.J.; Peterhans, J.K.; Rwego, I.B.; Carroll, D.S.; Gillespie, T.R. Impact of anthropogenic disturbance on native and invasive trypanosomes of rodents in forested Uganda. Ecohealth 2016, 13, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Ellwanger, J.H.; Chies, J.A.B. Zoonotic spillover: Understanding basic aspects for better prevention. Genet. Mol. Biol. 2021, 44, e20200355. [Google Scholar] [CrossRef]
- Austen, J.M.; Barbosa, A.D. Diversity and Epidemiology of Bat Trypanosomes: A One Health Perspective. Pathogens 2021, 10, 1148. [Google Scholar] [CrossRef]
Group | Species | Isolate Code | Order/Family | Host Origin Species | Geographic Origin |
---|---|---|---|---|---|
Group 1 | T. lewisi | Molteno B3 | Rodentia/Muridae | Rattus sp. | UK |
TryBiIDN203 | Rodentia/Muridae | Bandicota indica | ID | ||
ATCC30085 | Rodentia/Muridae | Rattus norvegicus | US | ||
ROVE61 | Rodentia/Muridae | Rattus norvegicus | VE | ||
AF05b_KE836 | Rodentia/Muridae | Mus triton | KE | ||
AF05c_ETH1492 | Rodentia/Muridae | Stenocephalemys albipes | ET | ||
AF05g_KE675 | Rodentia/Muridae | Lemniscomys striatus | KE | ||
AF05e_RS0805 | Rodentia/Muridae | Praomys minor | ZB | ||
AF05a_KE670 | Rodentia/Muridae | Praomys jacksoni | KE | ||
AF05f_TA190 | Rodentia/Muridae | Praomys jacksoni | TZ | ||
AF05i_KE452 | Rodentia/Muridae | Mastomys natalensis | KE | ||
Group 2 | T. lewisi-like | 4470 | Rodentia/Muridae | Rattus Rattus | BR |
M11871 | Rodentia/Muridae | Rattus Rattus | BR | ||
M11872 | Rodentia/Muridae | Rattus Rattus | BR | ||
GORO52 | Rodentia/Muridae | Rattus Rattus | MZ | ||
GORO53 | Rodentia/Muridae | Rattus Rattus | MZ | ||
1148 | Rodentia/Muridae | Rattus norvegicus | BR | ||
M11227 | Primates/Aotidae | Aotus sp. | BR | ||
95 | Primates/Cebidae | Callithrix jacchus | BR | ||
Af | Primates/Atelidae | Alouatta fusca | BR | ||
MOVE16 | Chiroptera/Noctilionidae | Noctilio albiventris | VE | ||
MOVE44 | Chiroptera/Phyllostomidae | Carollia perspicillatta | VE | ||
MOVE46 | Chiroptera/Phyllostomidae | Glossophaga soricina | VE | ||
MOVE49 | Chiroptera/Phyllostomidae | Glossophaga soricina | VE | ||
Group 3 | T. musculi | LUM343 | Rodentia/Muridae | Mus musculus | DE |
T. rabinowitschae | LV422 | Rodentia/Cricetidae | Cricetus cricetus | FR | |
T. blanchardi | LV421 | Rodentia/Cricetidae | Eliomys quercinus | FR | |
T. niviventerae | TryNcCHN503 | Rodentia/Muridae | Niviventer confucianus | CN | |
T. lewisi | WC365 | Rodentia/Muridae | Rattus losea | CN | |
Trypanosoma sp. | BRA3 | Rodentia/Muridae | Rattus fuscipes | AU | |
Trypanosoma sp. | BRA1 | Rodentia/Muridae | Rattus fuscipes | AU | |
Trypanosoma sp. | AF05d_TZ28179 | Rodentia/Muridae | Mus minutoides | TZ | |
Trypanosoma sp. | RNMO66 | Chiroptera/Phyllostomidae | Trachops cirrhosus | BR | |
Trypanosoma sp. | RNMO72 | Chiroptera/Phyllostomidae | Trachops cirrhosus | BR | |
Trypanosoma sp. | RNMO81 | Chiroptera/Phyllostomidae | Diphylla ecaudata | BR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalba-Alemán, E.; Lima, L.; Ortiz, P.A.; Fermino, B.R.; Grisante, G.E.; Rodrigues, C.M.F.; Úngari, L.P.; Añez, N.; Garcia, H.A.; Teixeira, M.M.G. Spillover of Trypanosoma lewisi and Trypanosoma musculi Allied Trypanosomes from Rodents to Bats in the Roofs of Human Dwellings: Synanthropic Bats as a Potential New Source of Human Opportunistic Trypanosomes. Zoonotic Dis. 2024, 4, 320-336. https://doi.org/10.3390/zoonoticdis4040028
Villalba-Alemán E, Lima L, Ortiz PA, Fermino BR, Grisante GE, Rodrigues CMF, Úngari LP, Añez N, Garcia HA, Teixeira MMG. Spillover of Trypanosoma lewisi and Trypanosoma musculi Allied Trypanosomes from Rodents to Bats in the Roofs of Human Dwellings: Synanthropic Bats as a Potential New Source of Human Opportunistic Trypanosomes. Zoonotic Diseases. 2024; 4(4):320-336. https://doi.org/10.3390/zoonoticdis4040028
Chicago/Turabian StyleVillalba-Alemán, Evaristo, Luciana Lima, Paola Andrea Ortiz, Bruno Rafael Fermino, Gladys Elena Grisante, Carla Monadeli Filgueira Rodrigues, Letícia Pereira Úngari, Néstor Añez, Herakles Antonio Garcia, and Marta Maria Geraldes Teixeira. 2024. "Spillover of Trypanosoma lewisi and Trypanosoma musculi Allied Trypanosomes from Rodents to Bats in the Roofs of Human Dwellings: Synanthropic Bats as a Potential New Source of Human Opportunistic Trypanosomes" Zoonotic Diseases 4, no. 4: 320-336. https://doi.org/10.3390/zoonoticdis4040028
APA StyleVillalba-Alemán, E., Lima, L., Ortiz, P. A., Fermino, B. R., Grisante, G. E., Rodrigues, C. M. F., Úngari, L. P., Añez, N., Garcia, H. A., & Teixeira, M. M. G. (2024). Spillover of Trypanosoma lewisi and Trypanosoma musculi Allied Trypanosomes from Rodents to Bats in the Roofs of Human Dwellings: Synanthropic Bats as a Potential New Source of Human Opportunistic Trypanosomes. Zoonotic Diseases, 4(4), 320-336. https://doi.org/10.3390/zoonoticdis4040028