water-logo

Journal Browser

Journal Browser

Adsorption Technologies in Wastewater Treatment Processes—2nd Edition

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Wastewater Treatment and Reuse".

Deadline for manuscript submissions: 25 March 2026 | Viewed by 1939

Special Issue Editors

College of Chemistry and Environmental Engineering, Sichuan University of Science and Technology, Zigong 643000, China
Interests: adsorption; nutrient recovery; modeling; heavy metals; wastewater treatment
Special Issues, Collections and Topics in MDPI journals
School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
Interests: groundwater remediation; water and wastewater treatment; environmental impact assessment; heavy metals, antibiotics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The process of adsorption plays a crucial role in water and wastewater treatment as it can effectively reduce the concentration of harmful substances by attaching the various pollutants (heavy metals, nutrients, organic matters, dyes, etc.) to adsorbent surfaces. In practice, adsorption technology can both improve the quality of drinking water, protecting human health, and also play an important role in industrial wastewater treatment, sewage reuse, seawater desalination, etc. Adsorption has the advantages of being a simple operation, with relatively low costs, strong adaptability, and it even allows for the complete removal of micropollutants, making it extremely important to solving water pollution issues, ensuring water resource security, and achieving sustainable development. Through the continuous improvement and optimization of adsorbents, the efficiency and economy of adsorption technology are constantly improving, providing new opportunities for innovative development in the water treatment industry. The areas of interest that fall withing the scope this Special Issue include, but are not limited to, the following topics:

(1) Adsorption technology and its combination process;

(2) Various water pollutants, regardless of organic or inorganic origin;

(3) Surface water, groundwater, sea water, drinking water, industrial wastewater, etc.;

(4) Emerging contaminants;

(5) Various modification, optimization, modeling, and regeneration methods;

(6) Machine learning, artificial neural network, deep learning, etc.;

(7) Novel adsorption materials and their characterization.

Dr. Qili Hu
Dr. Liting Hao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • adsorption
  • modeling
  • optimization
  • novel materials
  • emerging contaminants
  • recovery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 3697 KB  
Article
Heavy Metal Removal from Produced Water Using Waste Materials: A Comparative Study
by Neetu Bansal, Md Maruf Mortula and Sameer Al-Asheh
Water 2025, 17(18), 2789; https://doi.org/10.3390/w17182789 - 22 Sep 2025
Viewed by 776
Abstract
Produced water, a typical byproduct of oil and gas extraction, is considered a significant environmental and health problem due to its heavy metals content. The objective of this study is to evaluate and compare the efficiency of seven low-cost, waste-derived adsorbents in removing [...] Read more.
Produced water, a typical byproduct of oil and gas extraction, is considered a significant environmental and health problem due to its heavy metals content. The objective of this study is to evaluate and compare the efficiency of seven low-cost, waste-derived adsorbents in removing Cr3+, Cu2+, Fe2+, Zn2+, and Pb2+ from simulated produced water. The sorbents include gypsum, neem leaves, mandarin peels, pistachio shells, date seed powder, date seed ash, and activated carbon from date seeds. Adsorption experiments were performed using 2.5 and 5 g/L of the adsorbent. SEM and EDX analyses were used to confirm morphological changes and metal deposition after adsorption. Results showed that date seed ash exhibited the highest efficiency (85–100% across all metals), followed by activated carbon (25–98%), with strong Fe and Cu removal but a lower Pb uptake. Neem leaves, mandarin peels, and date seed powder showed moderate efficiencies (30–97%), while gypsum and pistachio shells were the least effective (0–81%). Lignocellulosic peels also showed good results due to the abundance of –OH and –COOH functional groups. Gypsum performed poorly across most metals. Integrating these waste-based adsorbents into secondary or tertiary treatment stages is an economical and sustainable solution for oil wastewater treatment. The results revealed the potential for valorizing agro-industrial and construction waste for circular economic applications in heavy metal pollution control. Full article
Show Figures

Graphical abstract

20 pages, 3151 KB  
Article
Removal of Ciprofloxacin from Pharmaceutical Wastewater Using Untreated and Treated Eggshells as Biosorbents
by Maryam Bin Hammad, Sameer Al-Asheh and Mohamed Abouleish
Water 2025, 17(17), 2656; https://doi.org/10.3390/w17172656 - 8 Sep 2025
Viewed by 750
Abstract
Pharmaceutical wastewater contains high levels of organic matter, salts, and toxic compounds that are resistant to conventional treatment methods. Even after secondary treatment, traces of dissolved organics and suspended solids often remain, contributing to environmental concerns such as increased microbial resistance and harm [...] Read more.
Pharmaceutical wastewater contains high levels of organic matter, salts, and toxic compounds that are resistant to conventional treatment methods. Even after secondary treatment, traces of dissolved organics and suspended solids often remain, contributing to environmental concerns such as increased microbial resistance and harm to aquatic life. This study introduces a sustainable “waste-to-treat-waste” approach that utilizes discarded white chicken eggshells as a low-cost biosorbent for removing ciprofloxacin, a common antibiotic. Unlike previous eggshell-based adsorption studies that primarily targeted dyes or heavy metals, this work demonstrates the first comprehensive evaluation of both untreated and chemically/thermally modified eggshells for antibiotic removal from real pharmaceutical wastewater. Batch adsorption experiments under optimized conditions showed removal efficiencies of 85% for raw eggshells, 91% after HCl activation, and 96% after thermal conversion to CaO. Batch adsorption experiments under optimized conditions (pH 7, 25 °C, 625 µm particle size, 3 g/100 mL dose, 90 min contact time) showed maximum adsorption capacities of 23.75 mg/g for untreated ES, 4.08 mg/g after HCl activation, and 1.82 mg/g after thermal conversion to CaO, with removal efficiencies of 85%, 91%, and 96%, respectively. The simplicity of preparation, use of an abundant waste material, and high removal efficiency highlight the potential for scalable cost-effective applications in industrial wastewater treatment systems. Full article
Show Figures

Figure 1

Back to TopTop