water-logo

Journal Browser

Journal Browser

Ecological Wastewater Treatment and Resource Utilization

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Wastewater Treatment and Reuse".

Deadline for manuscript submissions: 25 October 2025 | Viewed by 2083

Special Issue Editors


E-Mail Website
Guest Editor
College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
Interests: water ecological restoration; aquatic plant; wastewater treatment; river sediment treatment; adsorption; heavy metals removal

E-Mail Website
Guest Editor
School of Environment, Henan Normal University, Xinxiang 453007, China
Interests: wastewater treatment; capacitive deionization; advanced oxidation process; heavy metal removal; photocatalysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Water pollution has become a significant global environmental issue. Many technologies are used in controlling water pollution or wastewater treatment. Among them, ecological treatment technologies are attracting more and more attention due to their high efficiency, low operating cost, and high level of safety. They can remove or transform pollutants (organic matter, nitrogen, phosphorus, etc.) in wastewater via absorption and the co-assimilation of plants, the transformation of microorganisms, and the adsorption of green adsorbents. At present, ecological treatment technologies are widely applied in micro-polluted water treatment. More studies on them are needed for the sustainable development and application of wastewater treatment technologies.

For this Special Issue, original research articles and reviews are welcome for submission. Research areas may include (but need not be limited to) the following:

(1) Wetland systems;

(2) Subsurface infiltration systems;

(3) Ecological buffer zone systems;

(4) Green-wall systems;

(4) Transformation processes of pollutants by microorganisms;

(5) Green adsorbents for water pollutants;

(6) Treatment and resource utilization of sludge and river sediment;

(7) Recycling of plant residues.

We look forward to receiving your contributions.

Dr. Chunzhen Fan
Dr. Jingke Song
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ecological wastewater treatment
  • resource utilization
  • plant restoration
  • microorganism transformation
  • adsorption

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 3133 KiB  
Article
Wastewater Impact on Surface Water Quality and Suitability of Water Reuse in Agriculture Using a Comprehensive Methodology Based on PCA and Specific Indices
by Iulia Ajtai, Anda Anton, Carmen Roba, Camelia Botezan, Ioana Piștea, Marius Oprea and Călin Baciu
Water 2025, 17(13), 2011; https://doi.org/10.3390/w17132011 - 4 Jul 2025
Viewed by 14
Abstract
Effluents from wastewater treatment plants (WWTPs) represent a potential pollution risk to surface waters. Moreover, the growing practice of using treated wastewater for irrigation has recently received increased attention in terms of its suitability, raising concerns about its impact on soil health, agricultural [...] Read more.
Effluents from wastewater treatment plants (WWTPs) represent a potential pollution risk to surface waters. Moreover, the growing practice of using treated wastewater for irrigation has recently received increased attention in terms of its suitability, raising concerns about its impact on soil health, agricultural productivity, and human well-being. The aim of this study is to apply a comprehensive approach to assess the impact of wastewater from a Romanian WWTP on surface water quality and its suitability for irrigation practices. For this purpose, a set of physico-chemical parameters were analyzed, and a Water Quality Index (WQI) was developed based on Principal Component Analysis (PCA). The irrigation suitability of the effluent was further assessed using key parameters (electrical conductivity—EC; total dissolved solids—TDSs; turbidity; Biochemical Oxygen Demand—BOD5) and specific irrigation indices (Sodium Adsorption Ratio—SAR; Permeability Index—PI; Residual Sodium Carbonate—RSC; Sodium percentage—%Na; Kelly’s ratio—KR). The results for the surface water quality indicated high contents of Na+ (10.2–42.5 mg/L), Cl (11.9–48.4 mg/L), and SO42− (10.7–68.5 mg/L) downstream of the wastewater discharge point. The WQI, which reflects overall water quality for environmental health, showed excellent water quality, with a mean of 34 upstream and 47 downstream, suggesting the potential impact of treated wastewater discharge downstream. However, the irrigation indices revealed elevated sodium levels in the effluent, with %Na (up to 86%) categorizing 70% of the samples as unsuitable, while KR (up to 6.2) classified all samples as unsuitable. These findings suggest that despite a low impact on the river water, elevated sodium levels in effluent may limit suitability for irrigation, highlighting the importance of monitoring effluent water reuse. Full article
(This article belongs to the Special Issue Ecological Wastewater Treatment and Resource Utilization)
Show Figures

Figure 1

18 pages, 2075 KiB  
Article
Microbial Quantification Using ATP and Petrifilms for Irrigation Water Treated with Cold Plasma or Ozone
by Dharti Thakulla and Paul R. Fisher
Water 2025, 17(13), 1856; https://doi.org/10.3390/w17131856 - 22 Jun 2025
Viewed by 167
Abstract
Traditional methods of microbial quantification of irrigation water using colony counts from agar culture require dedicated laboratory space and trained personnel, limiting their on-site applicability. Dehydrated Petrifilm™ plates are a simpler alternative but still require 2–3 days to culture. Adenosine triphosphate (ATP) tests [...] Read more.
Traditional methods of microbial quantification of irrigation water using colony counts from agar culture require dedicated laboratory space and trained personnel, limiting their on-site applicability. Dehydrated Petrifilm™ plates are a simpler alternative but still require 2–3 days to culture. Adenosine triphosphate (ATP) tests may offer a fast and reliable method for quantifying microbes in water. In this study, we compared (a) microbial quantification based on ATP assays with Petrifilm™-based assays, and (b) we evaluated the effectiveness of cold plasma or ozone treatments in controlling microbial growth at various oxidation–reduction potential (ORP) levels. Lake water was recirculated through an ozone or cold plasma treatment system until a target ORP of 700 mV was reached. Samples were collected at various ORP levels and plated for aerobic bacteria and yeast and mold counts using Petrifilm™ plates. The free and total ATP concentrations were measured using the Hygiena EnSURE luminometer and its accompanying free and total ATP swabs. Microbial ATP was calculated by subtracting the free from the total ATP. Cold plasma and ozone showed similar effects on microbial inactivation at 700 mV (p < 0.05). Both treatments achieved complete fungal inactivation at 600–700 mV ORP, bacterial inactivation at 600 mV ORP, and near-complete inactivation of microbial ATP at 600–700 mV. A moderate positive correlation (Pearson’s correlation = 0.39 and Spearman’s rank correlation = 0.39) was observed between the Petrifilm™ bacterial counts and microbial ATP levels, suggesting ATP quantification could complement Petrifilm™ for rapid and non-selective onsite microbial assessment of irrigation water. Full article
(This article belongs to the Special Issue Ecological Wastewater Treatment and Resource Utilization)
Show Figures

Figure 1

17 pages, 5423 KiB  
Article
Effects of Planting Density on Water Restoration Performance of Vallisneria spinulosa Yan Growth System Constructed by Enclosure
by Weiguang Sun, Jia Xing, Xinyu Li and Suqing Wu
Water 2025, 17(11), 1603; https://doi.org/10.3390/w17111603 - 25 May 2025
Viewed by 420
Abstract
Submerged macrophytes play a crucial role in the ecological restoration of aquatic environments, and enclosed plot planting technology is one of the economical and effective methods to establish submerged macrophyte communities in high-turbidity water bodies. This study focused on Vallisneria spinulosa Yan ( [...] Read more.
Submerged macrophytes play a crucial role in the ecological restoration of aquatic environments, and enclosed plot planting technology is one of the economical and effective methods to establish submerged macrophyte communities in high-turbidity water bodies. This study focused on Vallisneria spinulosa Yan (V. spinulosa), examining the impact mechanism of planting density on the water restoration effectiveness of V. spinulosa growth systems constructed within enclosed plots, based on its growth and physiological characteristics as well as the water purification effects of its growth system. The research results indicate that low to medium planting densities (50–100 plants/m2) favor leaf elongation and expansion, as well as the growth of root diameter, surface area, and volume, while high densities (150–200 plants/m2) inhibit leaf and root growth. The content of photosynthetic pigments (chlorophyll a, chlorophyll b, and carotenoids) in V. spinulosa increased with planting density. At high densities, significant increases in superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels in V. spinulosa suggest enhanced antioxidant activity. High protein content at low densities indicates stronger metabolic activity. Medium planting density (100 plants/m2) had significant effects on increasing dissolved oxygen (DO), regulating pH, and reducing electrical conductivity (EC), and exhibited the optimum removal loadings for total phosphorus (TP), phosphate (PO43−-P), total nitrogen (TN), and nitrate (NO3), achieving the average value of 0.44, 0.42, 6.94, 0.83 mg m−2 d−1. The findings of this study can provide a theoretical basis and technical support for practical ecological restoration projects involving submerged macrophytes in aquatic environments. Full article
(This article belongs to the Special Issue Ecological Wastewater Treatment and Resource Utilization)
Show Figures

Figure 1

22 pages, 7805 KiB  
Article
Effects of Underwater Lighting Time on the Growth of Vallisneria spinulosa Yan and Its Water Restoration Process
by Mengyi Wei, Jinshan Zhao, Xiaolin Zhou, Fengdan Li, Min Zhao, Xiangyong Zheng, Ye Tang, Chang Yang, Zhenmin Jin and Suqing Wu
Water 2024, 16(24), 3697; https://doi.org/10.3390/w16243697 - 21 Dec 2024
Cited by 1 | Viewed by 1011
Abstract
Submerged macrophytes play a crucial role in the ecological restoration of water bodies, and their restoration capacity is closely related to the underwater lighting conditions. This study explored the effects of underwater lighting time on the growth characteristics of Vallisneria spinulosa Yan ( [...] Read more.
Submerged macrophytes play a crucial role in the ecological restoration of water bodies, and their restoration capacity is closely related to the underwater lighting conditions. This study explored the effects of underwater lighting time on the growth characteristics of Vallisneria spinulosa Yan (V. spinulosa) and its water restoration process. V. spinulosa achieved a higher Fv/Fm (0.64), ETRmax (10.43), chlorophyll content (0.85 mg/g), and removal efficiency of total phosphorus (0.37 × 10−3 g m−3 d−1) and a lower algal abundance with a longer lighting time (18 h every day). However, a higher removal efficiency of NH4+–N and TN was obtained with a shorter lighting time (6–12 h every day). The lighting time showed a significance influence on the microbial community of the V. spinulosa growth system, and the influence was significantly different in different regions. Temperature and electrical conductivity were the main environmental impact factors for the microbial community under different lighting times. The abundances of Proteobacteria, Bacteroidota, and Verrucomicrobia exhibited a great positive correlation with each other and a strong positive correlation with the two factors. In addition, the lighting time had a strongly significant correlation with the physical and chemical characteristics of the water environment (p < 0.001) and a significant correlation with the growth characteristics of V. spinulosa (p < 0.05). Full article
(This article belongs to the Special Issue Ecological Wastewater Treatment and Resource Utilization)
Show Figures

Figure 1

Back to TopTop