This paper presents a detailed thermodynamic and mathematical modeling study of the oxygenation processes in stationary water bodies, focusing on improving oxygen transfer efficiency, an essential factor in sustaining aquatic ecosystem health. The study employed mathematical models implemented in MATLAB R2024a to simulate
[...] Read more.
This paper presents a detailed thermodynamic and mathematical modeling study of the oxygenation processes in stationary water bodies, focusing on improving oxygen transfer efficiency, an essential factor in sustaining aquatic ecosystem health. The study employed mathematical models implemented in MATLAB R2024a to simulate the influence of temperature, bubble size, and mass transfer parameters. Key parameters, such as dissolved oxygen concentration, volumetric mass transfer coefficient (ak
L), and water temperature, were evaluated under different operational scenarios. The oxygenation system was powered by solar energy and included rotating fine-bubble generators mounted on a floating platform. Mathematical modeling carried out in MATLAB validated the theoretical models, showing how environmental factors such as temperature and bubble size influence oxygen dissolution. Initial experimental data, including dissolved oxygen levels (C
0 = 3.12 mg/dm
3), saturation concentrations at various temperatures (Cs = 8.3 mg/dm
3 at 24 °C; Cs = 7.3 mg/dm
3 at 30 °C), and a mass transfer coefficient of ak
L = 0.09 s
−1, were used to support the model accuracy. The results highlight the potential of digitally controlled energy-efficient aeration technologies for applications in lake restoration, aquaculture, and sustainable water management. This paper introduces a coupled approach to oxygen transfer and temperature evolution validated experimentally, which has rarely been detailed in the literature. The novelty of this study lies in the combined thermodynamic modeling and exergy–entropy analysis along with real-time tracking, showing the relevance of energy-optimized, digitally monitored oxygenation platforms powered by solar energy.
Full article