Advancements in Surface Engineering for Metallic Alloys

A special issue of Surfaces (ISSN 2571-9637).

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 3187

Special Issue Editors


E-Mail Website
Guest Editor
Department of Manufacturing and Materials Engineering, University of Campinas-UNICAMP, Campinas 13083-860, Brazil
Interests: solidification; alloys; microstructure; laser

E-Mail Website
Guest Editor
Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, Campinas 13083-860, Brazil
Interests: solidification; alloys; microstructure; corrosion

Special Issue Information

Dear Colleagues,

Our main motivation for developing this Special Issue is the rapid evolution that surface engineering is currently experiencing, continuously expanding its field of technological applications. Such remarkable progress inevitably unlocks novel possibilities for achieving enhanced surface properties, precisely tailored to meet the rigorous requirements of advanced components. This advancement is particularly evident in metallic coatings, whether they consist of ferrous or non-ferrous alloys. The functional purposes encompass, but are not limited to, the improvement of corrosion resistance, enhancing wear behavior, and extending component service life.

Dr. Noé Cheung
Dr. André Barros
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Surfaces is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • coating
  • laser
  • thermal surface treatment
  • alloys
  • corrosion
  • wear

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 12558 KiB  
Article
Evaluation of the Surface Finish on 304 Stainless Steel as a Way to Mitigate Calcium Carbonate Scaling
by Antônio Carlos Barbosa Zancanella, Luila Abib Saidler, Renato do Nascimento Siqueira, Helga Elisabeth Pinheiro Schluter and Bruno Venturini Loureiro
Surfaces 2025, 8(1), 13; https://doi.org/10.3390/surfaces8010013 - 7 Feb 2025
Viewed by 507
Abstract
Calcium carbonate scaling causes significant damage and financial losses to various industries, particularly in deep-water oil exploration. It is affected by factors like pressure, temperature, pH, solution chemistry, and surface finish. Surface finish is critical, as it interacts with the fluid and serves [...] Read more.
Calcium carbonate scaling causes significant damage and financial losses to various industries, particularly in deep-water oil exploration. It is affected by factors like pressure, temperature, pH, solution chemistry, and surface finish. Surface finish is critical, as it interacts with the fluid and serves as a substrate for the anchoring of calcium carbonate crystals. However, many studies investigate this phenomenon under conditions that differ from those encountered in deep-water oil exploration. Tests are commonly performed under atmospheric pressure and lacking fluid flow or CO2 influence, which limits their relevance to industrial conditions. This study aims to evaluate the influence of surface finish on the formation of calcium carbonate scaling under conditions that more closely resemble actual operating environments. 304 stainless steel was selected to replicate industrial conditions, owing to its chemical stability and common use in industrial settings. The tests were conducted in a plant with high-pressure capabilities, operating under continuous flow conditions with CO2 injection. Controlled surfaces were prepared through metallographic polishing, machining, sandblasting, and laser texturing techniques. Surface characterization was performed using a 3D optical profilometer and scratch testing to measure the average adhesion force. The polymorphs formed were characterized by Raman spectroscopy. Fractal dimension analysis was applied to quantify the complexity of the analyzed surfaces. The results indicate that surfaces with higher fractal dimensions exhibit greater scaling mass and higher adhesion force. The main polymorph observed was calcite. Additionally, it was noted that the texture orientation relative to the flow affects scaling, with higher scaling values observed on surfaces oriented perpendicular to the flow. These findings are crucial for optimizing material selection and surface treatments in deep-water oil exploration, enhancing operational efficiency and reducing costs. Full article
(This article belongs to the Special Issue Advancements in Surface Engineering for Metallic Alloys)
Show Figures

Figure 1

15 pages, 7307 KiB  
Article
Effect of Hydrodynamic Conditions on the Corrosion Mechanism of HSLA X100 Steel by EIS and EN Analysis
by Ricardo Galván-Martínez, Clarisa Campechano-Lira, Ricardo Orozco-Cruz, Miguel Ángel Hernández-Pérez, Francisco López-Huerta, Edgar Mejía-Sánchez, Jorge Alberto Ramírez-Cano and Andres Carmona-Hernández
Surfaces 2025, 8(1), 10; https://doi.org/10.3390/surfaces8010010 - 1 Feb 2025
Viewed by 486
Abstract
In this research work, the influence of the electrolyte hydrodynamic conditions on the corrosion mechanism of the high-strength low-alloy (HSLA) X100 steel used in the petroleum transportation pipelines was analyzed. A Rotary Cylinder Electrode (RCE) was used to simulate the hydrodynamic conditions (1000 [...] Read more.
In this research work, the influence of the electrolyte hydrodynamic conditions on the corrosion mechanism of the high-strength low-alloy (HSLA) X100 steel used in the petroleum transportation pipelines was analyzed. A Rotary Cylinder Electrode (RCE) was used to simulate the hydrodynamic conditions (1000 and 5000 rpm). Mechanical, microstructural and elemental characterization tests were performed on X100 steel, and the electrochemical impedance spectroscopy (EIS) technique was used to analyze the corrosion mechanism, while the morphology of the corrosion process on the corroded surfaces was obtained by scanning electronic microscopy (SEM). It was found that the increasing rotation rate (υ rot) generates a fully developed flow regime where the system was dominated by a mass transfer process and increases the kinetics of chemical and electrochemical reactions so there is an increase in the corrosion rate (CR). On the other hand, the adsorption of corrosion product films that limits the charge transfer process depended on the magnitude of the shear stress that can generate wear and roughness, as well as a greater number of anodic sites, leaving the metal exposure to the corrosive medium. Full article
(This article belongs to the Special Issue Advancements in Surface Engineering for Metallic Alloys)
Show Figures

Graphical abstract

16 pages, 12655 KiB  
Article
Microstructure Refinement or Increased Copper Solubility: Factors That Contribute to the Pitting Corrosion Tendency in Aluminum–Copper Alloys
by Akbar Niaz and Muhammad Mudassir Ahmad Alwi
Surfaces 2025, 8(1), 9; https://doi.org/10.3390/surfaces8010009 - 25 Jan 2025
Viewed by 469
Abstract
Aluminum–copper alloys are commonly used in the aerospace industry due to their low density and high strength. Pitting corrosion is the major problem of Al-Cu alloys due to the presence of largely separated electrochemical potential difference phases. Microstructure refinement and phase homogenization of [...] Read more.
Aluminum–copper alloys are commonly used in the aerospace industry due to their low density and high strength. Pitting corrosion is the major problem of Al-Cu alloys due to the presence of largely separated electrochemical potential difference phases. Microstructure refinement and phase homogenization of the alloys are believed to be the factors that contribute to decreasing the galvanic coupling between phases, hence decreasing the pitting tendency. In this work, we investigate whether microstructure refinement is the only factor that contributes to pitting or whether some other factors are involved in the pitting tendency. The investigation was conducted on two frequently used aerospace aluminum–copper alloys, Al-2024 T3 and Al-2014 T6. The surface refinement was conducted by laser surface melting, and microstructure characterization was conducted by scanning electron microscopy with an energy-dispersive X-ray analysis. Phase identification before and after the laser surface melting was conducted by X-ray diffraction, while pitting tendency was measured by a polarization test in 1 molar sodium chloride solution. These experimental results revealed that the enrichment of copper in the α-matrix phase was the major contributing factor in pitting as compared to the largely believed microstructural phase refinement. Full article
(This article belongs to the Special Issue Advancements in Surface Engineering for Metallic Alloys)
Show Figures

Figure 1

9 pages, 2757 KiB  
Article
Enhancing Water Condensation on Hybrid Surfaces by Optimizing Wettability Contrast
by Do-Thuy Chi and Thanh-Binh Nguyen
Surfaces 2024, 7(3), 508-516; https://doi.org/10.3390/surfaces7030033 - 24 Jul 2024
Viewed by 869
Abstract
This study uses a hybrid concept to propose an optimal textured surface morphology for enhancing water condensation. The natural phenomenon-inspired morphology, which combined different degrees of wettability presented on the surface, documented their advantage in water harvesting compared to untreated surfaces. These superiorities [...] Read more.
This study uses a hybrid concept to propose an optimal textured surface morphology for enhancing water condensation. The natural phenomenon-inspired morphology, which combined different degrees of wettability presented on the surface, documented their advantage in water harvesting compared to untreated surfaces. These superiorities might be explained by the appropriate combination of nucleation and water-driven ability facilitated by the superhydrophobic surrounding area. The uniform condensed droplets are effectively agglomerated to achieve the critical size. The best combination was found on a superhydrophobic-hydrophilic hybrid sample that improved water collection efficiency by up to 50% compared to bare Al. Condensation performance also illustrated an interesting tendency that revealed the great contribution of wettability on hydrophilic dots and the water-driven ability of the high-hydrophobicity area. The results were supported by a theoretical model which predicts the critical volume of a single droplet before it has departed from the surface. The findings reveal a good level of agreement between theory and real-time measurement, demonstrating the potential of combinations of hybrid samples to induce water collection efficiency. Full article
(This article belongs to the Special Issue Advancements in Surface Engineering for Metallic Alloys)
Show Figures

Figure 1

Back to TopTop