sensors-logo

Journal Browser

Journal Browser

Selected Papers from the 6th International Electronic Conference on Sensors and Applications

A special issue of Sensors (ISSN 1424-8220).

Deadline for manuscript submissions: closed (31 July 2020) | Viewed by 55920

Special Issue Editors

Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
Interests: MEMS; smart materials; micromechanics; machine learning-driven materials modeling
Special Issues, Collections and Topics in MDPI journals
1. Department of Electrical, Electronic and Communication Engineering & Institute for Smart Cities (ISC), Public University of Navarre, 31006 Pamplona, Spain
2. School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico
Interests: wireless networks; performance evaluation; distributed systems; context-aware environments; IoT; next-generation wireless systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue comprises Extended and expanded versions of proceedings papers from the 6th International Electronic Conference on Sensors and Applications, held 15–30 November 2019, on sciforum.net. In this 6th edition of e-conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Selected papers which attracted the most interest on the web, or that provided a particularly innovative contribution, have been gathered for publication. These papers have been subjected to peer review and are published with the aim of rapid and wide dissemination of research results, developments and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications.

Dr. Stefano Mariani
Dr. Thomas B. Messervey
Dr. Alberto Vallan
Dr. Stefan Bosse
Dr. Francisco Falcone
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Biosensors
  • Chemical sensors
  • Physical sensors
  • Sensor networks
  • Applications
  • Smart cities
  • Structural health monitoring technologies and sensor networks
  • Wearable sensors

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

33 pages, 24816 KiB  
Article
Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes
by Iván Froiz-Míguez, Peio Lopez-Iturri, Paula Fraga-Lamas, Mikel Celaya-Echarri, Óscar Blanco-Novoa, Leyre Azpilicueta, Francisco Falcone and Tiago M. Fernández-Caramés
Sensors 2020, 20(23), 6865; https://doi.org/10.3390/s20236865 - 30 Nov 2020
Cited by 46 | Viewed by 5684
Abstract
Climate change is driving new solutions to manage water more efficiently. Such solutions involve the development of smart irrigation systems where Internet of Things (IoT) nodes are deployed throughout large areas. In addition, in the mentioned areas, wireless communications can be difficult due [...] Read more.
Climate change is driving new solutions to manage water more efficiently. Such solutions involve the development of smart irrigation systems where Internet of Things (IoT) nodes are deployed throughout large areas. In addition, in the mentioned areas, wireless communications can be difficult due to the presence of obstacles and metallic objects that block electromagnetic wave propagation totally or partially. This article details the development of a smart irrigation system able to cover large urban areas thanks to the use of Low-Power Wide-Area Network (LPWAN) sensor nodes based on LoRa and LoRaWAN. IoT nodes collect soil temperature/moisture and air temperature data, and control water supply autonomously, either by making use of fog computing gateways or by relying on remote commands sent from a cloud. Since the selection of IoT node and gateway locations is essential to have good connectivity and to reduce energy consumption, this article uses an in-house 3D-ray launching radio-planning tool to determine the best locations in real scenarios. Specifically, this paper provides details on the modeling of a university campus, which includes elements like buildings, roads, green areas, or vehicles. In such a scenario, simulations and empirical measurements were performed for two different testbeds: a LoRaWAN testbed that operates at 868 MHz and a testbed based on LoRa with 433 MHz transceivers. All the measurements agree with the simulation results, showing the impact of shadowing effects and material features (e.g., permittivity, conductivity) in the electromagnetic propagation of near-ground and underground LoRaWAN communications. Higher RF power levels are observed for 433 MHz due to the higher transmitted power level and the lower radio propagation losses, and even in the worst gateway location, the received power level is higher than the sensitivity threshold (−148 dBm). Regarding water consumption, the provided estimations indicate that the proposed smart irrigation system is able to reduce roughly 23% of the amount of used water just by considering weather forecasts. The obtained results provide useful guidelines for future smart irrigation developers and show the radio planning tool accuracy, which allows for optimizing the sensor network topology and the overall performance of the network in terms of coverage, cost, and energy consumption. Full article
Show Figures

Figure 1

24 pages, 8245 KiB  
Article
Radio Wave Propagation and WSN Deployment in Complex Utility Tunnel Environments
by Mikel Celaya-Echarri, Leyre Azpilicueta, Peio Lopez-Iturri, Imanol Picallo, Erik Aguirre, Jose Javier Astrain, Jesús Villadangos and Francisco Falcone
Sensors 2020, 20(23), 6710; https://doi.org/10.3390/s20236710 - 24 Nov 2020
Cited by 17 | Viewed by 3047
Abstract
The significant growth of wireless communications systems in the last years has led to the adoption of a wide range of applications not only for the general public but, also, including utilities and administrative authorities. In this context, the notable expansion of new [...] Read more.
The significant growth of wireless communications systems in the last years has led to the adoption of a wide range of applications not only for the general public but, also, including utilities and administrative authorities. In this context, the notable expansion of new services for smart cities requires, in some specific cases, the construction of underground tunnels in order to enable the maintenance and operation works of utilities, as well as to reduce the visual impact within the city center. One of the main challenges is that, inherently, underground service tunnels lack coverage from exterior wireless communication systems, which can be potentially dangerous for maintenance personnel working within the tunnels. Accordingly, wireless coverage should be deployed within the underground installation in order to guarantee real-time connectivity for safety maintenance, remote surveillance or monitoring operations. In this work, wireless channel characterization for complex urban tunnel environments was analyzed based on the assessment of LoRaWAN and ZigBee technologies operating at 868 MHz. For that purpose, a real urban utility tunnel was modeled and simulated by means of an in-house three-dimensional ray-launching (3D-RL) code. The utility tunnel scenario is a complex and singular environment in terms of radio wave propagation due to the limited dimensions and metallic elements within it, such as service trays, user pathways or handrails, which were considered in the simulations. The simulated 3D-RL algorithm was calibrated and verified with experimental measurements, after which, the simulation and measurement results showed good agreement. Besides, a complete wireless sensor network (WSN) deployment within the tunnels was presented, providing remote cloud data access applications and services, allowing infrastructure security and safety work conditions. The obtained results provided an adequate radio planning approach for the deployment of wireless systems in complex urban utility scenarios, with optimal coverage and enhanced quality of service. Full article
Show Figures

Figure 1

30 pages, 7832 KiB  
Article
Fabricating a Portable ECG Device Using AD823X Analog Front-End Microchips and Open-Source Development Validation
by Miguel Bravo-Zanoguera, Daniel Cuevas-González, Marco A. Reyna, Juan P. García-Vázquez and Roberto L. Avitia
Sensors 2020, 20(20), 5962; https://doi.org/10.3390/s20205962 - 21 Oct 2020
Cited by 16 | Viewed by 9449
Abstract
Relevant to mobile health, the design of a portable electrocardiograph (ECG) device using AD823X microchips as the analog front-end is presented. Starting with the evaluation board of the chip, open-source hardware and software components were integrated into a breadboard prototype. This required modifying [...] Read more.
Relevant to mobile health, the design of a portable electrocardiograph (ECG) device using AD823X microchips as the analog front-end is presented. Starting with the evaluation board of the chip, open-source hardware and software components were integrated into a breadboard prototype. This required modifying the microchip with the breadboard-friendly Arduino Nano board in addition to a data logger and a Bluetooth breakout board. The digitized ECG signal can be transmitted by serial cable, via Bluetooth to a PC, or to an Android smartphone system for visualization. The data logging shield provides gigabytes of storage, as the signal is recorded to a microSD card adapter. A menu incorporates the device’s several operating modes. Simulation and testing assessed the system stability and performance parameters in terms of not losing any sample data throughout the length of the recording and finding the maximum sampling frequency; and validation determined and resolved problems that arose in open-source development. Ultimately, a custom printed circuit board was produced requiring advanced manufacturing options of 2.5 mils trace widths for the small package components. The fabricated device did not degrade the AD823X noise performance, and an ECG waveform with negligible distortion was obtained. The maximum number of samples/second was 2380 Hz in serial cable transmission, whereas in microSD recording mode, a continuous ECG signal for up to 36 h at 500 Hz was verified. A low-cost, high-quality portable ECG for long-term monitoring prototype that reasonably complies with electrical safety regulations and medical equipment design was realized. Full article
Show Figures

Figure 1

14 pages, 4697 KiB  
Article
Unmanned Aerial System Integrated Sensor for Remote Gamma and Neutron Monitoring
by Alexander Barzilov and Monia Kazemeini
Sensors 2020, 20(19), 5529; https://doi.org/10.3390/s20195529 - 27 Sep 2020
Cited by 1 | Viewed by 2310
Abstract
Tools for remote radiation sensing are essential for environmental safety and nuclear power applications. The use of unmanned aerial systems (UASs) equipped with sensors allows for substantially reducing the radiation exposure of personnel. An ambient temperature Cs2LiYCl6:Ce3+ (CLYC) [...] Read more.
Tools for remote radiation sensing are essential for environmental safety and nuclear power applications. The use of unmanned aerial systems (UASs) equipped with sensors allows for substantially reducing the radiation exposure of personnel. An ambient temperature Cs2LiYCl6:Ce3+ (CLYC) elpasolite scintillation sensor for simultaneous gamma and neutron measurements was designed as a user-friendly “plug and fly” module integrated into an octocopter robotic platform. Robot Operating System (ROS) was used to analyze the sensor’s data. The measured CLYC’s energy resolution was <5% at 662 keV gamma rays; neutron flux was measured using 6Li(n,α)t reaction. Time and GPS data were combined with radiation data in the ROS, supporting real time monitoring and assessment tasks, as well as radiation source search missions. Because UASs can be irradiated, radiation damage of the sensor and robot’s electronics was estimated using FLUKA code. Full article
Show Figures

Figure 1

22 pages, 7215 KiB  
Article
Preparation of pH-Indicative and Flame-Retardant Nanocomposite Films for Smart Packaging Applications
by Nedal Abu-Thabit, Abbas Saeed Hakeem, Khaled Mezghani, Elaref Ratemi, Mohamed Elzagheid, Yunusa Umar, Adhi Primartomo, Sirhan Al Batty, Abdul Kalam Azad, Sami Al Anazi and Ayman Ahmad
Sensors 2020, 20(19), 5462; https://doi.org/10.3390/s20195462 - 23 Sep 2020
Cited by 13 | Viewed by 8888
Abstract
There is an increasing demand for sustainable and safe packaging technologies to improve consumer satisfaction, reduce food loss during storage and transportation, and track the quality status of food throughout its distribution. This study reports the fabrication of colorimetric pH-indicative and flame-retardant nanocomposite [...] Read more.
There is an increasing demand for sustainable and safe packaging technologies to improve consumer satisfaction, reduce food loss during storage and transportation, and track the quality status of food throughout its distribution. This study reports the fabrication of colorimetric pH-indicative and flame-retardant nanocomposite films (NCFs) based on polyvinyl alcohol (PVA) and nanoclays for smart and safe food packaging applications. Tough, flexible, and transparent NCFs were obtained using 15% nanoclay loading (PVA-15) with superior properties, including low solubility/swelling in water and high thermal stability with flame-retardant behavior. The NCFs showed average mechanical properties that are comparable to commercial films for packaging applications. The color parameters were recorded at different pH values and the prepared NCFs showed distinctive colorimetric pH-responsive behavior during the transition from acidic to alkaline medium with high values for the calculated color difference (∆E ≈ 50). The prepared NCFs provided an effective way to detect the spoilage of the shrimp samples via monitoring the color change of the NCFs during the storage period. The current study proposes the prepared NCFs as renewable candidates for smart food packaging featuring colorimetric pH-sensing for monitoring food freshness as well as a safer alternative choice for applications that demand films with fire-retardant properties. Full article
Show Figures

Figure 1

25 pages, 20499 KiB  
Article
Deterministic 3D Ray-Launching Millimeter Wave Channel Characterization for Vehicular Communications in Urban Environments
by Fidel Alejandro Rodríguez-Corbo, Leyre Azpilicueta, Mikel Celaya-Echarri, Peio Lopez-Iturri, Imanol Picallo, Francisco Falcone and Ana Vazquez Alejos
Sensors 2020, 20(18), 5284; https://doi.org/10.3390/s20185284 - 16 Sep 2020
Cited by 12 | Viewed by 2994
Abstract
The increasing demand for more sensors inside vehicles pursues the intention of making vehicles more “intelligent”. In this context, the vision of fully connected and autonomous cars is becoming more tangible and will turn into a reality in the coming years. The use [...] Read more.
The increasing demand for more sensors inside vehicles pursues the intention of making vehicles more “intelligent”. In this context, the vision of fully connected and autonomous cars is becoming more tangible and will turn into a reality in the coming years. The use of these intelligent transport systems will allow the integration of efficient performance in terms of route control, fuel consumption, and traffic administration, among others. Future vehicle-to-everything (V2X) communication will require a wider bandwidth as well as lower latencies than current technologies can offer, to support high-constraint safety applications and data exhaustive information exchanges. To this end, recent investigations have proposed the adoption of the millimeter wave (mmWave) bands to achieve high throughput and low latencies. However, mmWave communications come with high constraints for implementation due to higher free-space losses, poor diffraction, poor signal penetration, among other channel impairments for these high-frequency bands. In this work, a V2X communication channel in the mmWave (28 GHz) band is analyzed by a combination of an empirical study and a deterministic simulation with an in-house 3D ray-launching algorithm. Multiple mmWave V2X links has been modeled for a complex heterogeneous urban scenario in order to capture and analyze different propagation phenomena, providing full volumetric estimation of frequency/power as well as time domain parameters. Large- and small-scale propagation parameters are obtained for a combination of different situations, taking into account the obstruction between the transceivers of vehicles of distinct sizes. These results can aid in the development of modeling techniques for the implementation of mmWave frequency bands in the vehicular context, with the capability of adapting to different scenario requirements in terms of network topology, user density, or transceiver location. The proposed methodology provides accurate wireless channel estimation within the complete volume of the scenario under analysis, considering detailed topological characteristics. Full article
Show Figures

Figure 1

26 pages, 3526 KiB  
Article
WASN-Based Day–Night Characterization of Urban Anomalous Noise Events in Narrow and Wide Streets
by Francesc Alías, Joan Claudi Socoró and Rosa Ma Alsina-Pagès
Sensors 2020, 20(17), 4760; https://doi.org/10.3390/s20174760 - 23 Aug 2020
Cited by 10 | Viewed by 2982
Abstract
In addition to air pollution, environmental noise has become one of the major hazards for citizens, being Road Traffic Noise (RTN) as its main source in urban areas. Recently, low-cost Wireless Acoustic Sensor Networks (WASNs) have become an alternative to traditional strategic noise [...] Read more.
In addition to air pollution, environmental noise has become one of the major hazards for citizens, being Road Traffic Noise (RTN) as its main source in urban areas. Recently, low-cost Wireless Acoustic Sensor Networks (WASNs) have become an alternative to traditional strategic noise mapping in cities. In order to monitor RTN solely, WASN-based approaches should automatize the off-line removal of those events unrelated to regular road traffic (e.g., sirens, airplanes, trams, etc.). Within the LIFE DYNAMAP project, 15 urban Anomalous Noise Events (ANEs) were described through an expert-based recording campaign. However, that work only focused on the overall analysis of the events gathered during non-sequential diurnal periods. As a step forward to characterize the temporal and local particularities of urban ANEs in real acoustic environments, this work analyses their distribution between day (06:00–22:00) and night (22:00–06:00) in narrow (1 lane) and wide (more than 1 lane) streets. The study is developed on a manually-labelled 151-h acoustic database obtained from the 24-nodes WASN deployed across DYNAMAP’s Milan pilot area during a weekday and a weekend day. Results confirm the unbalanced nature of the problem (RTN represents 83.5% of the data), while identifying 26 ANE subcategories mainly derived from pedestrians, animals, transports and industry. Their presence depends more significantly on the time period than on the street type, as most events have been observed in the day-time during the weekday, despite being especially present in narrow streets. Moreover, although ANEs show quite similar median durations regardless of time and location in general terms, they usually present higher median signal-to-noise ratios at night, mainly on the weekend, which becomes especially relevant for the WASN-based computation of equivalent RTN levels. Full article
Show Figures

Graphical abstract

22 pages, 6897 KiB  
Article
Acoustic Description of the Soundscape of a Real-Life Intensive Farm and Its Impact on Animal Welfare: A Preliminary Analysis of Farm Sounds and Bird Vocalisations
by Gerardo José Ginovart-Panisello, Rosa Ma Alsina-Pagès, Ignasi Iriondo Sanz, Tesa Panisello Monjo and Marcel Call Prat
Sensors 2020, 20(17), 4732; https://doi.org/10.3390/s20174732 - 21 Aug 2020
Cited by 9 | Viewed by 4103
Abstract
Poultry meat is the world’s primary source of animal protein due to low cost and is widely eaten at a global level. However, intensive production is required to supply the demand although it generates stress to animals and welfare problems, which have to [...] Read more.
Poultry meat is the world’s primary source of animal protein due to low cost and is widely eaten at a global level. However, intensive production is required to supply the demand although it generates stress to animals and welfare problems, which have to be reduced or eradicated for the better health of birds. In this study, bird welfare is measured by certain indicators: CO2, temperature, humidity, weight, deaths, food, and water intake. Additionally, we approach an acoustic analysis of bird vocalisations as a possible metric to add to the aforementioned parameters. For this purpose, an acoustic recording and analysis of an entire production cycle of an intensive broiler Ross 308 poultry farm in the Mediterranean area was performed. The acoustic dataset generated was processed to obtain the Equivalent Level (Leq), the mean Peak Frequency (PF), and the PF variation, every 30 min. This acoustical analysis aims to evaluate the relation between traditional indicators (death, weight, and CO2) as well as acoustical metrics (equivalent level impact (Leq) and Peak Frequency) of a complete intensive production cycle. As a result, relation between CO2 and humidity versus Leq was found, as well as decreases in vocalisation when the intake of food and water was large. Full article
Show Figures

Figure 1

14 pages, 8178 KiB  
Article
Consistent and Efficient Modeling of the Nonlinear Properties of Ferroelectric Materials in Ceramic Capacitors for Frugal Electronic Implants
by Yves Olsommer and Frank R. Ihmig
Sensors 2020, 20(15), 4206; https://doi.org/10.3390/s20154206 - 28 Jul 2020
Cited by 3 | Viewed by 1972
Abstract
In recent years, the development of implantable electronics has been driven by the motivation to expand their field of application. The main intention is to implement advanced functionalities while increasing the degree of miniaturization and maintaining reliability. The intrinsic nonlinear properties of the [...] Read more.
In recent years, the development of implantable electronics has been driven by the motivation to expand their field of application. The main intention is to implement advanced functionalities while increasing the degree of miniaturization and maintaining reliability. The intrinsic nonlinear properties of the electronic components, to be used anyway, could be utilized to resolve this issue. To master the implementation of functionalities in implantable electronics using the nonlinear properties of its electronic components, simulation models are of utmost importance. In this paper, we present a simulation model that is optimized in terms of consistency, computing time and memory consumption. Three circuit topologies of nonlinear capacitors, including hysteresis losses, are investigated. An inductively coupled measurement setup was realized to validate the calculations. The best results were obtained using the Trapezoid method in ANSYS with a constant step size and a resolution of 500 k points and using the Adams method in Mathcad with a resolution of 50 k points. An inductive coupling factor between 7% and 10% leads to a significant improvement in consistency compared to lower coupling factors. Finally, our results indicate that the nonlinear properties of the voltage rectifier capacitor can be neglected since these do not significantly affect the simulation results. Full article
Show Figures

Figure 1

27 pages, 6762 KiB  
Article
Creating the Internet of Augmented Things: An Open-Source Framework to Make IoT Devices and Augmented and Mixed Reality Systems Talk to Each Other
by Óscar Blanco-Novoa, Paula Fraga-Lamas, Miguel A. Vilar-Montesinos and Tiago M. Fernández-Caramés
Sensors 2020, 20(11), 3328; https://doi.org/10.3390/s20113328 - 11 Jun 2020
Cited by 35 | Viewed by 5636
Abstract
Augmented Reality (AR) and Mixed Reality (MR) devices have evolved significantly in the last years, providing immersive AR/MR experiences that allow users to interact with virtual elements placed on the real-world. However, to make AR/MR devices reach their full potential, it is necessary [...] Read more.
Augmented Reality (AR) and Mixed Reality (MR) devices have evolved significantly in the last years, providing immersive AR/MR experiences that allow users to interact with virtual elements placed on the real-world. However, to make AR/MR devices reach their full potential, it is necessary to go further and let them collaborate with the physical elements around them, including the objects that belong to the Internet of Things (IoT). Unfortunately, AR/MR and IoT devices usually make use of heterogeneous technologies that complicate their intercommunication. Moreover, the implementation of the intercommunication mechanisms requires involving specialized developers with have experience on the necessary technologies. To tackle such problems, this article proposes the use of a framework that makes it easy to integrate AR/MR and IoT devices, allowing them to communicate dynamically and in real time. The presented AR/MR-IoT framework makes use of standard and open-source protocols and tools like MQTT, HTTPS or Node-RED. After detailing the inner workings of the framework, it is illustrated its potential through a practical use case: a smart power socket that can be monitored and controlled through Microsoft HoloLens AR/MR glasses. The performance of such a practical use case is evaluated and it is demonstrated that the proposed framework, under normal operation conditions, enables to respond in less than 100 ms to interaction and data update requests. Full article
Show Figures

Figure 1

16 pages, 3613 KiB  
Article
Evaluation of Silica Nanofluids in Static and Dynamic Conditions by an Optical Fiber Sensor
by Marco César Prado Soares, Matheus Santos Rodrigues, Egont Alexandre Schenkel, Gabriel Perli, Willian Hideak Arita Silva, Matheus Kauê Gomes, Eric Fujiwara and Carlos Kenichi Suzuki
Sensors 2020, 20(3), 707; https://doi.org/10.3390/s20030707 - 28 Jan 2020
Cited by 5 | Viewed by 2514
Abstract
This work presents an optical fiber dynamic light scattering sensor capable of simultaneously assessing concentration and flow speed of nanofluids. Silica nanoparticles (189 nm) in water were tested, yielding a sensitivity of 0.78288 × 10³ s−1 for static conditions. Then, the sensor [...] Read more.
This work presents an optical fiber dynamic light scattering sensor capable of simultaneously assessing concentration and flow speed of nanofluids. Silica nanoparticles (189 nm) in water were tested, yielding a sensitivity of 0.78288 × 10³ s−1 for static conditions. Then, the sensor was submitted to situations that simulate spatial concentration changes, offering better results than those obtained by traditional mathematical models. Finally, in flow tests, the light backscattered by the nanoparticles were collected by a fiber probe placed parallel to the streamline, whereas intensity values were processed by artificial neural networks. The sensor provides average errors of 0.09 wt% and 0.26 cm/s for concentration and speed measurements, respectively, and can be further applied to assess different types of nanofluids and inline processes. Full article
Show Figures

Figure 1

Other

Jump to: Research

12 pages, 3830 KiB  
Letter
New Insights into the Design and Application of a Passive Acoustic Monitoring System for the Assessment of the Good Environmental Status in Spanish Marine Waters
by Guillermo Lara, Ramón Miralles, Manuel Bou-Cabo, José Antonio Esteban and Víctor Espinosa
Sensors 2020, 20(18), 5353; https://doi.org/10.3390/s20185353 - 18 Sep 2020
Cited by 5 | Viewed by 2625
Abstract
Passive acoustic monitoring systems allow for non-invasive monitoring of underwater species and anthropogenic noise. One of these systems has been developed keeping in mind the need to create a user-friendly tool to obtain the ambient noise indicators, while at the same time providing [...] Read more.
Passive acoustic monitoring systems allow for non-invasive monitoring of underwater species and anthropogenic noise. One of these systems has been developed keeping in mind the need to create a user-friendly tool to obtain the ambient noise indicators, while at the same time providing a powerful tool for marine scientists and biologists to progress in studying the effect of human activities on species and ecosystems. The device is based on a low-power processor with ad-hoc electronics, ensuring that the system has efficient energy management, and that the storage capacity is large enough to allow deployments for long periods. An application is presented using data from an acoustic campaign done in 2018 at El Gorguel (Cartagena, Spain). The results show a good agreement between theoretical maps created using AIS data and the ambient noise level indicators measured in the frequency bands of 63 Hz and 125 Hz specified in the directive 11 of the EU Marine Strategy Framework Directive. Using a 2D representation, these ambient noise indicators have enabled repetitive events and daily variations in boat traffic to be identified. The ship noise registered can also be used to track ships by using the acoustic signatures of the engine propellers’ noise. Full article
Show Figures

Figure 1

12 pages, 6451 KiB  
Letter
Monitoring and Reconstruction of the Shape of the Detection Units in KM3NeT Using Acoustic and Compass Sensors
by Dídac D.Tortosa
Sensors 2020, 20(18), 5116; https://doi.org/10.3390/s20185116 - 08 Sep 2020
Cited by 4 | Viewed by 2398
Abstract
The KM3NeT underwater neutrino telescope comprises thousands of optical modules forming 3D arrays to detect the Cherenkov light produced by particles generated after a neutrino interaction in the medium. The modules are arranged in detection units—vertical structures with 18 modules at different heights, [...] Read more.
The KM3NeT underwater neutrino telescope comprises thousands of optical modules forming 3D arrays to detect the Cherenkov light produced by particles generated after a neutrino interaction in the medium. The modules are arranged in detection units—vertical structures with 18 modules at different heights, anchored to the seabed and kept vertical by the buoyancy of the optical modules and a top buoy. The optical modules are, thus, subject to movements due to sea currents. For a correct reconstruction of events detected by the telescope, it is necessary to know the relative position and orientation of modules with 10 cm and a few degrees accuracy, respectively. For this, an Acoustic Positioning System with a piezoceramic transducer installed in each module and a long baseline of acoustic transmitters and receivers on the seabed are used. In addition, there is a system of compass and accelerometers inside the optical modules to determine their orientation. A model of mechanical equations is used to reconstruct the shape of the detection unit taking as input the information from the positioning/orientation sensors and using the sea current velocity and direction as free parameters. The mechanical equations take the buoyancy and the drag force of the elements of the detection unit into account. This work describes the full process that is implemented in KM3NeT to monitor the modules and the shape of the detection units from the measured position and orientation data. Full article
Show Figures

Figure 1

Back to TopTop