sensors-logo

Journal Browser

Journal Browser

Recent Advances in Microfluidic Sensing Devices

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Biosensors".

Deadline for manuscript submissions: 25 March 2026 | Viewed by 3915

Special Issue Editor

State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
Interests: microfluidics-based cell analysis; microdroplet reaction; MALDI imaging; LC-MS based metabolomics; proteomics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This special issue is dedicated to exploring the cutting-edge advancements in the field of microfluidic sensing devices. It will provide a platform for researchers to showcase their innovative work on the design, fabrication, and application of these devices. The issue will cover a wide range of topics, including but not limited to:

  1. Microfluidic sensor design and fabrication: Papers discussing novel design concepts, advanced fabrication techniques, and the integration of microfluidic sensors with other technologies are encouraged.
  2. Novel materials for microfluidic sensors: Contributions focusing on the development and characterization of new materials that enhance the performance and functionality of microfluidic sensors are of interest.
  3. Integration of microfluidic sensors with other technologies: Manuscripts that explore the interfacing of microfluidic sensors with electronics, optics, and other sensing modalities to create multifunctional devices are welcome.
  4. Applications of microfluidic sensors: Research articles that demonstrate the use of microfluidic sensors in various fields such as healthcare diagnostics, environmental monitoring, food safety, and industrial process control are sought.
  5. Advances in microfluidic sensor signal processing and data analysis: Papers addressing the challenges and solutions in signal transduction, amplification, and data interpretation for microfluidic sensors are invited.

Authors are encouraged to submit high-quality, original research articles, review articles, and short communications that align with the theme of the special issue. The deadline for manuscript submission is 25 May 2025. Accepted papers will undergo a rigorous peer-review process to ensure the highest standards of quality and significance.

Dr. Dan Gao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microfluidic sensor
  • multifunctional devices
  • signal processing and data analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

42 pages, 14097 KiB  
Review
Microfluidic Biosensors: Enabling Advanced Disease Detection
by Siyue Wang, Xiaotian Guan and Shuqing Sun
Sensors 2025, 25(6), 1936; https://doi.org/10.3390/s25061936 - 20 Mar 2025
Viewed by 1746
Abstract
Microfluidic biosensors integrate microfluidic and biosensing technologies to achieve the miniaturization, integration, and automation of disease diagnosis, and show great potential for application in the fields of cancer liquid biopsy, pathogenic bacteria detection, and POCT. This paper reviews the recent advances related to [...] Read more.
Microfluidic biosensors integrate microfluidic and biosensing technologies to achieve the miniaturization, integration, and automation of disease diagnosis, and show great potential for application in the fields of cancer liquid biopsy, pathogenic bacteria detection, and POCT. This paper reviews the recent advances related to microfluidic biosensors in the field of laboratory medicine, focusing on their applications in the above three areas. In cancer liquid biopsy, microfluidic biosensors facilitate the isolation, enrichment, and detection of tumor markers such as CTCs, ctDNA, miRNA, exosomes, and so on, providing support for early diagnosis, precise treatment, and prognostic assessment. In terms of pathogenic bacteria detection, microfluidic biosensors can achieve the rapid, highly sensitive, and highly specific detection of a variety of pathogenic bacteria, helping disease prevention and control as well as public health safety. Pertaining to the realm of POCT, microfluidic biosensors bring the convenient detection of a variety of diseases, such as tumors, infectious diseases, and chronic diseases, to primary health care. Future microfluidic biosensor research will focus on enhancing detection throughput, lowering costs, innovating new recognition elements and signal transduction methods, integrating artificial intelligence, and broadening applications to include home health care, drug discovery, food safety, and so on. Full article
(This article belongs to the Special Issue Recent Advances in Microfluidic Sensing Devices)
Show Figures

Figure 1

23 pages, 7697 KiB  
Review
Recent Advances in Aptamer-Based Microfluidic Biosensors for the Isolation, Signal Amplification and Detection of Exosomes
by Jessica Hu and Dan Gao
Sensors 2025, 25(3), 848; https://doi.org/10.3390/s25030848 - 30 Jan 2025
Cited by 2 | Viewed by 1888
Abstract
Exosomes carry diverse tumor-associated molecular information that can reflect real-time tumor progression, making them a promising tool for liquid biopsy. However, traditional methods for exosome isolation and detection often rely on large, expensive equipment and are time-consuming, limiting their practical applicability in clinical [...] Read more.
Exosomes carry diverse tumor-associated molecular information that can reflect real-time tumor progression, making them a promising tool for liquid biopsy. However, traditional methods for exosome isolation and detection often rely on large, expensive equipment and are time-consuming, limiting their practical applicability in clinical settings. Microfluidic technology offers a versatile platform for exosome analysis, with advantages such as seamless integration, portability and reduced sample volumes. Aptamers, which are single-stranded oligonucleotides with high affinity and specificity for target molecules, have been frequently employed in the development of aptamer-based microfluidics for the isolation, signal amplification, and quantitative detection of exosomes. This review summarizes recent advances in aptamer-based microfluidic strategies for exosome analysis, including (1) strategies for on-chip exosome capture mediated by aptamers combined with nanomaterials or nanointerfaces; (2) aptamer-based on-chip signal amplification techniques, such as enzyme-free hybridization chain reaction (HCR), rolling circle amplification (RCA), and DNA machine-assisted amplification; and (3) various aptamer-assisted detection methods, such as fluorescence, electrochemistry, surface-enhanced Raman scattering (SERS), and magnetism. The limitations and advantages of these methods are also summarized. Finally, future challenges and directions for the clinical analysis of exosomes based on aptamer-based microfluidics are discussed. Full article
(This article belongs to the Special Issue Recent Advances in Microfluidic Sensing Devices)
Show Figures

Figure 1

Back to TopTop