sensors-logo

Journal Browser

Journal Browser

Ultrafast Optoelectronic Sensing and Imaging

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Optical Sensors".

Deadline for manuscript submissions: 25 September 2025 | Viewed by 915

Special Issue Editors


E-Mail Website
Guest Editor
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Interests: ultrafast optoelectronic sensing and imaging; ultrafast diagnosis; ultrafast sensors/detectors; ultrafast electronics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Interests: ultrafast optoelectronic sensing and imaging; ultrafast diagnosis; ultrafast sensors/detectors; ultrafast electronics

Special Issue Information

Dear Colleagues,

Ultrafast optics, as an important branch of ultrafast science and modern physics, not only provides an important means for people to reveal the dynamics of the microscopic world on the femtosecond and attosecond time scales, but also greatly advances the innovative development of the study of the interaction between light and matter. Throughout the continuous innovation of ultrafast science and optical technology, it has provided higher time resolution for cutting-edge research in optics and demonstrated its unique value in many fields.

Undoubtedly, ultrafast optics is one of the most cutting-edge scientific fields for people to recognize the material world from faster and more precise dimensions and presents a broad development prospect, which will greatly promote the innovation and development of science and technology from basic research to applied research. In this regard, Sensors is planning to launch a Special Issue on "Ultrafast Optoelectronic Sensing and Imaging". We look forward to receiving contributions presenting technical, methodological capabilities capable of contributing to the future development of ultrafast optoelectronic sensing and imaging and their applications. Topics include but are not limited to ultrafast optoelectronic sensing, ultrafast optoelectronic imaging, ultrafast diagnosis, ultrafast sensors/detectors, ultrafast electronics, and the intersection of ultrafast optics and other disciplines.

Prof. Dr. Houzhi Cai
Dr. Lijuan Xiang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ultrafast science
  • ultrafast optoelectronics
  • ultrafast laser physics
  • ultrafast optical measurement
  • ultrafast imaging and information processing
  • ultrafast diagnosis
  • ultrafast sensors/detectors
  • ultrafast electronics
  • ultrafast phenomena
  • intersection of ultrafast optics and other disciplines

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3205 KiB  
Article
A 209 ps Shutter-Time CMOS Image Sensor for Ultra-Fast Diagnosis
by Houzhi Cai, Zhaoyang Xie, Youlin Ma and Lijuan Xiang
Sensors 2025, 25(12), 3835; https://doi.org/10.3390/s25123835 - 19 Jun 2025
Viewed by 230
Abstract
A conventional microchannel plate framing camera is typically utilized for inertial confinement fusion diagnosis. However, as a vacuum electronic device, it has inherent limitations, such as a complex structure and the inability to achieve single-line-of-sight imaging. To address these challenges, a CMOS image [...] Read more.
A conventional microchannel plate framing camera is typically utilized for inertial confinement fusion diagnosis. However, as a vacuum electronic device, it has inherent limitations, such as a complex structure and the inability to achieve single-line-of-sight imaging. To address these challenges, a CMOS image sensor that can be seamlessly integrated with an electronic pulse broadening system can provide a viable alternative to the microchannel plate detector. This paper introduces the design of an 8 × 8 pixel-array ultrashort shutter-time single-framing CMOS image sensor, which leverages silicon epitaxial processing and a 0.18 μm standard CMOS process. The focus of this study is on the photodiode and the readout pixel-array circuit. The photodiode, designed using the silicon epitaxial process, achieves a quantum efficiency exceeding 30% in the visible light band at a bias voltage of 1.8 V, with a temporal resolution greater than 200 ps for visible light. The readout pixel-array circuit, which is based on the 0.18 μm standard CMOS process, incorporates 5T structure pixel units, voltage-controlled delayers, clock trees, and row-column decoding and scanning circuits. Simulations of the pixel circuit demonstrate an optimal temporal resolution of 60 ps. Under the shutter condition with the best temporal resolution, the maximum output swing of the pixel circuit is 448 mV, and the output noise is 77.47 μV, resulting in a dynamic range of 75.2 dB for the pixel circuit; the small-signal responsivity is 1.93 × 10−7 V/e, and the full-well capacity is 2.3 Me. The maximum power consumption of the 8 × 8 pixel-array and its control circuits is 0.35 mW. Considering both the photodiode and the pixel circuit, the proposed CMOS image sensor achieves a temporal resolution better than 209 ps. Full article
(This article belongs to the Special Issue Ultrafast Optoelectronic Sensing and Imaging)
Show Figures

Figure 1

12 pages, 3201 KiB  
Article
High Sensitivity SERS Substrate with Femtosecond Laser-Printed Nanohole Arrays
by Yunfang Zhang, Dejun Liu, Han Liu, Yubin Deng, Zhiyong Bai, Changrui Liao, Yiping Wang and Ying Wang
Sensors 2025, 25(12), 3680; https://doi.org/10.3390/s25123680 - 12 Jun 2025
Viewed by 327
Abstract
This article presents a novel method for fabricating repeatable and uniform surface-enhanced Raman scattering (SERS) substrates. The proposed method consists of two steps: (1) the fabrication of nanohole arrays using advanced femtosecond laser-induced two-photon polymerization (TPP) technology; and (2) the deposition of 9 [...] Read more.
This article presents a novel method for fabricating repeatable and uniform surface-enhanced Raman scattering (SERS) substrates. The proposed method consists of two steps: (1) the fabrication of nanohole arrays using advanced femtosecond laser-induced two-photon polymerization (TPP) technology; and (2) the deposition of 9 nm thick silver nanoparticles on the nanohole arrays. The proposed nanohole arrays were optimized at the diameter, and the thickness of the silver film at two parameters. Regarding SERS substrates, a limit of detection of 10−10 M (rhodamine 6G) and analytical enhancement factors up to 3.5 × 104 were achieved. At 1361 cm−1, the relative standard deviation (RSD) of the characteristic peak was 5.5%, demonstrating a highly reproducible SERS substrate. Full article
(This article belongs to the Special Issue Ultrafast Optoelectronic Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop