sensors-logo

Journal Browser

Journal Browser

Sensing Technologies in Neuroscience and Brain Research

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Biosensors".

Deadline for manuscript submissions: 1 August 2025 | Viewed by 7139

Special Issue Editor


E-Mail Website
Guest Editor
Multimodal Neurotechnology Research Group, Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
Interests: neurotechnology; imaging

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the novel neurotechnology methods applied in neuroscience and brain research. In recent years, implantable or non-invasive sensing devices have shown major improvements regarding size, flexibility, and biocompatibility. The massive advancements in neuroscience leaning on multielectrode arrays both in vivo and in vitro led to a boom in optical approaches. Currently, the optical and electrical modalities approach each other even closer, with the transparent neurotechnology devices gaining ground.

The Special Issue aims to explore the latest research and innovations in neurotechnology and their applications across diverse domains. It aims to collate contributions from researchers, engineers, and scientists working in the field of neurotechnology and neuroscience. The main topics addressed will range from novel electrode designs utilized for early detection, monitoring, and treatment evaluation of neurological conditions such as epilepsy, Alzheimer's disease, Parkinson’s disease, and attention deficit hyperactivity disorder (ADHD) to applications of machine learning algorithms for deciphering the activity of neuronal populations or cellular compartments. The objective is to provide a comprehensive overview of the state-of-the-art advancements, challenges, and future directions in novel neurotechnology devices.

Dr. Attila Kaszás
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neurotechnology
  • neuronal activity
  • populational activity
  • machine learning
  • brain–computer interface
  • transparent devices
  • neurological disorders

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 4754 KiB  
Article
A Low-Cost Multimodal Testbed for Array-Based Electrophysiological Microelectrodes
by Cat-Vu H. Bui, Neethu Maliakal, Hasan Ulusan, Andreas Hierlemann and Fernando Cardes
Sensors 2025, 25(9), 2874; https://doi.org/10.3390/s25092874 - 2 May 2025
Viewed by 443
Abstract
Electrode designs and materials have become an increasingly important performance driver for microelectrode arrays, which are among the essential tools for cellular electrophysiology. Ongoing works have continuously innovated over a diverse range of electrode shapes, sizes, and materials. The large design and fabrication [...] Read more.
Electrode designs and materials have become an increasingly important performance driver for microelectrode arrays, which are among the essential tools for cellular electrophysiology. Ongoing works have continuously innovated over a diverse range of electrode shapes, sizes, and materials. The large design and fabrication parameter space represents rich opportunities for optimizing performance and functionalities as well as a challenge for electrode developers due to a lack of predictive simulation software to aid design works. Electrode prototypes often need to be fabricated, empirically evaluated, and iteratively optimized at significant cost. Efficient hardware testing solutions to aid the development of new electrodes, especially at an early stage when the number of candidate designs is still high, are therefore increasingly important. Here, we propose and implement a cost-effective testbed platform, which is aimed at obtaining first-order characteristics from electrode prototypes to inform early-stage screening and refinement. Upon testing with microfabricated electrodes, the platform was shown to achieve an impedance measurement accuracy comparable to commercial equipment and effectively recorded extracellular action potentials of in vitro rat cortical neurons. By providing relevant electrode testing at a significantly lower cost, in a more compact form, and with greater ease of assembly, compared to existing hardware solutions, the presented testbed can meaningfully lower entry barriers for the development of new array-based electrophysiological microelectrodes. Full article
(This article belongs to the Special Issue Sensing Technologies in Neuroscience and Brain Research)
Show Figures

Figure 1

15 pages, 4108 KiB  
Article
Vocal Emotion Perception and Musicality—Insights from EEG Decoding
by Johannes M. Lehnen, Stefan R. Schweinberger and Christine Nussbaum
Sensors 2025, 25(6), 1669; https://doi.org/10.3390/s25061669 - 8 Mar 2025
Viewed by 648
Abstract
Musicians have an advantage in recognizing vocal emotions compared to non-musicians, a performance advantage often attributed to enhanced early auditory sensitivity to pitch. Yet a previous ERP study only detected group differences from 500 ms onward, suggesting that conventional ERP analyses might not [...] Read more.
Musicians have an advantage in recognizing vocal emotions compared to non-musicians, a performance advantage often attributed to enhanced early auditory sensitivity to pitch. Yet a previous ERP study only detected group differences from 500 ms onward, suggesting that conventional ERP analyses might not be sensitive enough to detect early neural effects. To address this, we re-analyzed EEG data from 38 musicians and 39 non-musicians engaged in a vocal emotion perception task. Stimuli were generated using parameter-specific voice morphing to preserve emotional cues in either the pitch contour (F0) or timbre. By employing a neural decoding framework with a Linear Discriminant Analysis classifier, we tracked the evolution of emotion representations over time in the EEG signal. Converging with the previous ERP study, our findings reveal that musicians—but not non-musicians—exhibited significant emotion decoding between 500 and 900 ms after stimulus onset, a pattern observed for F0-Morphs only. These results suggest that musicians’ superior vocal emotion recognition arises from more effective integration of pitch information during later processing stages rather than from enhanced early sensory encoding. Our study also demonstrates the potential of neural decoding approaches using EEG brain activity as a biological sensor for unraveling the temporal dynamics of voice perception. Full article
(This article belongs to the Special Issue Sensing Technologies in Neuroscience and Brain Research)
Show Figures

Figure 1

20 pages, 4852 KiB  
Article
A Flexible, Implantable, Bioelectronic Electroporation Device for Targeted Ablation of Seizure Foci in the Mouse Brain
by Rita Matta, Zsofia Balogh-Lantos, Zoltan Fekete, Martin Baca, Attila Kaszas, David Moreau and Rodney Philip O’Connor
Sensors 2025, 25(1), 4; https://doi.org/10.3390/s25010004 - 24 Dec 2024
Viewed by 1106
Abstract
The primary method of treatment for patients suffering from drug-resistant focal-onset epilepsy is resective surgery, which adversely impacts neurocognitive function. Radio frequency (RF) ablation and laser ablation are the methods with the most promise, achieving seizure-free rates similar to resection but with less [...] Read more.
The primary method of treatment for patients suffering from drug-resistant focal-onset epilepsy is resective surgery, which adversely impacts neurocognitive function. Radio frequency (RF) ablation and laser ablation are the methods with the most promise, achieving seizure-free rates similar to resection but with less negative impact on neurocognitive function. However, there remains a number of concerns and open technical questions about these two methods of thermal ablation, with the primary ones: (1) heating; (2) hemorrhage and bleeding; and (3) poor directionality. Irreversible electroporation (IRE) is a proven method of focal ablation, which circumvents all three of the primary concerns regarding focal RF and laser ablation. Here, we demonstrate the in vivo application of a flexible implant with organic electrodes for focal ablation of epilepsy foci using high-frequency IRE (H-FIRE) in mice. Our results show that local, targeted ablation is possible in the close neighborhood of the electrode, paving the way for the clinical application in the treatment of focal epilepsy. Full article
(This article belongs to the Special Issue Sensing Technologies in Neuroscience and Brain Research)
Show Figures

Figure 1

22 pages, 8100 KiB  
Article
Optically Controlled Drug Delivery Through Microscale Brain–Machine Interfaces Using Integrated Upconverting Nanoparticles
by Levente Víg, Anita Zátonyi, Bence Csernyus, Ágoston C. Horváth, Márton Bojtár, Péter Kele, Miklós Madarász, Balázs Rózsa, Péter Fürjes, Petra Hermann, Orsolya Hakkel, László Péter and Zoltán Fekete
Sensors 2024, 24(24), 7987; https://doi.org/10.3390/s24247987 - 14 Dec 2024
Viewed by 4557
Abstract
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding [...] Read more.
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study. With the upconverted higher energy photons, we demonstrate the induction of photochemical (cleaving) reactions that enable the local release of specific dyes as a model system near the implant. The modified ECoG electrodes can be implanted in brain tissue to act as an uncaging system that releases small amounts of substance while simultaneously measuring the evoked neural response upon light activation. In this paper, several technological challenges like the surface modification of UCNPs, the immobilization of particles on the implantable platform, and measuring the stability of integrated UCNPs in in vitro and in vivo conditions are addressed in detail. Besides the chemical, mechanical, and optical characterization of the ready-to-use devices, the effect of nanoparticles on the original electrophysiological function is also evaluated. The results confirm that silicone-based brain–machine interfaces can be efficiently complemented with UCNPs to facilitate local model drug release. Full article
(This article belongs to the Special Issue Sensing Technologies in Neuroscience and Brain Research)
Show Figures

Figure 1

Back to TopTop