Special Issue "Feature Paper Special Issue on Ocean Remote Sensing"

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Ocean Remote Sensing".

Deadline for manuscript submissions: 28 February 2021.

Special Issue Editors

Dr. Weimin Huang
Website
Guest Editor
Department of Electrical and Computer Engineering, Memorial University, St. John’s, A1B 3X5 NL, Canada
Interests: ocean remote sensing; high frequency surface-wave radar (HFSWR); microwave nautical radar; ocean observation using global navigation satellite systems (GNSS)
Special Issues and Collections in MDPI journals
Prof. Dr. Deepak R. Mishra
Website
Guest Editor
Department of Geography, University of Georgia, 210 Field Street, Rm 212B, Athens, GA 30602, USA
Interests: water quality (inland waters, estuaries, coastal, and open ocean waters); wetlands health, productivity, and carbon sequestration; benthic habitat mapping, cyber-innovated environmental sensing
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Ocean is the major reservoir of water, heat, and greenhouse gases on Earth. Remote sensing has been a key technology in ocean observation. Ocean remote sensing uses modern instruments including satellite, radar, as well as altimetry to study important ocean phenomena and processes.

We invite you to submit reviews or research articles to this Special Issue in order to improve the current knowledge on ocean remote sensing. Papers addressing ocean information retrieval methods, remote sensing data validation, calibration, and applications based on remote sensing data are welcome.

The applications or technologies in your work should be novel and should bring new information to this area.

Dr. Weimin Huang
Prof. Dr. Deepak R. Mishra
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Remote sensing of ocean color
  • Remote sensing of sea surface temperature and salinity
  • Remote sensing of sea surface winds, waves, currents, and sea ice
  • Remote detection of hard targets (ships, oil rigs, etc.) and oil spill/seep
  • Remote sensing image segmentation and classification in coastal environment
  • Radiometer, scatterometer, altimeter, synthetic aperture radar applications in oceanography
  • LIDAR remote sensing
  • Data fusion and assimilation
  • Dedicated ocean satellite missions
  • Operational oceanography
  • Physical, biological, chemical, and geological oceanography studies using remote sensing data
  • Marine meteorological studies using remote sensing
  • Synergy of remote sensing and modeling techniques for ocean studies

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Remotely Sensing the Source and Transport of Marine Plastic Debris in Bay Islands of Honduras (Caribbean Sea)
Remote Sens. 2020, 12(11), 1727; https://doi.org/10.3390/rs12111727 - 27 May 2020
Abstract
Plastic debris in the global ocean is considered an important issue with severe implications for human health and marine ecosystems. Here, we exploited high-resolution multispectral satellite observations over the Bay Islands and Gulf of Honduras, for the period 2014-2019, to investigate the capability [...] Read more.
Plastic debris in the global ocean is considered an important issue with severe implications for human health and marine ecosystems. Here, we exploited high-resolution multispectral satellite observations over the Bay Islands and Gulf of Honduras, for the period 2014-2019, to investigate the capability of satellite sensors in detecting marine plastic debris. We verified findings with in situ data, recorded the spectral characteristics of floating plastic litter, and identified plastic debris trajectories and sources. The results showed that plastic debris originating from Guatemala’s and Honduras’ rivers (such as Motagua, Ulua, Cangrejal, Tinto and Aguan) ends up in the Caribbean Sea, mainly during the period of August to March, which includes the main rainfall season. The detected spatial trajectories indicated that floating plastic debris travels with an average speed of 6 km d−1, following primarily a southwest (SW) to northeast (NE) direction, driven by the prevailing sea surface currents. Based on several satellite observations, there is no indication of a specific accumulation point, since plastic debris is dispersed by the dynamic circulation in the broader region. Our findings provide evidence that satellite remote sensing is a valuable, cost-effective tool for monitoring the sources and pathways of plastic debris in marine ecosystems, and thus could eventually support management strategies in the global ocean. Full article
(This article belongs to the Special Issue Feature Paper Special Issue on Ocean Remote Sensing)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades
Remote Sens. 2020, 12(5), 826; https://doi.org/10.3390/rs12050826 - 03 Mar 2020
Cited by 1
Abstract
Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of [...] Read more.
Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of primary production with remote-sensing observations of phytoplankton biomass. One of the major challenges in this approach lies in the assignment of the appropriate model parameters that define the photosynthetic response of phytoplankton to the light field. In the present study, a global database of in situ measurements of photosynthesis versus irradiance (P-I) parameters and a 20-year record of climate quality satellite observations were used to assess global primary production and its variability with seasons and locations as well as between years. In addition, the sensitivity of the computed primary production to potential changes in the photosynthetic response of phytoplankton cells under changing environmental conditions was investigated. Global annual primary production varied from 38.8 to 42.1 Gt C yr 1 over the period of 1998–2018. Inter-annual changes in global primary production did not follow a linear trend, and regional differences in the magnitude and direction of change in primary production were observed. Trends in primary production followed directly from changes in chlorophyll-a and were related to changes in the physico-chemical conditions of the water column due to inter-annual and multidecadal climate oscillations. Moreover, the sensitivity analysis in which P-I parameters were adjusted by ±1 standard deviation showed the importance of accurately assigning photosynthetic parameters in global and regional calculations of primary production. The assimilation number of the P-I curve showed strong relationships with environmental variables such as temperature and had a practically one-to-one relationship with the magnitude of change in primary production. In the future, such empirical relationships could potentially be used for a more dynamic assignment of photosynthetic rates in the estimation of global primary production. Relationships between the initial slope of the P-I curve and environmental variables were more elusive. Full article
(This article belongs to the Special Issue Feature Paper Special Issue on Ocean Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop